Download citation
Download citation
link to html
Two isoindolin-1-one derivatives, (Z)-3-benzyl­idene-N-phenyl­isoindolin-1-one, C21H15NO, (II), and (Z)-3-benzyl­idene-N-(4-methoxy­phenyl)­isoindolin-1-one, C22H17NO2, (III), were synthesized by the palladium-catalysed heteroannulation. The mol­ecules of both compounds have a Z configuration. The interplanar angles between the five- and six-membered rings of the isoindolinone moiety in (II) and (III) are 1.66 (11) and 2.26 (7)°, respectively. The phenyl rings at the N-position in (II) and (III) are twisted out of the C4N ring plane by 62.77 (11) and 67.10 (7)°, respectively. The substitutions at the N and C-3 positions of the isoindolinone system have little influence on the molecular dimensions of the resulting compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012445/fr1206sup1.cif
Contains datablocks anisyl, II, III

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199012445/fr1206IIsup2.sft
Supplementary material

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199012445/fr1206IIIsup3.sft
Supplementary material

CCDC references: 140959; 140960

Comment top

The isoindolinone (phthalimidine) system (I) is present in a number of natural products. Many isoindolinone derivatives display biological activity as potential anti-inflammatory agents, antipsychotics (Zhuang et al., 1998; Linden et al., 1997) and inhibitors of human CCRF-CEM lymphoblastic leukaemic cells (Taylor et al., 1997). The majority of structurally determined isoindolinone systems are either N-substituted or have a hydroxy substituent at the 3-position (Brady et al., 1998; McNab et al., 1997; Barrett et al., 1996; Feeder & Jones 1996). As part of an ongoing program on the synthesis and characterization of new heterocyclic systems containing an isoindolinone moiety, we have recently reported the crystal structures of several N– and C3-substituted derivatives (Khan et al., 1998; Kundu et al., 1999; Guha et al., 1999). The molecular configurations, E or Z, of these compounds are influenced by the type of substituents. To study the effect of substitution on the conformation of the resulting compounds and to build up a hierarchy for such systems, X-ray analyses of (Z)-3-benzylidene-N-phenylisoindolin-1-one, (II), and (Z)-3-benzylidene-N-(p-methoxyphenyl)isoindolin-1-one, (III), were undertaken.

The Z configuration of the molecules of (II) and (III), which contain essentially planar isoindolinone and phenyl moieties, are established by the torsion angle N—C14—C15—C16 of 5.4 (5) and 3.3 (4)° in (II) and (III), respectively. The bond lengths and angles observed for the heterocyclic ring in (II) and (III) are similar to those reported for substituted isoindolinone structures (Kundu et al., 1999; Khan et al., 1998; McNab et al., 1997; Feeder & Jones, 1996). The angles between the five- and six-membered rings of the isoindolinone system in (II) and (III) are 1.66 (11) and 2.26 (7)°, respectively; the maximum deviation from planarity for an atom in either ring plane is 0.009 (3) Å for C7 in (II), with the carbonyl-O atom 0.030 (3) Å [in (2)] and 0.004 (2) Å [in (III)] away from the C4N planes. The phenyl rings (C1—C6) and (C16—C21) in (II) are twisted out of the C4N ring plane with dihedral angles 62.77 (11) and 55.72 (10)°, respectively; the corresponding values are 67.10 (7) and 55.05 (7)° in (III). In the fused six-membered ring (C8—C13) of (II) and (III), the angles at C9 and C12 are less than 118°, an effect previously noted by McNab et al. (1997). The cis orientation of O2—C22 with respect to C3—C4 about the O2—C3 bond in (III) results in repulsion between the C4 and C22 atoms and because of this the bond angle C4—C3—O2 is increased by about 9° (Table 3) compared to C2—C3—O2. The torsion angle C4—C3—O2—C22 is 7.3 (3)°. In both the structures, the carbonyl atoms (O, O1) are involved in weak C—H···O intermolecular hydrogen bonds (Tables 2 and 4).

A comparison of geometrical parameters of various isoindolinone derivatives (Table 5) reveals that substitutions at N– and/or C3(14)- positions have apparently little influence on the molecular dimensions. The dihedral angles between the isoindolinone moiety and the planar parts of the R1/R2 groups in different compounds (Table 5) indicate an approximate molecular coplanarity for the N-unsubstituted derivative (Kundu et al., 1999) while the alkyl/aryl substitutions at both the N– and C3– positions introduce considerable puckering in the resulting molecules.

Experimental top

2-(2'-Phenylethynyl)-N-phenyl benzamide (PEPB) was synthesized by stirring a mixture of 2-iodo-N-phenyl benzamide (1 mmol) with phenylacetylene (1.2 mmol) in dimethylformamide (DMF) (5 ml) at 353 K for 16 h in the presence of bis(triphenylphosphine)palladium(II) chloride (3.5 mol%), cuprous iodide (8 mol%) and triethylamine (4 mmol). After usual workup and purification by chromatography (silica gel 60–80 mesh), the product (PEPB) was cyclized to 3-benzylidene-N-phenylisoindolin-1-one, (II), m.p. 470 (1) K, by refluxing with sodium ethoxide in ethanol for 4 h. Single crystals suitable for X-ray analysis were obtained from ethanol. Elemental analysis: calculated for C21H15NO: C 84.82, H 5.08, N 4.71%; found: C 84.49, H 5.13, N 4.60%. Starting with 2-iodo-N-p-anisyl benzamide, the procedure as described above yielded 2-(2'-phenylethynyl)-N-p-methoxyphenylbenzamide (PEMB), which on cyclization afforded 3-benzylidene-N-(4-methoxyphenyl)isoindolin-1-one, (III), m.p. 441 (1) K. Single crystals suitable for X-ray analysis were obtained from ethanol. Elemental analysis: calculated for C22H17NO2, C 80.91, H 5.23, N 4.27%; found: C 80.90, H 5.36, N 4.13%.

Refinement top

All H-atoms were generated using HFIX in SHELX93 (Sheldrick, 1993). Uiso for H atoms were assigned as 1.2 times Ueq of the parent non-H atoms before anisotropic refinement.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: SHELXL93 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) showing the 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (III) showing the 50% probability displacement ellipsoids.
(II) (Z)-3-benzylidene-N-phenylisoindolin-1-one top
Crystal data top
C21H15NODx = 1.293 Mg m3
Mr = 297.34Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 9.366 (3) Åθ = 25.1–29.8°
b = 19.875 (1) ŵ = 0.62 mm1
c = 8.204 (9) ÅT = 293 K
V = 1527.2 (17) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.25 mm
F(000) = 624
Data collection top
Rigaku AFC5R
diffractometer
1403 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.000
Graphite monochromatorθmax = 79.7°, θmin = 4.5°
ω–2θ scansh = 011
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 023
Tmin = 0.815, Tmax = 0.856l = 010
1589 measured reflections3 standard reflections every 100 reflections
1589 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106Calculated w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.005
1589 reflectionsΔρmax = 0.16 e Å3
208 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: could not ascertained
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.6 (7)
Crystal data top
C21H15NOV = 1527.2 (17) Å3
Mr = 297.34Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.366 (3) ŵ = 0.62 mm1
b = 19.875 (1) ÅT = 293 K
c = 8.204 (9) Å0.40 × 0.30 × 0.25 mm
Data collection top
Rigaku AFC5R
diffractometer
1403 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.000
Tmin = 0.815, Tmax = 0.8563 standard reflections every 100 reflections
1589 measured reflections intensity decay: <2%
1589 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.16 e Å3
S = 1.09Δρmin = 0.23 e Å3
1589 reflectionsAbsolute structure: could not ascertained
208 parametersAbsolute structure parameter: 0.6 (7)
0 restraints
Special details top

Refinement. Both the structures were solved by direct methods and refined by full-matrix least squares techniques.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.3855 (3)0.70495 (11)0.6379 (3)0.0473 (5)
O0.4031 (3)0.61300 (11)0.8094 (2)0.0750 (7)
C10.4946 (3)0.76486 (15)0.8630 (3)0.0572 (7)
H10.57490.73760.85390.064*
C20.4907 (4)0.8157 (2)0.9775 (4)0.0662 (9)
H20.56880.82261.04560.079*
C30.3725 (4)0.8564 (2)0.9917 (3)0.0658 (9)
H30.37140.89131.06730.079*
C40.2552 (4)0.8451 (2)0.8930 (4)0.0639 (8)
H40.17460.87210.90290.068*
C50.2577 (3)0.79367 (14)0.7795 (4)0.0528 (7)
H50.17800.78530.71500.052*
C60.3789 (3)0.75477 (13)0.7623 (3)0.0464 (6)
C70.3933 (3)0.63635 (14)0.6729 (3)0.0516 (7)
C80.3869 (3)0.60185 (14)0.5141 (3)0.0477 (6)
C90.3956 (4)0.53350 (15)0.4786 (4)0.0587 (8)
H90.40610.50160.56070.064*
C100.3879 (4)0.51475 (15)0.3160 (4)0.0620 (8)
H100.39300.46950.28790.077*
C110.3730 (3)0.5624 (2)0.1960 (4)0.0594 (7)
H110.36840.54860.08790.067*
C120.3648 (3)0.63022 (15)0.2311 (3)0.0518 (7)
H120.35450.66200.14870.067*
C130.3723 (3)0.64933 (13)0.3936 (3)0.0449 (6)
C140.3718 (3)0.71650 (13)0.4677 (3)0.0409 (5)
C150.3627 (3)0.77449 (14)0.3868 (3)0.0474 (6)
H150.34580.77010.27560.052*
C160.3751 (3)0.84448 (13)0.4446 (3)0.0439 (6)
C170.2704 (3)0.8911 (2)0.4065 (4)0.0560 (7)
H170.19310.87830.34240.061*
C180.2797 (4)0.9563 (2)0.4624 (4)0.0661 (9)
H180.20880.98720.43610.076*
C190.3933 (4)0.97573 (15)0.5571 (4)0.0635 (8)
H190.39741.01920.59870.071*
C200.5008 (3)0.9309 (2)0.5902 (4)0.0593 (7)
H200.57990.94450.65020.085*
C210.4915 (3)0.86590 (14)0.5347 (3)0.0494 (6)
H210.56460.83570.55790.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0598 (13)0.0417 (12)0.0405 (10)0.0026 (11)0.0007 (11)0.0033 (9)
O0.115 (2)0.0582 (13)0.0516 (11)0.0077 (14)0.0024 (14)0.0156 (10)
C10.063 (2)0.064 (2)0.0449 (13)0.009 (2)0.0047 (14)0.0035 (14)
C20.083 (2)0.070 (2)0.0458 (14)0.000 (2)0.012 (2)0.0021 (15)
C30.096 (3)0.058 (2)0.0434 (14)0.001 (2)0.010 (2)0.0015 (13)
C40.073 (2)0.060 (2)0.058 (2)0.012 (2)0.017 (2)0.001 (2)
C50.0487 (14)0.056 (2)0.0539 (14)0.0013 (14)0.0052 (13)0.0016 (14)
C60.0578 (15)0.0455 (14)0.0358 (11)0.0005 (14)0.0057 (13)0.0056 (11)
C70.057 (2)0.046 (2)0.0515 (14)0.0044 (14)0.0011 (15)0.0083 (13)
C80.0466 (14)0.0451 (15)0.0513 (14)0.0007 (13)0.0014 (13)0.0041 (12)
C90.062 (2)0.045 (2)0.069 (2)0.0050 (14)0.001 (2)0.0065 (15)
C100.065 (2)0.048 (2)0.074 (2)0.0005 (15)0.003 (2)0.0125 (15)
C110.059 (2)0.062 (2)0.057 (2)0.000 (2)0.006 (2)0.0146 (14)
C120.055 (2)0.056 (2)0.0452 (12)0.0010 (15)0.0032 (13)0.0027 (12)
C130.0401 (13)0.048 (2)0.0467 (13)0.0018 (13)0.0032 (13)0.0019 (11)
C140.0384 (12)0.0472 (14)0.0370 (11)0.0001 (12)0.0014 (11)0.0005 (10)
C150.0515 (15)0.0494 (15)0.0413 (12)0.0031 (13)0.0015 (13)0.0042 (11)
C160.0453 (14)0.0457 (14)0.0406 (12)0.0028 (12)0.0042 (12)0.0066 (11)
C170.050 (2)0.057 (2)0.061 (2)0.0008 (14)0.0100 (14)0.003 (2)
C180.066 (2)0.052 (2)0.080 (2)0.010 (2)0.002 (2)0.002 (2)
C190.076 (2)0.049 (2)0.066 (2)0.011 (2)0.009 (2)0.004 (2)
C200.059 (2)0.064 (2)0.0545 (15)0.019 (2)0.004 (2)0.005 (2)
C210.0437 (14)0.054 (2)0.0503 (14)0.0024 (13)0.0004 (13)0.0109 (13)
Geometric parameters (Å, º) top
N—C71.395 (3)C10—H100.930
N—C141.421 (3)C11—C121.380 (4)
N—C61.423 (3)C11—H110.930
O—C71.216 (3)C12—C131.388 (4)
C1—C61.377 (4)C12—H120.930
C1—C21.381 (4)C13—C141.467 (4)
C1—H10.930C14—C151.333 (4)
C2—C31.376 (5)C15—C161.474 (4)
C2—H20.930C15—H150.930
C3—C41.383 (5)C16—C211.384 (4)
C3—H30.930C16—C171.385 (4)
C4—C51.383 (4)C17—C181.377 (4)
C4—H40.930C17—H170.930
C5—C61.381 (4)C18—C191.373 (5)
C5—H50.930C18—H180.930
C7—C81.473 (4)C19—C201.371 (4)
C8—C131.374 (4)C19—H190.930
C8—C91.392 (4)C20—C211.373 (4)
C9—C101.387 (5)C20—H200.930
C9—H90.930C21—H210.930
C10—C111.373 (4)
C7—N—C14111.4 (2)C10—C11—C12122.0 (3)
C7—N—C6122.3 (2)C10—C11—H11119.0
C14—N—C6126.0 (2)C12—C11—H11119.0
C6—C1—C2119.6 (3)C11—C12—C13117.7 (3)
C6—C1—H1120.2C11—C12—H12121.2
C2—C1—H1120.2C13—C12—H12121.2
C3—C2—C1120.6 (3)C8—C13—C12120.6 (3)
C3—C2—H2119.7C8—C13—C14109.1 (2)
C1—C2—H2119.7C12—C13—C14130.3 (2)
C2—C3—C4119.6 (3)C15—C14—N129.4 (2)
C2—C3—H3120.2C15—C14—C13125.5 (2)
C4—C3—H3120.2N—C14—C13105.1 (2)
C3—C4—C5120.0 (3)C14—C15—C16130.6 (2)
C3—C4—H4120.0C14—C15—H15114.7
C5—C4—H4120.0C16—C15—H15114.7
C6—C5—C4119.8 (3)C21—C16—C17118.2 (3)
C6—C5—H5120.1C21—C16—C15121.6 (2)
C4—C5—H5120.1C17—C16—C15120.2 (3)
C1—C6—C5120.3 (3)C18—C17—C16120.6 (3)
C1—C6—N119.8 (3)C18—C17—H17119.7
C5—C6—N119.9 (3)C16—C17—H17119.7
O—C7—N124.5 (3)C19—C18—C17120.2 (3)
O—C7—C8129.8 (3)C19—C18—H18119.9
N—C7—C8105.7 (2)C17—C18—H18119.9
C13—C8—C9121.7 (3)C18—C19—C20119.9 (3)
C13—C8—C7108.7 (2)C18—C19—H19120.1
C9—C8—C7129.6 (3)C20—C19—H19120.1
C10—C9—C8117.5 (3)C19—C20—C21119.9 (3)
C10—C9—H9121.3C19—C20—H20120.0
C8—C9—H9121.3C21—C20—H20120.0
C11—C10—C9120.6 (3)C20—C21—C16121.1 (3)
C11—C10—H10119.7C20—C21—H21119.5
C9—C10—H10119.7C16—C21—H21119.5
C6—C1—C2—C30.1 (5)C7—C8—C13—C12179.5 (3)
C1—C2—C3—C41.6 (5)C9—C8—C13—C14177.8 (3)
C2—C3—C4—C50.7 (5)C7—C8—C13—C141.2 (3)
C3—C4—C5—C61.6 (4)C11—C12—C13—C80.3 (5)
C2—C1—C6—C52.3 (4)C11—C12—C13—C14177.6 (3)
C2—C1—C6—N176.4 (3)C7—N—C14—C15179.3 (3)
C4—C5—C6—C13.1 (4)C6—N—C14—C156.4 (5)
C4—C5—C6—N175.6 (3)C7—N—C14—C130.4 (3)
C7—N—C6—C166.8 (4)C6—N—C14—C13174.8 (3)
C14—N—C6—C1119.4 (3)C8—C13—C14—C15178.4 (3)
C7—N—C6—C5114.5 (3)C12—C13—C14—C150.3 (5)
C14—N—C6—C559.4 (4)C8—C13—C14—N0.6 (3)
C14—N—C7—O178.8 (3)C12—C13—C14—N178.6 (3)
C6—N—C7—O4.2 (5)N—C14—C15—C165.4 (5)
C14—N—C7—C81.1 (3)C13—C14—C15—C16173.2 (3)
C6—N—C7—C8175.7 (3)C14—C15—C16—C2152.8 (4)
O—C7—C8—C13178.5 (4)C14—C15—C16—C17128.5 (3)
N—C7—C8—C131.4 (3)C21—C16—C17—C182.5 (4)
O—C7—C8—C92.6 (6)C15—C16—C17—C18178.8 (3)
N—C7—C8—C9177.5 (3)C16—C17—C18—C190.0 (5)
C13—C8—C9—C100.4 (5)C17—C18—C19—C202.8 (5)
C7—C8—C9—C10179.3 (3)C18—C19—C20—C212.9 (5)
C8—C9—C10—C110.3 (5)C19—C20—C21—C160.2 (4)
C9—C10—C11—C120.1 (5)C17—C16—C21—C202.4 (4)
C10—C11—C12—C130.1 (5)C15—C16—C21—C20178.9 (3)
C9—C8—C13—C120.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
C11—H11···Oi3.339 (5)132.6 (2)
C12—H12···Oi3.495 (5)116.1 (2)
C19—H19···Oii3.504 (4)139.4 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+3/2.
(III) (Z)—N-(p-anisyl)-3-benzylidene isoindolin-1-one top
Crystal data top
C22H17NO2F(000) = 688
Mr = 327.37Dx = 1.330 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
a = 8.577 (6) ÅCell parameters from 25 reflections
b = 10.542 (4) Åθ = 28.8–39.9°
c = 18.272 (4) ŵ = 0.68 mm1
β = 98.34 (4)°T = 293 K
V = 1634.7 (13) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.10 mm
Data collection top
Rigaku AFC5R
diffractometer
2220 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.000
Graphite monochromatorθmax = 78.9°, θmin = 4.9°
ω–2θ scansh = 010
Absorption correction: empirical (using intensity measurements)
North et al., 1968
k = 013
Tmin = 0.878, Tmax = 0.934l = 2222
2810 measured reflections3 standard reflections every 100 reflections
2810 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0252P)2 + 0.5728P]
where P = (Fo2 + 2Fc2)/3
2810 reflections(Δ/σ)max = 0.004
226 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H17NO2V = 1634.7 (13) Å3
Mr = 327.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.577 (6) ŵ = 0.68 mm1
b = 10.542 (4) ÅT = 293 K
c = 18.272 (4) Å0.35 × 0.25 × 0.10 mm
β = 98.34 (4)°
Data collection top
Rigaku AFC5R
diffractometer
2220 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
North et al., 1968
Rint = 0.000
Tmin = 0.878, Tmax = 0.9343 standard reflections every 100 reflections
2810 measured reflections intensity decay: <2%
2810 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2810 reflectionsΔρmin = 0.15 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.9504 (2)0.2242 (2)0.54014 (9)0.0454 (4)
O10.7774 (2)0.3255 (2)0.44993 (9)0.0671 (5)
O20.5438 (2)0.0217 (2)0.70398 (9)0.0649 (5)
C10.8210 (2)0.2044 (2)0.65002 (12)0.0472 (5)
H10.87970.27280.67110.058*
C20.7220 (3)0.1408 (2)0.69022 (12)0.0493 (5)
H20.71450.16570.73840.060*
C30.6331 (2)0.0391 (2)0.65864 (12)0.0470 (5)
C40.6393 (2)0.0057 (2)0.58609 (12)0.0525 (6)
H40.57630.05960.56400.066*
C50.7407 (2)0.0703 (2)0.54633 (11)0.0494 (5)
H50.74550.04790.49750.052*
C60.8341 (2)0.1675 (2)0.57860 (11)0.0423 (5)
C70.9109 (3)0.3039 (2)0.47895 (12)0.0488 (5)
C81.0624 (3)0.3493 (2)0.45941 (12)0.0471 (5)
C91.0921 (3)0.4276 (2)0.40179 (12)0.0578 (6)
H91.01020.46300.36930.072*
C101.2477 (3)0.4510 (2)0.39463 (14)0.0631 (7)
H101.27110.50280.35650.078*
C111.3690 (3)0.3987 (2)0.44318 (14)0.0629 (7)
H111.47260.41540.43680.067*
C121.3396 (3)0.3217 (2)0.50124 (13)0.0564 (6)
H121.42180.28750.53410.060*
C131.1837 (2)0.2972 (2)0.50879 (11)0.0458 (5)
C141.1156 (2)0.2166 (2)0.56185 (11)0.0428 (5)
C151.1975 (2)0.1509 (2)0.61738 (12)0.0481 (5)
H151.30580.16370.62300.059*
C161.1453 (2)0.0618 (2)0.67117 (11)0.0432 (5)
C171.1953 (2)0.0786 (2)0.74638 (12)0.0494 (5)
H171.26260.14550.76200.062*
C181.1469 (3)0.0019 (2)0.79830 (12)0.0553 (6)
H181.18020.01170.84840.060*
C191.0487 (3)0.1028 (2)0.77537 (13)0.0568 (6)
H191.01400.15640.81010.089*
C201.0025 (3)0.1236 (2)0.70116 (13)0.0535 (6)
H200.93770.19220.68580.072*
C211.0514 (2)0.0433 (2)0.64907 (12)0.0473 (5)
H211.02150.05950.59900.047*
C220.4659 (3)0.1354 (3)0.6773 (2)0.0691 (7)
H22A0.40830.16890.71430.074*
H22B0.54240.19650.66670.087*
H22C0.39430.11740.63310.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0418 (9)0.0509 (11)0.0433 (10)0.0021 (8)0.0053 (8)0.0059 (8)
O10.0543 (10)0.0802 (13)0.0633 (10)0.0036 (9)0.0027 (8)0.0196 (9)
O20.0594 (10)0.0767 (12)0.0624 (10)0.0124 (9)0.0219 (8)0.0044 (9)
C10.0506 (12)0.0421 (12)0.0481 (12)0.0007 (10)0.0046 (10)0.0044 (10)
C20.0544 (13)0.0517 (13)0.0447 (12)0.0040 (10)0.0168 (10)0.0060 (10)
C30.0388 (11)0.0537 (13)0.0497 (12)0.0025 (10)0.0103 (9)0.0063 (11)
C40.0453 (12)0.0615 (15)0.0491 (13)0.0098 (11)0.0016 (10)0.0025 (11)
C50.0474 (12)0.0634 (14)0.0366 (11)0.0039 (11)0.0037 (9)0.0042 (10)
C60.0396 (10)0.0467 (12)0.0406 (11)0.0012 (9)0.0054 (9)0.0029 (9)
C70.0529 (13)0.0501 (13)0.0429 (12)0.0002 (11)0.0053 (10)0.0022 (10)
C80.0567 (13)0.0436 (12)0.0419 (12)0.0052 (10)0.0103 (10)0.0040 (10)
C90.077 (2)0.0502 (13)0.0469 (13)0.0034 (12)0.0103 (12)0.0039 (11)
C100.083 (2)0.0553 (15)0.0550 (14)0.0162 (14)0.0244 (13)0.0000 (12)
C110.065 (2)0.063 (2)0.065 (2)0.0178 (13)0.0245 (13)0.0071 (13)
C120.0534 (13)0.0583 (15)0.0582 (14)0.0069 (11)0.0103 (11)0.0021 (12)
C130.0500 (12)0.0450 (12)0.0433 (11)0.0056 (10)0.0097 (9)0.0045 (10)
C140.0430 (11)0.0426 (11)0.0430 (11)0.0044 (9)0.0070 (9)0.0040 (9)
C150.0427 (11)0.0496 (13)0.0514 (13)0.0025 (10)0.0052 (10)0.0013 (10)
C160.0390 (10)0.0424 (11)0.0478 (12)0.0036 (9)0.0050 (9)0.0001 (10)
C170.0481 (12)0.0468 (12)0.0511 (13)0.0001 (10)0.0003 (10)0.0039 (11)
C180.0592 (14)0.064 (2)0.0418 (12)0.0042 (12)0.0047 (10)0.0012 (11)
C190.0627 (14)0.0514 (14)0.0574 (14)0.0027 (12)0.0125 (12)0.0096 (12)
C200.0543 (13)0.0421 (12)0.064 (2)0.0028 (10)0.0097 (11)0.0006 (11)
C210.0484 (12)0.0453 (12)0.0470 (12)0.0035 (10)0.0030 (10)0.0044 (10)
C220.0600 (15)0.064 (2)0.085 (2)0.0077 (13)0.0175 (14)0.0159 (15)
Geometric parameters (Å, º) top
N—C71.400 (3)C11—C121.387 (3)
N—C141.417 (3)C11—H110.930
N—C61.432 (3)C12—C131.388 (3)
O1—C71.211 (3)C12—H120.930
O2—C31.366 (2)C13—C141.473 (3)
O2—C221.424 (3)C14—C151.340 (3)
C1—C21.376 (3)C15—C161.475 (3)
C1—C61.382 (3)C15—H150.930
C1—H10.930C16—C171.390 (3)
C2—C31.391 (3)C16—C211.394 (3)
C2—H20.930C17—C181.380 (3)
C3—C41.380 (3)C17—H170.930
C4—C51.390 (3)C18—C191.384 (3)
C4—H40.930C18—H180.930
C5—C61.379 (3)C19—C201.374 (3)
C5—H50.930C19—H190.930
C7—C81.476 (3)C20—C211.384 (3)
C8—C131.388 (3)C20—H200.930
C8—C91.390 (3)C21—H210.930
C9—C101.382 (3)C22—H22A0.960
C9—H90.930C22—H22B0.960
C10—C111.381 (4)C22—H22C0.960
C10—H100.930
C7—N—C14111.9 (2)C13—C12—C11118.0 (2)
C7—N—C6122.5 (2)C13—C12—H12121.0
C14—N—C6125.3 (2)C11—C12—H12121.0
C3—O2—C22117.7 (2)C12—C13—C8120.3 (2)
C2—C1—C6120.5 (2)C12—C13—C14130.7 (2)
C2—C1—H1119.7C8—C13—C14108.9 (2)
C6—C1—H1119.7C15—C14—N129.4 (2)
C1—C2—C3119.9 (2)C15—C14—C13125.6 (2)
C1—C2—H2120.1N—C14—C13105.0 (2)
C3—C2—H2120.1C14—C15—C16131.1 (2)
O2—C3—C4124.5 (2)C14—C15—H15114.5
O2—C3—C2115.5 (2)C16—C15—H15114.5
C4—C3—C2120.0 (2)C17—C16—C21118.0 (2)
C3—C4—C5119.4 (2)C17—C16—C15119.8 (2)
C3—C4—H4120.3C21—C16—C15122.1 (2)
C5—C4—H4120.3C18—C17—C16121.4 (2)
C6—C5—C4120.6 (2)C18—C17—H17119.3
C6—C5—H5119.7C16—C17—H17119.3
C4—C5—H5119.7C17—C18—C19119.6 (2)
C5—C6—C1119.4 (2)C17—C18—H18120.2
C5—C6—N120.2 (2)C19—C18—H18120.2
C1—C6—N120.2 (2)C20—C19—C18119.8 (2)
O1—C7—N124.5 (2)C20—C19—H19120.1
O1—C7—C8130.0 (2)C18—C19—H19120.1
N—C7—C8105.5 (2)C19—C20—C21120.6 (2)
C13—C8—C9121.7 (2)C19—C20—H20119.7
C13—C8—C7108.5 (2)C21—C20—H20119.7
C9—C8—C7129.8 (2)C20—C21—C16120.5 (2)
C10—C9—C8117.6 (2)C20—C21—H21119.8
C10—C9—H9121.2C16—C21—H21119.8
C8—C9—H9121.2O2—C22—H22A109.5
C11—C10—C9121.1 (2)O2—C22—H22B109.5
C11—C10—H10119.5H22A—C22—H22B109.5
C9—C10—H10119.5O2—C22—H22C109.5
C10—C11—C12121.4 (2)H22A—C22—H22C109.5
C10—C11—H11119.3H22B—C22—H22C109.5
C12—C11—H11119.3
C6—C1—C2—C30.6 (3)C10—C11—C12—C130.7 (4)
C22—O2—C3—C47.3 (3)C11—C12—C13—C80.2 (3)
C22—O2—C3—C2172.5 (2)C11—C12—C13—C14177.2 (2)
C1—C2—C3—O2177.1 (2)C9—C8—C13—C120.6 (3)
C1—C2—C3—C42.7 (3)C7—C8—C13—C12178.0 (2)
O2—C3—C4—C5176.7 (2)C9—C8—C13—C14178.5 (2)
C2—C3—C4—C53.1 (3)C7—C8—C13—C140.0 (2)
C3—C4—C5—C60.2 (3)C7—N—C14—C15179.8 (2)
C4—C5—C6—C13.0 (3)C6—N—C14—C154.9 (3)
C4—C5—C6—N173.1 (2)C7—N—C14—C130.8 (2)
C2—C1—C6—C53.4 (3)C6—N—C14—C13175.7 (2)
C2—C1—C6—N172.7 (2)C12—C13—C14—C152.2 (4)
C7—N—C6—C572.0 (3)C8—C13—C14—C15179.8 (2)
C14—N—C6—C5113.6 (2)C12—C13—C14—N177.2 (2)
C7—N—C6—C1111.8 (2)C8—C13—C14—N0.5 (2)
C14—N—C6—C162.6 (3)N—C14—C15—C163.3 (4)
C14—N—C7—O1179.7 (2)C13—C14—C15—C16176.0 (2)
C6—N—C7—O15.2 (3)C14—C15—C16—C17128.6 (3)
C14—N—C7—C80.8 (2)C14—C15—C16—C2154.0 (3)
C6—N—C7—C8175.9 (2)C21—C16—C17—C183.4 (3)
O1—C7—C8—C13179.3 (2)C15—C16—C17—C18179.0 (2)
N—C7—C8—C130.5 (2)C16—C17—C18—C191.0 (3)
O1—C7—C8—C90.9 (4)C17—C18—C19—C201.2 (4)
N—C7—C8—C9177.9 (2)C18—C19—C20—C211.0 (4)
C13—C8—C9—C100.8 (3)C19—C20—C21—C161.6 (3)
C7—C8—C9—C10177.4 (2)C17—C16—C21—C203.7 (3)
C8—C9—C10—C110.2 (4)C15—C16—C21—C20178.8 (2)
C9—C10—C11—C120.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
C18—H18···O1i3.389 (3)146.4 (1)
C22—H22C···O1ii3.517 (3)119.9 (2)
C11—H11···O1iii3.572 (4)146.7 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

(II)(III)
Crystal data
Chemical formulaC21H15NOC22H17NO2
Mr297.34327.37
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21/n
Temperature (K)293293
a, b, c (Å)9.366 (3), 19.875 (1), 8.204 (9)8.577 (6), 10.542 (4), 18.272 (4)
α, β, γ (°)90, 90, 9090, 98.34 (4), 90
V3)1527.2 (17)1634.7 (13)
Z44
Radiation typeCu KαCu Kα
µ (mm1)0.620.68
Crystal size (mm)0.40 × 0.30 × 0.250.35 × 0.25 × 0.10
Data collection
DiffractometerRigaku AFC5R
diffractometer
Rigaku AFC5R
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Empirical (using intensity measurements)
North et al., 1968
Tmin, Tmax0.815, 0.8560.878, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
1589, 1589, 1403 2810, 2810, 2220
Rint0.0000.000
(sin θ/λ)max1)0.6380.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.09 0.048, 0.103, 1.03
No. of reflections15892810
No. of parameters208226
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.230.15, 0.15
Absolute structureCould not ascertained?
Absolute structure parameter0.6 (7)?

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), MULTAN88 (Debaerdemaeker et al., 1988), SHELXL93 (Sheldrick, 1993), ZORTEP (Zsolnai, 1995), SHELXL93 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (II) top
N—C71.395 (3)C7—C81.473 (4)
N—C141.421 (3)C13—C141.467 (4)
N—C61.423 (3)C14—C151.333 (4)
O—C71.216 (3)C15—C161.474 (4)
C7—N—C14111.4 (2)C15—C14—N129.4 (2)
C10—C9—C8117.5 (3)C14—C15—C16130.6 (2)
C11—C12—C13117.7 (3)
C6—N—C7—C8175.7 (3)N—C14—C15—C165.4 (5)
C6—N—C14—C156.4 (5)C13—C14—C15—C16173.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD···AD—H···A
C11—H11···Oi3.339 (5)132.6 (2)
C12—H12···Oi3.495 (5)116.1 (2)
C19—H19···Oii3.504 (4)139.4 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+3/2.
Selected geometric parameters (Å, º) for (III) top
N—C71.400 (3)O2—C221.424 (3)
N—C141.417 (3)C7—C81.476 (3)
N—C61.432 (3)C13—C141.473 (3)
O1—C71.211 (3)C14—C151.340 (3)
O2—C31.366 (2)C15—C161.475 (3)
C7—N—C14111.9 (2)C13—C12—C11118.0 (2)
O2—C3—C4124.5 (2)C15—C14—N129.4 (2)
O2—C3—C2115.5 (2)C14—C15—C16131.1 (2)
C10—C9—C8117.6 (2)
C6—N—C7—C8175.9 (2)N—C14—C15—C163.3 (4)
C6—N—C14—C154.9 (3)C13—C14—C15—C16176.0 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD···AD—H···A
C18—H18···O1i3.389 (3)146.4 (1)
C22—H22C···O1ii3.517 (3)119.9 (2)
C11—H11···O1iii3.572 (4)146.7 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.
A comparison of geometrical parameters (Å, °) of substituted isoindolinone compounds top
R1R2MolecularTorsionC=OCsp2-NA\wedgeBA\wedgeR1A\wedgeR2Ref
configurationN-C=C-C(R2)
CH2C6H5C6H5Z-3.1 (2)1.222 (1)1.384 (2)-0.67 (4)98.21 (4)111.11 (4)a
1.412 (2)
HC6H4OCH3Z0.6 (3)1.225 (2)1.358 (2)-0.79 (6)11.91 (6)b
1.400 (2)
C6H4CH3C(OH)(CH3)2Z-2.7 (8)1.221 (4)1.387 (4)-0.86 (14)78.94 (14)b
1.417 (4)
CH3CO(C6H5)E177.9 (4)1.212 (4)1.388 (5)-2.81 (12)45.68 (12)c
1.402 (5)
C6H5C6H5Z5.4 (5)1.216 (4)1.395 (4)-1.66 (11)62.7 (11)55.72 (10)d
1.421 (3)
C6H4OCH3C6H5Z3.3 (4)1.211 (3)1.400 (3)-2.26 (7)112.90 (7)55.05 (7)d
1.417 (3)
Notes: (a) Khan et al. (1998); (b) Kundu et al. (1999); (c) Guha et al. (1999); (d) this work.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds