Download citation
Download citation
link to html
Organic–inorganic hybrid lead-based perovskite crystal materials have been widely studied due to their excellent optical–electronic properties. However, the toxicity of lead limits their widespread use. Here, a lead-free perovskite-type compound, tetra­kis­(1,2,3-tri­methyl­imidazolium) di-μ3-iodido-tetra-μ2-iodido-deca­iodido­tetra­bis­muth(III), (C6H11N2)4[Bi4I16], has been successfully synthesized by a simple solvothermal method. It exhibits a zero-dimensional (0D) tetra­meric structure, including edge-sharing [Bi4I16]4− distorted octa­hedra. The band gap of 2.0 eV is close to that of (NH4)3[Bi2I9]. Degradation ability measurements were performed to examine the potential application of this material as an alternative for waste-water treatment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618016030/fn3280sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618016030/fn3280Isup2.hkl
Contains datablock I

CCDC reference: 1878707

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: APEX2 (Bruker, 2015); data reduction: APEX2 (Bruker, 2015); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ?; software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

Tetrakis(3,4,5-trimethylimidazolium) di-µ3-iodido-tetra-µ2-iodido-decaiodidotetrabismuth(III) top
Crystal data top
(C6H11N2)4[Bi4I16]F(000) = 2848
Mr = 3310.99Dx = 3.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1008 (8) ÅCell parameters from 9569 reflections
b = 13.2084 (8) Åθ = 3.0–27.1°
c = 19.3147 (12) ŵ = 17.91 mm1
β = 90.701 (2)°T = 298 K
V = 3342.0 (4) Å3Needle, red
Z = 20.10 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6286 reflections with I > 2σ(I)
w scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.2°, θmin = 3.0°
Tmin = 0.267, Tmax = 0.468h = 1516
77016 measured reflectionsk = 1616
7377 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0206P)2 + 21.5758P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7377 reflectionsΔρmax = 1.05 e Å3
237 parametersΔρmin = 1.23 e Å3
7 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00055 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.64031 (2)0.94829 (2)0.07923 (2)0.03945 (8)
Bi20.33458 (2)0.75331 (2)0.05698 (2)0.03808 (7)
I30.38659 (3)0.99509 (3)0.08522 (2)0.04178 (11)
I40.66542 (4)1.18360 (4)0.10551 (2)0.05504 (13)
I50.65888 (5)0.90145 (5)0.22733 (3)0.06238 (15)
I60.58832 (4)0.73191 (4)0.04223 (3)0.05620 (14)
I70.33180 (5)0.53611 (4)0.03390 (3)0.06554 (16)
I80.11392 (4)0.77402 (5)0.05034 (3)0.05972 (14)
I90.34114 (5)0.73376 (5)0.20890 (3)0.06408 (15)
I100.85364 (4)0.91076 (5)0.05462 (3)0.07074 (17)
N40.5052 (8)0.4696 (7)0.2132 (5)0.089 (3)
N20.4996 (7)0.9699 (9)0.3873 (5)0.094 (3)
N30.4406 (9)0.5145 (9)0.3075 (5)0.099 (3)
N10.5655 (9)1.1041 (8)0.3484 (5)0.099 (3)
C130.5180 (7)0.5327 (7)0.2647 (6)0.071 (2)
C120.4881 (9)1.0436 (10)0.3386 (5)0.086 (4)
C110.6281 (10)1.0700 (12)0.3987 (6)0.099 (4)
H11A0.6888141.0994930.4139000.118*
C100.5857 (10)0.9854 (12)0.4223 (7)0.105 (4)
H10A0.6119800.9443620.4573360.126*
C90.5742 (11)0.4656 (12)0.1534 (7)0.130 (5)
H9A0.5511420.4142230.1216610.195*
H9B0.5741820.5300200.1303830.195*
H9C0.6421500.4498760.1691430.195*
C80.4219 (10)0.4131 (11)0.2213 (8)0.111 (5)
H8A0.3969990.3643390.1907080.133*
C70.3819 (10)0.4391 (11)0.2805 (8)0.107 (4)
H7A0.3240450.4112310.3003580.129*
C20.4018 (11)1.0475 (13)0.2912 (7)0.156 (8)
H2A0.3590030.9894960.2983820.234*
H2B0.3633111.1080990.2993050.234*
H2C0.4257511.0473700.2444200.234*
C50.5980 (9)0.6058 (10)0.2732 (10)0.150 (7)
H5A0.5887900.6420060.3157580.225*
H5B0.6628220.5719350.2742950.225*
H5C0.5959910.6525850.2351230.225*
C30.5820 (16)1.1908 (12)0.3052 (7)0.174 (9)
H3A0.6425561.2256530.3204920.262*
H3B0.5900741.1692830.2581300.262*
H3C0.5244881.2355580.3081330.262*
C10.4316 (13)0.8807 (14)0.3963 (8)0.155 (6)
H1A0.3740310.8862540.3652920.232*
H1B0.4686880.8198920.3862440.232*
H1C0.4081900.8784720.4431820.232*
C40.4228 (15)0.5683 (16)0.3687 (9)0.188 (9)
H4A0.3631600.5418870.3906890.282*
H4B0.4806710.5613320.3993370.282*
H4C0.4125280.6385720.3580080.282*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.03390 (12)0.03697 (14)0.04742 (14)0.00356 (10)0.00225 (10)0.00017 (10)
Bi20.03586 (12)0.03523 (13)0.04307 (14)0.00142 (10)0.00168 (10)0.00005 (10)
I30.0406 (2)0.0411 (2)0.0436 (2)0.00345 (18)0.00047 (18)0.00244 (18)
I40.0803 (3)0.0409 (3)0.0439 (2)0.0019 (2)0.0012 (2)0.00337 (19)
I50.0755 (4)0.0645 (3)0.0470 (3)0.0003 (3)0.0021 (2)0.0024 (2)
I60.0459 (3)0.0356 (2)0.0870 (4)0.00324 (19)0.0012 (2)0.0082 (2)
I70.0703 (3)0.0394 (3)0.0866 (4)0.0022 (2)0.0120 (3)0.0089 (3)
I80.0365 (2)0.0739 (4)0.0688 (3)0.0060 (2)0.0005 (2)0.0024 (3)
I90.0730 (4)0.0706 (4)0.0484 (3)0.0022 (3)0.0096 (2)0.0087 (2)
I100.0354 (2)0.0841 (4)0.0927 (4)0.0096 (3)0.0016 (3)0.0000 (3)
N40.095 (7)0.077 (6)0.094 (7)0.019 (5)0.009 (5)0.026 (5)
N20.088 (6)0.120 (8)0.073 (5)0.025 (6)0.014 (5)0.036 (6)
N30.106 (8)0.109 (8)0.081 (6)0.030 (7)0.014 (6)0.019 (6)
N10.133 (9)0.103 (8)0.060 (5)0.026 (7)0.018 (6)0.022 (5)
C130.063 (5)0.060 (5)0.089 (7)0.018 (4)0.011 (5)0.023 (5)
C120.088 (7)0.114 (9)0.055 (5)0.053 (7)0.019 (5)0.036 (6)
C110.092 (8)0.134 (12)0.070 (7)0.023 (8)0.009 (6)0.022 (7)
C100.105 (9)0.121 (11)0.087 (8)0.024 (8)0.032 (7)0.008 (8)
C90.134 (12)0.142 (13)0.114 (11)0.060 (10)0.010 (9)0.024 (9)
C80.100 (9)0.104 (10)0.127 (11)0.022 (8)0.019 (8)0.059 (9)
C70.096 (9)0.110 (10)0.116 (10)0.033 (8)0.019 (8)0.050 (9)
C20.146 (13)0.216 (18)0.105 (10)0.108 (13)0.061 (9)0.069 (11)
C50.089 (9)0.081 (9)0.28 (2)0.015 (7)0.075 (11)0.045 (11)
C30.33 (3)0.098 (11)0.100 (10)0.062 (14)0.084 (14)0.006 (8)
C10.157 (14)0.163 (15)0.144 (13)0.002 (11)0.024 (11)0.056 (12)
C40.20 (2)0.23 (2)0.131 (14)0.102 (18)0.010 (14)0.022 (15)
Geometric parameters (Å, º) top
Bi1—I102.8836 (6)N4—C91.477 (15)
Bi1—I52.9339 (6)N2—C101.324 (14)
Bi1—I63.0217 (6)N2—C121.361 (15)
Bi1—I43.1656 (6)N2—C11.488 (19)
Bi1—I3i3.2779 (5)N3—C131.337 (14)
Bi1—I33.3843 (5)N3—C71.358 (16)
Bi2—I72.9034 (6)N3—C41.402 (19)
Bi2—I82.9050 (6)N1—C121.303 (15)
Bi2—I92.9458 (6)N1—C111.340 (15)
Bi2—I4i3.2471 (6)N1—C31.436 (17)
Bi2—I33.3092 (5)C13—C51.433 (15)
Bi2—I63.3517 (6)C12—C21.447 (14)
N4—C131.308 (13)C11—C101.331 (18)
N4—C81.332 (14)C8—C71.310 (19)
I10—Bi1—I593.183 (19)I3—Bi2—I683.856 (12)
I10—Bi1—I690.833 (18)Bi1i—I3—Bi292.347 (12)
I5—Bi1—I692.685 (18)Bi1i—I3—Bi195.886 (12)
I10—Bi1—I495.520 (19)Bi2—I3—Bi191.057 (12)
I5—Bi1—I492.494 (16)Bi1—I4—Bi2i95.638 (14)
I6—Bi1—I4171.567 (16)Bi1—I6—Bi296.954 (14)
I10—Bi1—I3i88.418 (17)C13—N4—C8111.5 (12)
I5—Bi1—I3i178.241 (17)C13—N4—C9123.0 (12)
I6—Bi1—I3i88.017 (15)C8—N4—C9125.6 (14)
I4—Bi1—I3i86.623 (13)C10—N2—C12109.2 (12)
I10—Bi1—I3172.454 (18)C10—N2—C1124.8 (13)
I5—Bi1—I394.298 (16)C12—N2—C1125.9 (11)
I6—Bi1—I387.833 (13)C13—N3—C7109.0 (11)
I4—Bi1—I385.146 (14)C13—N3—C4124.4 (15)
I3i—Bi1—I384.114 (12)C7—N3—C4126.6 (16)
I7—Bi2—I894.337 (18)C12—N1—C11111.6 (12)
I7—Bi2—I993.808 (19)C12—N1—C3121.8 (14)
I8—Bi2—I993.960 (18)C11—N1—C3126.4 (15)
I7—Bi2—I4i96.049 (17)N4—C13—N3105.3 (10)
I8—Bi2—I4i86.844 (17)N4—C13—C5127.1 (13)
I9—Bi2—I4i170.022 (17)N3—C13—C5127.6 (13)
I7—Bi2—I3168.816 (16)N1—C12—N2105.0 (9)
I8—Bi2—I396.845 (15)N1—C12—C2132.2 (15)
I9—Bi2—I385.239 (15)N2—C12—C2122.8 (15)
I4i—Bi2—I384.790 (13)C10—C11—N1106.0 (13)
I7—Bi2—I685.081 (16)N2—C10—C11108.1 (12)
I8—Bi2—I6172.577 (18)C7—C8—N4107.0 (14)
I9—Bi2—I693.462 (17)C8—C7—N3107.3 (13)
I4i—Bi2—I685.860 (16)
Symmetry code: (i) x+1, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds