Download citation
Download citation
link to html
The inter­action between the uranyl cation, (UO2)2+, and organic species is of inter­est due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydro­thermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenyl­enebis(methyl­ene)]bis­(pyridin-1-ium-4-carboxyl­ate) di­hydro­chlo­ride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetra­oxido{μ2-1,1′-[1,4-phenyl­enebis(methyl­ene)]bis­(pyridin-1-ium-4-car­boxyl­ate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photo­luminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618002279/fp3045sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618002279/fp3045Isup2.hkl
Contains datablock I

CCDC reference: 1433231

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[tetraoxido{µ2-1,1'-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-µ3-sulfato-diuranium(VI)] top
Crystal data top
[U2O4(SO4)2(C20H16N2O4)]Z = 1
Mr = 1080.52F(000) = 494
Triclinic, P1Dx = 2.511 Mg m3
a = 6.9406 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.5527 (3) ÅCell parameters from 4875 reflections
c = 12.7193 (6) Åθ = 3.7–71.8°
α = 108.581 (4)°µ = 33.72 mm1
β = 90.930 (3)°T = 288 K
γ = 92.396 (3)°, clear orangish orange
V = 714.70 (5) Å30.1 × 0.06 × 0.06 mm
Data collection top
Agilent Gemini Dual Source
diffractometer with an Eos detector
2521 independent reflections
Radiation source: Enhance (Cu) X-ray Source2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 15.9595 pixels mm-1θmax = 66.6°, θmin = 3.7°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 810
Tmin = 0.121, Tmax = 1.000l = 1515
7889 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2521 reflectionsΔρmax = 2.91 e Å3
190 parametersΔρmin = 2.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.2516 (3)0.5572 (3)0.12876 (18)0.0232 (5)
O30.0929 (10)0.6697 (9)0.1300 (6)0.0284 (15)
O40.9521 (12)0.7640 (11)0.3536 (6)0.0399 (19)
O50.2274 (13)0.4741 (10)0.2105 (7)0.0388 (19)
N60.8345 (13)0.8894 (10)0.7584 (7)0.0242 (17)
O70.4355 (11)0.6602 (11)0.1476 (7)0.0366 (18)
O80.7726 (13)0.8820 (10)0.1700 (7)0.0353 (18)
O90.6372 (12)0.7869 (11)0.3654 (7)0.0415 (19)
OA0.7646 (12)0.4695 (10)0.1901 (8)0.0363 (18)
CB0.8198 (18)0.8320 (14)0.5337 (9)0.033 (2)
CC0.6669 (15)0.9619 (13)0.9388 (9)0.027 (2)
OD0.2548 (13)0.4338 (11)0.0162 (7)0.0392 (19)
CE0.5118 (17)0.8475 (13)0.9193 (9)0.030 (2)
HE0.51990.74480.86560.036*
CF0.8052 (19)0.7951 (14)0.4123 (10)0.036 (3)
CG0.3449 (16)0.8844 (11)0.9790 (8)0.027 (2)
HG0.24120.80730.96450.032*
CH0.8535 (15)0.9215 (13)0.8808 (8)0.027 (2)
HA0.90230.82480.89420.033*
HB0.94721.01270.91210.033*
CI0.7004 (19)0.9601 (16)0.7153 (10)0.039 (3)
HI0.61551.02990.76140.046*
CJ0.9679 (19)0.7971 (16)0.6944 (10)0.038 (3)
HJ1.06190.75150.72700.046*
CK0.688 (2)0.9292 (17)0.6010 (10)0.044 (3)
HK0.59030.97400.57020.052*
CL0.9673 (19)0.7693 (15)0.5821 (10)0.039 (3)
HL1.06320.70980.53900.047*
U10.76728 (4)0.67383 (3)0.17665 (2)0.02069 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0141 (11)0.0340 (11)0.0202 (10)0.0047 (9)0.0012 (8)0.0064 (9)
O30.009 (3)0.042 (4)0.036 (4)0.007 (3)0.005 (3)0.015 (3)
O40.027 (4)0.064 (5)0.027 (4)0.009 (4)0.003 (3)0.011 (4)
O50.045 (5)0.044 (4)0.034 (4)0.013 (4)0.007 (4)0.020 (4)
N60.023 (4)0.028 (4)0.023 (4)0.001 (3)0.002 (3)0.010 (3)
O70.007 (3)0.053 (5)0.050 (5)0.003 (3)0.002 (3)0.017 (4)
O80.031 (5)0.038 (4)0.040 (4)0.007 (3)0.000 (4)0.017 (4)
O90.025 (4)0.063 (5)0.035 (4)0.007 (4)0.002 (3)0.012 (4)
OA0.023 (4)0.041 (4)0.049 (5)0.001 (3)0.004 (4)0.020 (4)
CB0.034 (6)0.034 (5)0.031 (6)0.008 (5)0.003 (5)0.010 (4)
CC0.017 (5)0.037 (5)0.031 (5)0.002 (4)0.003 (4)0.017 (4)
OD0.032 (5)0.052 (5)0.027 (4)0.010 (4)0.000 (3)0.003 (4)
CE0.028 (6)0.028 (5)0.032 (5)0.003 (4)0.004 (5)0.006 (4)
CF0.038 (7)0.032 (5)0.031 (6)0.010 (5)0.006 (5)0.001 (4)
CG0.027 (6)0.022 (4)0.030 (5)0.004 (4)0.005 (4)0.007 (4)
CH0.020 (5)0.040 (5)0.022 (5)0.004 (4)0.001 (4)0.008 (4)
CI0.038 (7)0.050 (6)0.031 (6)0.013 (5)0.004 (5)0.015 (5)
CJ0.034 (7)0.050 (6)0.033 (6)0.016 (5)0.007 (5)0.016 (5)
CK0.046 (8)0.056 (7)0.030 (6)0.020 (6)0.004 (5)0.014 (5)
CL0.035 (7)0.051 (6)0.030 (6)0.015 (5)0.006 (5)0.008 (5)
U10.0137 (2)0.0255 (2)0.0218 (2)0.00204 (13)0.00166 (13)0.00585 (14)
Geometric parameters (Å, º) top
S2—O31.490 (7)CC—CE1.388 (15)
S2—O51.442 (8)CC—CGii1.402 (15)
S2—O71.492 (8)CC—CH1.499 (15)
S2—OD1.484 (8)OD—U1iii2.330 (8)
O3—U1i2.344 (7)CE—HE0.9300
O4—CF1.260 (15)CE—CG1.387 (16)
O4—U12.454 (8)CG—CCii1.402 (15)
N6—CH1.494 (12)CG—HG0.9300
N6—CI1.332 (15)CH—HA0.9700
N6—CJ1.349 (16)CH—HB0.9700
O7—U12.318 (7)CI—HI0.9300
O8—U11.808 (8)CI—CK1.393 (16)
O9—CF1.290 (16)CJ—HJ0.9300
O9—U12.485 (9)CJ—CL1.371 (17)
OA—U11.809 (8)CK—HK0.9300
CB—CF1.475 (16)CL—HL0.9300
CB—CK1.379 (18)U1—O3iv2.344 (7)
CB—CL1.397 (16)U1—ODiii2.330 (8)
O5—S2—O3112.0 (5)HA—CH—HB107.8
O5—S2—O7112.0 (5)N6—CI—HI120.1
O5—S2—OD109.9 (5)N6—CI—CK119.8 (12)
O7—S2—O3106.7 (4)CK—CI—HI120.1
OD—S2—O3108.3 (5)N6—CJ—HJ119.4
OD—S2—O7107.8 (5)N6—CJ—CL121.1 (11)
S2—O3—U1i134.7 (4)CL—CJ—HJ119.4
CF—O4—U194.5 (7)CB—CK—CI119.8 (12)
CI—N6—CH121.1 (9)CB—CK—HK120.1
CI—N6—CJ121.2 (10)CI—CK—HK120.1
CJ—N6—CH117.4 (9)CB—CL—HL120.6
S2—O7—U1147.3 (5)CJ—CL—CB118.7 (11)
CF—O9—U192.3 (7)CJ—CL—HL120.6
CK—CB—CF120.3 (11)O3iv—U1—O474.2 (3)
CK—CB—CL119.0 (11)O3iv—U1—O9126.6 (3)
CL—CB—CF120.6 (11)O4—U1—O953.0 (3)
CE—CC—CGii119.3 (10)O7—U1—O3iv157.1 (3)
CE—CC—CH122.0 (10)O7—U1—O4128.3 (3)
CGii—CC—CH118.5 (9)O7—U1—O975.4 (3)
S2—OD—U1iii158.9 (6)O7—U1—ODiii79.5 (3)
CC—CE—HE119.6O8—U1—O3iv86.7 (3)
CC—CE—CG120.9 (10)O8—U1—O491.6 (3)
CG—CE—HE119.6O8—U1—O788.4 (3)
O4—CF—O9119.8 (11)O8—U1—O987.3 (4)
O4—CF—CB121.2 (11)O8—U1—ODiii90.7 (4)
O9—CF—CB118.9 (11)OA—U1—O3iv93.4 (3)
CCii—CG—HG120.1OA—U1—O485.9 (3)
CE—CG—CCii119.8 (10)OA—U1—O792.5 (3)
CE—CG—HG120.1OA—U1—O8177.4 (3)
N6—CH—HA108.9OA—U1—O990.5 (4)
N6—CH—HB108.9OA—U1—ODiii91.9 (4)
CC—CH—N6113.2 (8)ODiii—U1—O3iv78.2 (3)
CC—CH—HA108.9ODiii—U1—O4152.1 (3)
CC—CH—HB108.9ODiii—U1—O9154.8 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds