Download citation
Download citation
link to html
The title triangular tripalladium cluster, [Pd3­Cl5­(C18­H15P)3]·­C3H6O, (I), has a trigonal-bipyramidal framework of Pd33-Cl)2, with the two Cl atoms in apical positions. Each Pd atom in the framework has two additional coordination sites to establish square-planar cis-PdL23-Cl)2 geometry. Three P atoms are located on the same side of the plane defined by the Pd3 triangle, which leads to a pseudo-C3v symmetry for the core framework of Pd33-Cl)2P3Cl3. The average Pd—Cl distance trans to PPh3 is 2.473 (8) Å, which is significantly longer than the average Pd—Cl distance of 2.294 (4) Å for those trans to terminal Cl, due to the strong trans effect of a P atom compared with a Cl atom. Compound (I) has 49 valence electrons and shows a rhombic electron-spin resonance signal, indicating an S = ½ ground state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016509/fr1241sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016509/fr1241Isup2.hkl
Contains datablock I

Comment top

As far as we know (Allen et al., 1983, 1987), only chalcogen atoms have been reported for µ3-bridging ligands in compounds [M33-E)2(L)6]2+ (M = Ni, Pd; E = O, S, or Se(SiMe3)2; L = P– or S-centered ligands or halogen anions) (Ghilardi et al., 1978, 1984, 1985; Carmona et al., 1985; Cecconi et al., 1990; Werner et al., 1980; Cowan et al., 1987; Fenske et al., 1990) with a three-fliers-waterwheel structure. As a chalcogen-bridged system has 48 valence electrons, replacing two bridging ligands from chalcogen to halogen causes an addition of two electrons to the trimetal compound, forming a compound with 50-valence electrons. Trimetal compounds with more than 49 valence electrons are rare. To our knowledge, only those containing electronegative cyclopentadienyl (Cp) ligands in cobalt and nickel systems are known to exist (Michael et al., 1990). During the course of our study in trimetal cluster chemistry (Maekawa et al., 1995a,b), we have found a new tripalladium compound with two bridging chlorine atoms, [Pd33-Cl)2(PPh3)3Cl3].(CH3)2CO, (I). The valence electron count of (I) is 49. We report here the crystal structure and electron spin resonance (ESR) study of (I). \sch

An ORTEPII view of the molecular structure of (I) together with the atom-numbering scheme is shown in Fig. 1. The core framework of Pd33– Cl)2P3Cl3 is just similar to those of chalcogen-bridged tripalladium compounds, which can be described as three square planar PdPCl3 moieties having two chloride anions in common. One of two bridging chlorine atoms, (Cl1), is located at trans to all phosphorus atoms while the other, (Cl2), is located at cis, which corresponds to a pseudo C3v symmetry for the core framework. The average distance of Pd—Cl1 is 2.473 (8) Å, which is significantly longer than 2.294 (4) Å for that of Pd—Cl2, due to the strong trans effect of a phosphorus atom compared to a chlorine atom. The average Pd—Cl distance of 2.327 (3) Å for terminal chloride anions falls within two Pd—Cl distances for bridging chloride anions. The average Pd—P distance of 2.22 (1) Å is fairly shorter than those reported for chalcogen-bridged tripalladium compounds [2.248 (7)–2.339 (3) Å]. Pd···Pd distances are 3.0817 (5), 3.0638 (4), and 3.1536 (5) Å for Pd1···Pd2, Pd2···Pd3, and Pd1···Pd3, respectively. These values are similar to those reported for chalcogen-bridged tripalladium compounds [3.011 (2)–3.1814 (4) Å], indicating weak Pd···Pd interaction.

In contrast to the chalcogen-bridged trimetal compounds, (I), shows paramagnetic behaviour. The solid state powder ESR spectrum of (I) measured at room temperature shows a rhombic pattern with g1 = 2.144, g2 = 2.044, and g3 = 1.996. The observation of the ESR signal is consistent with the valence electron count of 49 and S = 1/2.

Experimental top

[Pd(PhCN)2Cl2] (46 mg, 0.12 mmol), PPh3 (31 mg, 0.12 mmol) and rhodanine (27 mg, 0.24 mmol) as reducing agent were stirred in acetone (10 ml) under argon at room temperature. The suspension became clear solution during stirring. After filtration, the filtrate was transferred to glass tubes and the same amount of n-pentane was added slowly to the solution. The glass tubes were sealed and allowed to stand at room temperature. After one week, red crystals of (I) were obtained.

Refinement top

The (CH3)2CO solvate was refined as an idealized acetone molecule.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: DIRDIF92 (PATTY) (Beurskens et al., 1992); program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms and (CH3)2CO solvate have been omitted for clarity.
(I) top
Crystal data top
[Pd3Cl5(C18H15P)3]·C3H6OZ = 2
Mr = 1341.42Dx = 1.589 Mg m3
Triclinic, P1Mo Kα radiation, λ = 0.7107 Å
a = 18.515 (2) ÅCell parameters from 25 reflections
b = 14.295 (3) Åθ = 15.1–19.1°
c = 10.916 (1) ŵ = 1.31 mm1
α = 84.90 (1)°T = 296 K
β = 87.874 (9)°Plate, red
γ = 77.04 (1)°0.20 × 0.20 × 0.10 mm
V = 2803.9 (8) Å3
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.015
ω–2θ scansθmax = 27.5°, θmin = 4.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 2324
Tmin = 0.728, Tmax = 0.877k = 018
13420 measured reflectionsl = 1414
12899 independent reflections3 standard reflections every 150 reflections
9622 reflections with I > 2σ(I) intensity decay: 2.4%
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.6836P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.005
wR(F2) = 0.101Δρmax = 0.44 e Å3
S = 1.02Δρmin = 0.47 e Å3
9622 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
625 parametersExtinction coefficient: 0.0005
H-atom parameters not refined
Crystal data top
[Pd3Cl5(C18H15P)3]·C3H6Oγ = 77.04 (1)°
Mr = 1341.42V = 2803.9 (8) Å3
Triclinic, P1Z = 2
a = 18.515 (2) ÅMo Kα radiation
b = 14.295 (3) ŵ = 1.31 mm1
c = 10.916 (1) ÅT = 296 K
α = 84.90 (1)°0.20 × 0.20 × 0.10 mm
β = 87.874 (9)°
Data collection top
Rigaku AFC7R
diffractometer
9622 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.728, Tmax = 0.8773 standard reflections every 150 reflections
13420 measured reflections intensity decay: 2.4%
12899 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037625 parameters
wR(F2) = 0.101H-atom parameters not refined
S = 1.02Δρmax = 0.44 e Å3
9622 reflectionsΔρmin = 0.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

All hydrogen atoms connected to phenyl groups were treated with a riding model with the 1.2 fold isotropic displacement parameters of the equivalent Uiso of the corresponding carbon atom. The hydrogen atoms of CH3 groups were refined in ideal positions with C—H bond lengths of 0.96 Å.

Refinement. The θ-scan width used was (1.05 + 0.30 tanθ)° at speed of 16.0 min-1 (in ω). The weak reflections were rescanned a maximum of three times and the counts accumulated to ensure good counting statistics. Stationary background counts were made on each side of the reflection with a 2:1 ratio of peak to background counting time. The structures was solved by heavy-atom Patterson and expanded using the Fourier program DIRDIF94 (Beurskens et al., 1994). Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt)·The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculation but not refined. The refinements were performed by using full-matrix least-squares method. All calculations were performed using the TEXSAN crystallographic software package.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.11145 (2)0.19753 (2)0.42754 (2)0.03608 (8)
Pd20.27008 (1)0.07195 (2)0.41085 (2)0.03487 (8)
Pd30.25061 (2)0.29131 (2)0.43973 (3)0.03937 (8)
Cl10.21258 (6)0.18592 (7)0.58230 (8)0.0449 (2)
Cl20.20608 (5)0.19044 (7)0.29496 (8)0.0417 (2)
Cl30.02258 (7)0.2097 (1)0.5771 (1)0.0646 (3)
Cl40.32521 (6)0.04336 (8)0.5437 (1)0.0539 (3)
Cl50.29512 (7)0.37716 (8)0.6052 (1)0.0617 (3)
P10.02243 (5)0.22919 (7)0.28542 (9)0.0379 (2)
P20.31220 (5)0.03053 (7)0.25035 (9)0.0369 (2)
P30.29714 (6)0.36933 (8)0.3038 (1)0.0456 (2)
O10.3529 (7)0.6605 (9)0.076 (1)0.323 (8)
C10.0076 (2)0.3594 (3)0.3053 (4)0.0479 (9)
C20.0753 (3)0.4026 (4)0.3555 (5)0.075 (2)
C30.0948 (4)0.5027 (5)0.3753 (6)0.096 (2)
C40.0479 (5)0.5570 (4)0.3480 (6)0.100 (2)
C50.0199 (4)0.5140 (4)0.3023 (7)0.096 (2)
C60.0411 (3)0.4147 (4)0.2801 (5)0.069 (1)
C70.0581 (3)0.1773 (4)0.2951 (4)0.055 (1)
C80.0556 (3)0.0991 (4)0.3629 (5)0.069 (1)
C90.1181 (5)0.0602 (5)0.3645 (6)0.098 (2)
C100.1805 (5)0.0987 (8)0.3000 (7)0.121 (3)
C110.1823 (4)0.1733 (7)0.2307 (7)0.114 (3)
C120.1211 (3)0.2138 (5)0.2285 (5)0.080 (2)
C130.0443 (2)0.1960 (3)0.1247 (3)0.0422 (9)
C140.0381 (3)0.2622 (4)0.0370 (4)0.065 (1)
C150.0473 (3)0.2294 (5)0.0863 (5)0.081 (2)
C160.0626 (3)0.1341 (5)0.1230 (5)0.078 (2)
C170.0697 (3)0.0671 (4)0.0372 (5)0.071 (1)
C180.0608 (3)0.0991 (4)0.0865 (4)0.057 (1)
C190.2500 (2)0.1121 (3)0.2216 (4)0.0461 (9)
C200.1929 (3)0.1069 (4)0.3021 (5)0.061 (1)
C210.1433 (3)0.1662 (4)0.2795 (6)0.078 (2)
C220.1504 (4)0.2306 (5)0.1792 (7)0.089 (2)
C230.2074 (4)0.2382 (5)0.0999 (6)0.091 (2)
C240.2571 (3)0.1787 (4)0.1193 (5)0.073 (1)
C250.4060 (2)0.0986 (3)0.2783 (4)0.0447 (9)
C260.4295 (3)0.1947 (4)0.2408 (6)0.072 (1)
C270.5036 (4)0.2391 (5)0.2600 (8)0.103 (2)
C280.5527 (3)0.1878 (6)0.3126 (7)0.099 (3)
C290.5293 (3)0.0938 (6)0.3495 (5)0.078 (2)
C300.4555 (2)0.0476 (4)0.3336 (4)0.058 (1)
C310.3194 (2)0.0172 (3)0.1028 (3)0.0399 (8)
C320.3850 (2)0.0370 (4)0.0676 (4)0.060 (1)
C330.3903 (3)0.0700 (5)0.0468 (5)0.074 (2)
C340.3304 (3)0.0825 (4)0.1264 (4)0.069 (1)
C350.2653 (3)0.0655 (4)0.0900 (4)0.067 (1)
C360.2588 (2)0.0337 (4)0.0235 (4)0.058 (1)
C370.3063 (3)0.4893 (3)0.3632 (4)0.058 (1)
C380.2458 (4)0.5534 (4)0.4160 (5)0.077 (2)
C390.2511 (5)0.6463 (5)0.4548 (6)0.104 (2)
C400.3151 (7)0.6751 (5)0.4457 (7)0.119 (3)
C410.3749 (5)0.6127 (6)0.3949 (8)0.122 (3)
C420.3709 (4)0.5190 (4)0.3535 (6)0.090 (2)
C430.3901 (2)0.3009 (3)0.2694 (4)0.054 (1)
C440.4319 (3)0.2536 (4)0.3625 (5)0.072 (1)
C450.5042 (3)0.2017 (5)0.3433 (7)0.093 (2)
C460.5341 (3)0.1952 (5)0.2314 (8)0.098 (2)
C470.4943 (4)0.2413 (6)0.1377 (6)0.101 (2)
C480.4222 (3)0.2941 (5)0.1561 (5)0.080 (2)
C490.2489 (3)0.3881 (3)0.1563 (4)0.055 (1)
C500.2501 (3)0.3119 (4)0.0684 (5)0.066 (1)
C510.2144 (4)0.3275 (5)0.0440 (5)0.087 (2)
C520.1770 (5)0.4156 (6)0.0689 (7)0.120 (3)
C530.1725 (5)0.4914 (6)0.0181 (8)0.120 (3)
C540.2093 (4)0.4794 (4)0.1311 (6)0.084 (2)
C550.3997 (9)0.559 (1)0.259 (1)0.275 (9)
C560.3716 (6)0.5847 (9)0.132 (1)0.232 (9)
C570.379 (1)0.492 (1)0.079 (2)0.39 (2)
H10.10840.36420.37650.0904*
H20.14180.53360.40820.1155*
H30.06150.62510.35980.1221*
H40.05350.55290.28560.1142*
H50.08890.38520.24660.0820*
H60.01160.07170.40730.0838*
H70.11840.00750.41060.1147*
H80.22330.07310.30450.1455*
H90.22570.19640.18270.1346*
H100.12230.26600.18080.0977*
H110.02680.32920.06100.0783*
H120.04250.27500.14650.0983*
H130.06850.11280.20790.0938*
H140.08100.00020.06240.0852*
H150.06660.05310.14560.0679*
H160.18740.06270.37310.0740*
H170.10480.16250.33420.0963*
H180.11630.27090.16310.1084*
H190.21350.28510.03160.1078*
H200.29560.18320.06320.0887*
H210.39620.23070.20310.0867*
H220.52140.30470.23700.1242*
H230.60400.21860.32240.1144*
H240.56340.06020.38640.0989*
H250.43970.01840.36060.0707*
H260.42700.02780.12170.0720*
H270.43540.08300.07030.0899*
H280.33390.10400.20540.0828*
H290.22310.07560.14440.0807*
H300.21270.02300.04710.0707*
H310.20080.53360.42510.0929*
H320.20910.69080.48930.1230*
H330.31770.73880.47440.1436*
H340.41950.63380.38590.1437*
H350.41390.47540.31990.1064*
H360.41070.25640.44140.0873*
H370.53230.17130.40960.1126*
H380.58280.15780.21680.1177*
H390.51530.23660.05900.1219*
H400.39540.32650.09060.0954*
H410.27560.24890.08510.0801*
H420.21490.27550.10360.1049*
H430.15540.42660.14720.1493*
H440.14310.55390.00370.1403*
H450.20710.53310.19060.0986*
H460.45100.52640.25520.2812*
H470.37170.51690.30200.2812*
H480.39460.61620.30060.2812*
H490.36850.50320.00690.4116*
H500.42850.45460.09040.4116*
H510.34450.45790.11990.4116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0381 (2)0.0406 (2)0.0291 (1)0.0072 (1)0.0018 (1)0.0043 (1)
Pd20.0327 (1)0.0400 (2)0.0320 (1)0.0074 (1)0.0006 (1)0.0055 (1)
Pd30.0404 (2)0.0402 (2)0.0369 (2)0.0070 (1)0.0030 (1)0.0066 (1)
Cl10.0510 (5)0.0519 (6)0.0310 (4)0.0092 (4)0.0015 (4)0.0059 (4)
Cl20.0422 (5)0.0493 (5)0.0329 (4)0.0073 (4)0.0007 (4)0.0068 (4)
Cl30.0617 (7)0.0969 (9)0.0400 (5)0.0282 (7)0.0152 (5)0.0016 (6)
Cl40.0498 (6)0.0606 (7)0.0506 (6)0.0038 (5)0.0017 (4)0.0229 (5)
Cl50.0735 (8)0.0545 (6)0.0554 (6)0.0144 (6)0.0175 (5)0.0019 (5)
P10.0346 (5)0.0440 (5)0.0354 (5)0.0097 (4)0.0005 (4)0.0028 (4)
P20.0309 (5)0.0432 (5)0.0376 (5)0.0105 (4)0.0029 (4)0.0025 (4)
P30.0466 (6)0.0457 (6)0.0465 (6)0.0120 (5)0.0027 (5)0.0118 (5)
O10.33 (2)0.24 (1)0.39 (2)0.06 (1)0.20 (1)0.07 (1)
C10.052 (2)0.044 (2)0.044 (2)0.003 (2)0.010 (2)0.005 (2)
C20.075 (3)0.074 (4)0.061 (3)0.019 (3)0.009 (3)0.002 (3)
C30.119 (6)0.071 (4)0.068 (4)0.037 (4)0.005 (4)0.002 (3)
C40.146 (7)0.050 (3)0.078 (4)0.021 (4)0.033 (4)0.011 (3)
C50.121 (6)0.051 (3)0.117 (5)0.023 (4)0.048 (4)0.013 (3)
C60.058 (3)0.051 (3)0.096 (4)0.011 (2)0.018 (3)0.010 (3)
C70.054 (3)0.074 (3)0.040 (2)0.027 (2)0.010 (2)0.007 (2)
C80.087 (4)0.074 (3)0.055 (3)0.039 (3)0.013 (3)0.010 (2)
C90.142 (6)0.109 (5)0.067 (4)0.088 (5)0.043 (4)0.023 (3)
C100.105 (6)0.202 (9)0.083 (5)0.107 (6)0.041 (4)0.052 (5)
C110.066 (4)0.193 (9)0.093 (5)0.063 (5)0.006 (3)0.018 (5)
C120.049 (3)0.130 (5)0.070 (3)0.039 (3)0.005 (2)0.005 (3)
C130.033 (2)0.058 (2)0.034 (2)0.009 (2)0.001 (1)0.000 (2)
C140.074 (3)0.073 (3)0.050 (3)0.016 (3)0.001 (2)0.012 (2)
C150.087 (4)0.113 (5)0.040 (3)0.013 (4)0.002 (2)0.021 (3)
C160.061 (3)0.125 (5)0.044 (3)0.018 (3)0.003 (2)0.008 (3)
C170.063 (3)0.083 (4)0.061 (3)0.013 (3)0.002 (2)0.020 (3)
C180.055 (3)0.065 (3)0.049 (2)0.014 (2)0.005 (2)0.003 (2)
C190.042 (2)0.054 (2)0.047 (2)0.019 (2)0.002 (2)0.004 (2)
C200.047 (2)0.064 (3)0.077 (3)0.024 (2)0.013 (2)0.001 (2)
C210.054 (3)0.086 (4)0.104 (4)0.038 (3)0.012 (3)0.011 (3)
C220.081 (4)0.089 (4)0.112 (5)0.053 (4)0.024 (4)0.015 (4)
C230.116 (5)0.088 (4)0.083 (4)0.060 (4)0.007 (4)0.011 (3)
C240.085 (4)0.081 (4)0.064 (3)0.046 (3)0.009 (3)0.012 (3)
C250.037 (2)0.054 (2)0.042 (2)0.003 (2)0.005 (2)0.009 (2)
C260.061 (3)0.053 (3)0.099 (4)0.000 (2)0.018 (3)0.014 (3)
C270.075 (4)0.070 (4)0.153 (7)0.024 (3)0.034 (4)0.044 (4)
C280.046 (3)0.142 (7)0.103 (5)0.021 (4)0.023 (3)0.072 (5)
C290.037 (2)0.143 (6)0.057 (3)0.018 (3)0.001 (2)0.028 (3)
C300.035 (2)0.090 (4)0.049 (2)0.013 (2)0.000 (2)0.004 (2)
C310.034 (2)0.048 (2)0.036 (2)0.007 (2)0.003 (1)0.003 (2)
C320.044 (2)0.087 (4)0.054 (3)0.020 (2)0.002 (2)0.022 (2)
C330.050 (3)0.116 (5)0.064 (3)0.022 (3)0.011 (2)0.030 (3)
C340.077 (3)0.093 (4)0.039 (2)0.014 (3)0.013 (2)0.016 (2)
C350.067 (3)0.095 (4)0.044 (3)0.032 (3)0.012 (2)0.010 (3)
C360.045 (2)0.084 (3)0.048 (2)0.022 (2)0.005 (2)0.010 (2)
C370.068 (3)0.051 (3)0.058 (3)0.017 (2)0.002 (2)0.013 (2)
C380.100 (4)0.051 (3)0.077 (4)0.011 (3)0.003 (3)0.008 (3)
C390.168 (7)0.052 (3)0.088 (5)0.014 (4)0.015 (5)0.009 (3)
C400.21 (1)0.058 (4)0.102 (6)0.055 (5)0.001 (6)0.003 (4)
C410.157 (8)0.093 (5)0.143 (7)0.082 (6)0.001 (6)0.013 (5)
C420.102 (5)0.072 (4)0.106 (5)0.041 (4)0.007 (4)0.010 (3)
C430.048 (2)0.058 (3)0.059 (3)0.014 (2)0.005 (2)0.010 (2)
C440.048 (3)0.081 (4)0.086 (4)0.003 (3)0.004 (2)0.026 (3)
C450.055 (3)0.099 (5)0.123 (6)0.002 (3)0.005 (3)0.034 (4)
C460.056 (3)0.096 (5)0.138 (7)0.006 (3)0.016 (4)0.000 (5)
C470.066 (4)0.154 (7)0.086 (4)0.029 (4)0.023 (3)0.001 (5)
C480.060 (3)0.111 (5)0.070 (3)0.018 (3)0.008 (3)0.014 (3)
C490.062 (3)0.056 (3)0.050 (2)0.018 (2)0.008 (2)0.021 (2)
C500.074 (3)0.072 (3)0.056 (3)0.022 (3)0.005 (2)0.018 (3)
C510.112 (5)0.098 (5)0.057 (3)0.036 (4)0.021 (3)0.020 (3)
C520.176 (8)0.121 (6)0.084 (5)0.070 (6)0.070 (5)0.051 (5)
C530.155 (7)0.092 (5)0.110 (6)0.018 (5)0.055 (5)0.046 (5)
C540.109 (5)0.066 (3)0.076 (4)0.017 (3)0.030 (3)0.025 (3)
C550.37 (2)0.25 (2)0.26 (2)0.19 (2)0.02 (2)0.07 (1)
C560.31 (2)0.13 (1)0.27 (2)0.08 (1)0.18 (2)0.06 (1)
C570.69 (5)0.19 (2)0.30 (2)0.10 (2)0.03 (3)0.04 (2)
Geometric parameters (Å, º) top
Pd1—Pd23.0818 (5)C23—C241.39 (1)
Pd1—Pd33.1537 (6)C23—H190.950
Pd2—Pd33.0639 (4)C24—H200.946
Pd1—Cl12.462 (1)C25—C261.375 (6)
Pd1—Cl22.293 (1)C25—C301.384 (7)
Pd1—Cl32.329 (1)C26—C271.393 (8)
Pd1—P12.220 (1)C26—H210.949
Pd2—Pd33.0639 (4)C27—C281.37 (1)
Pd2—Cl12.4735 (9)C27—H220.937
Pd2—Cl22.2896 (9)C28—C291.35 (1)
Pd2—Cl42.328 (1)C28—H230.959
Pd2—P22.2264 (9)C29—C301.389 (6)
Pd3—Cl12.482 (1)C29—H240.936
Pd3—Cl22.300 (1)C30—H250.947
Pd3—Cl52.323 (1)C31—C321.382 (6)
Pd3—P32.238 (1)C31—C361.383 (6)
P1—C11.814 (4)C32—C331.388 (8)
P1—C71.817 (5)C32—H260.951
P1—C131.813 (4)C33—C341.371 (7)
P2—C191.815 (5)C33—H270.945
P2—C251.820 (4)C34—C351.362 (8)
P2—C311.826 (4)C34—H280.950
P3—C371.820 (5)C35—C361.376 (7)
P3—C431.813 (4)C35—H290.955
P3—C491.823 (5)C36—H300.948
O1—C561.18 (2)C37—C381.387 (7)
C1—C21.377 (7)C37—C421.367 (9)
C1—C61.376 (8)C38—C391.381 (9)
C2—C31.395 (9)C38—H310.948
C2—H10.956C39—C401.35 (2)
C3—C41.34 (1)C39—H320.953
C3—H20.951C40—C411.36 (1)
C4—C51.36 (1)C40—H330.947
C4—H30.947C41—C421.39 (1)
C5—C61.387 (8)C41—H340.952
C5—H40.955C42—H350.957
C6—H50.961C43—C441.385 (7)
C7—C81.387 (8)C43—C481.378 (7)
C7—C121.376 (7)C44—C451.390 (7)
C8—C91.39 (1)C44—H360.954
C8—H60.955C45—C461.35 (1)
C9—C101.36 (1)C45—H370.953
C9—H70.944C46—C471.37 (1)
C10—C111.35 (1)C46—H380.951
C10—H80.948C47—C481.390 (8)
C11—C121.39 (1)C47—H390.947
C11—H90.954C48—H400.950
C12—H100.943C49—C501.383 (7)
C13—C141.389 (7)C49—C541.390 (7)
C13—C181.379 (6)C50—C511.384 (8)
C14—C151.390 (7)C50—H410.948
C14—H110.948C51—C521.34 (1)
C15—C161.354 (10)C51—H420.942
C15—H120.954C52—C531.37 (1)
C16—C171.380 (9)C52—H430.941
C16—H130.952C53—C541.39 (1)
C17—C181.389 (7)C53—H440.959
C17—H140.950C54—H450.956
C18—H150.948C55—C561.48 (2)
C19—C201.385 (7)C55—H460.960
C19—C241.392 (7)C55—H470.960
C20—C211.385 (8)C55—H480.960
C20—H160.949C56—C571.47 (2)
C21—C221.357 (9)C57—H490.960
C21—H170.935C57—H500.960
C22—C231.37 (1)C57—H510.960
C22—H180.947
Cl3···C4i3.492 (7)O1···C24v3.25 (1)
Cl3···C16ii3.539 (6)O1···C23v3.35 (1)
Cl4···C10iii3.499 (10)O1···C47vi3.54 (2)
Cl5···C28iv3.590 (7)
Cl1—Pd1—Cl282.58 (4)C21—C22—H18120.8
Cl1—Pd1—Cl392.30 (4)C23—C22—H18119.2
Cl1—Pd1—P1171.78 (4)C22—C23—C24120.5 (6)
Cl2—Pd1—Cl3174.50 (4)C22—C23—H19120.0
Cl2—Pd1—P194.69 (4)C24—C23—H19119.4
Cl3—Pd1—P190.11 (4)C19—C24—C23119.8 (5)
Pd3—Pd2—Cl151.94 (3)C19—C24—H20120.0
Pd3—Pd2—Cl248.26 (3)C23—C24—H20120.2
Pd3—Pd2—Cl4129.93 (3)P2—C25—C26123.0 (4)
Pd3—Pd2—P2128.68 (3)P2—C25—C30116.8 (3)
Cl1—Pd2—Cl282.40 (3)C26—C25—C30120.1 (4)
Cl1—Pd2—Cl492.40 (3)C25—C26—C27118.7 (5)
Cl1—Pd2—P2175.16 (4)C25—C26—H21121.1
Cl2—Pd2—Cl4173.96 (4)C27—C26—H21120.2
Cl2—Pd2—P295.00 (3)C26—C27—C28120.9 (6)
Cl4—Pd2—P289.97 (4)C26—C27—H22121.0
Pd2—Pd3—Cl151.68 (2)C28—C27—H22118.0
Pd2—Pd3—Cl247.98 (2)C27—C28—C29120.1 (5)
Pd2—Pd3—Cl5124.95 (3)C27—C28—H23120.1
Pd2—Pd3—P3121.54 (3)C29—C28—H23119.8
Cl1—Pd3—Cl282.01 (4)C28—C29—C30120.5 (6)
Cl1—Pd3—Cl590.18 (4)C28—C29—H24118.9
Cl1—Pd3—P3172.31 (4)C30—C29—H24120.5
Cl2—Pd3—Cl5171.95 (4)C25—C30—C29119.6 (5)
Cl2—Pd3—P395.42 (4)C25—C30—H25120.7
Cl5—Pd3—P392.08 (5)C29—C30—H25119.7
Pd1—Cl1—Pd277.27 (3)P2—C31—C32121.2 (3)
Pd1—Cl1—Pd379.26 (3)P2—C31—C36120.0 (3)
Pd2—Cl1—Pd376.38 (3)C32—C31—C36118.8 (4)
Pd1—Cl2—Pd284.53 (3)C31—C32—C33120.4 (4)
Pd1—Cl2—Pd386.74 (3)C31—C32—H26120.1
Pd2—Cl2—Pd383.77 (3)C33—C32—H26119.5
Pd1—P1—C1103.0 (1)C32—C33—C34120.2 (5)
Pd1—P1—C7118.0 (1)C32—C33—H27119.8
Pd1—P1—C13119.4 (1)C34—C33—H27120.0
C1—P1—C7108.5 (2)C33—C34—C35119.2 (5)
C1—P1—C13107.7 (2)C33—C34—H28120.6
C7—P1—C1399.7 (2)C35—C34—H28120.2
Pd2—P2—C19108.0 (1)C34—C35—C36121.4 (4)
Pd2—P2—C25111.7 (1)C34—C35—H29119.5
Pd2—P2—C31118.7 (1)C36—C35—H29119.1
C19—P2—C25109.9 (2)C31—C36—C35119.9 (4)
C19—P2—C31105.3 (2)C31—C36—H30120.2
C25—P2—C31102.9 (2)C35—C36—H30119.9
Pd3—P3—C37113.4 (2)P3—C37—C38119.5 (4)
Pd3—P3—C43107.3 (2)P3—C37—C42121.6 (4)
Pd3—P3—C49118.4 (2)C38—C37—C42118.9 (5)
C37—P3—C43106.4 (2)C37—C38—C39119.8 (7)
C37—P3—C49104.1 (2)C37—C38—H31120.0
C43—P3—C49106.5 (2)C39—C38—H31120.2
P1—C1—C2120.9 (4)C38—C39—C40121.0 (7)
P1—C1—C6118.9 (3)C38—C39—H32119.8
C2—C1—C6119.9 (4)C40—C39—H32119.2
C1—C2—C3119.3 (6)C39—C40—C41119.7 (8)
C1—C2—H1120.1C39—C40—H33119.5
C3—C2—H1120.6C41—C40—H33120.8
C2—C3—C4120.8 (6)C40—C41—C42120.5 (9)
C2—C3—H2120.1C40—C41—H34119.6
C4—C3—H2119.0C42—C41—H34119.9
C3—C4—C5119.8 (6)C37—C42—C41120.0 (6)
C3—C4—H3120.8C37—C42—H35120.4
C5—C4—H3119.4C41—C42—H35119.5
C4—C5—C6121.1 (7)P3—C43—C44118.4 (4)
C4—C5—H4119.3P3—C43—C48123.8 (4)
C6—C5—H4119.5C44—C43—C48117.8 (4)
C1—C6—C5119.0 (5)C43—C44—C45121.4 (6)
C1—C6—H5120.6C43—C44—H36119.4
C5—C6—H5120.4C45—C44—H36119.2
P1—C7—C8121.2 (4)C44—C45—C46119.7 (6)
P1—C7—C12118.8 (4)C44—C45—H37119.7
C8—C7—C12119.9 (5)C46—C45—H37120.5
C7—C8—C9119.0 (5)C45—C46—C47120.2 (6)
C7—C8—H6120.7C45—C46—H38120.2
C9—C8—H6120.3C47—C46—H38119.6
C8—C9—C10120.3 (7)C46—C47—C48120.6 (6)
C8—C9—H7121.1C46—C47—H39120.2
C10—C9—H7118.7C48—C47—H39119.2
C9—C10—C11120.8 (9)C43—C48—C47120.3 (5)
C9—C10—H8119.3C43—C48—H40120.0
C11—C10—H8119.9C47—C48—H40119.7
C10—C11—C12120.0 (7)P3—C49—C50120.7 (3)
C10—C11—H9119.1P3—C49—C54120.4 (4)
C12—C11—H9120.9C50—C49—C54118.9 (5)
C7—C12—C11120.0 (6)C49—C50—C51120.1 (5)
C7—C12—H10119.8C49—C50—H41120.0
C11—C12—H10120.1C51—C50—H41120.0
P1—C13—C14123.7 (3)C50—C51—C52121.0 (6)
P1—C13—C18117.3 (3)C50—C51—H42120.1
C14—C13—C18118.7 (4)C52—C51—H42118.9
C13—C14—C15119.3 (5)C51—C52—C53120.0 (7)
C13—C14—H11120.3C51—C52—H43120.7
C15—C14—H11120.4C53—C52—H43119.2
C14—C15—C16121.5 (6)C52—C53—C54120.8 (7)
C14—C15—H12119.2C52—C53—H44120.9
C16—C15—H12119.3C54—C53—H44118.2
C15—C16—C17120.0 (5)C49—C54—C53119.1 (5)
C15—C16—H13120.4C49—C54—H45120.5
C17—C16—H13119.5C53—C54—H45120.3
C16—C17—C18119.0 (5)C56—C55—H46109.5
C16—C17—H14120.3C56—C55—H47109.5
C18—C17—H14120.7C56—C55—H48109.5
C13—C18—C17121.4 (5)H46—C55—H47109.5
C13—C18—H15119.5H46—C55—H48109.5
C17—C18—H15119.0H47—C55—H48109.5
P2—C19—C20119.4 (3)O1—C56—C55130 (1)
P2—C19—C24121.9 (4)O1—C56—C57124 (1)
C20—C19—C24118.7 (5)C55—C56—C57104 (1)
C19—C20—C21120.3 (5)C56—C57—H49109.5
C19—C20—H16120.3C56—C57—H50109.5
C21—C20—H16119.4C56—C57—H51109.5
C20—C21—C22120.5 (6)H49—C57—H50109.5
C20—C21—H17119.9H49—C57—H51109.5
C22—C21—H17119.5H50—C57—H51109.5
C21—C22—C23120.1 (7)
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z1; (iii) x, y, z1; (iv) x+1, y, z1; (v) x, y+1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd3Cl5(C18H15P)3]·C3H6O
Mr1341.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)18.515 (2), 14.295 (3), 10.916 (1)
α, β, γ (°)84.90 (1), 87.874 (9), 77.04 (1)
V3)2803.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.728, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
13420, 12899, 9622
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.02
No. of reflections9622
No. of parameters625
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.44, 0.47

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation & Rigaku Corporation, 1993), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999), DIRDIF92 (PATTY) (Beurskens et al., 1992), TEXSAN and SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
Pd1—Pd23.0818 (5)Pd2—Cl12.4735 (9)
Pd1—Pd33.1537 (6)Pd2—Cl22.2896 (9)
Pd2—Pd33.0639 (4)Pd2—Cl42.328 (1)
Pd1—Cl12.462 (1)Pd2—P22.2264 (9)
Pd1—Cl22.293 (1)Pd3—Cl12.482 (1)
Pd1—Cl32.329 (1)Pd3—Cl22.300 (1)
Pd1—P12.220 (1)Pd3—Cl52.323 (1)
Pd2—Pd33.0639 (4)Pd3—P32.238 (1)
Cl1—Pd1—Cl282.58 (4)Cl2—Pd2—Cl4173.96 (4)
Cl1—Pd1—Cl392.30 (4)Cl2—Pd2—P295.00 (3)
Cl1—Pd1—P1171.78 (4)Cl4—Pd2—P289.97 (4)
Cl2—Pd1—Cl3174.50 (4)Pd2—Pd3—Cl151.68 (2)
Cl2—Pd1—P194.69 (4)Pd2—Pd3—Cl247.98 (2)
Cl3—Pd1—P190.11 (4)Pd2—Pd3—Cl5124.95 (3)
Pd3—Pd2—Cl151.94 (3)Pd2—Pd3—P3121.54 (3)
Pd3—Pd2—Cl248.26 (3)Cl1—Pd3—Cl282.01 (4)
Pd3—Pd2—Cl4129.93 (3)Cl1—Pd3—Cl590.18 (4)
Pd3—Pd2—P2128.68 (3)Cl1—Pd3—P3172.31 (4)
Cl1—Pd2—Cl282.40 (3)Cl2—Pd3—Cl5171.95 (4)
Cl1—Pd2—Cl492.40 (3)Cl2—Pd3—P395.42 (4)
Cl1—Pd2—P2175.16 (4)Cl5—Pd3—P392.08 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds