Download citation
Download citation
link to html
The amide bond represents one of the most fundamental functional groups in chemistry. The properties of amides are defined by amidic resonance (nN→π*C=O conjugation), which enforces planarity of the six atoms comprising the amide bond. Despite the importance of 4-halo-substituted benzamides in organic synthesis, mol­ecular inter­actions and medicinal chemistry, the effect of 4-halo-substitution on the properties of the amide bond in N,N-disubstituted benzamides has not been studied. Herein, we report the crystal structures and energetic properties of a full series of 4-halobenzamides. The structures of four 4-halobenzamides (halo = iodo, bromo, chloro and fluoro) in the N-morpholinyl series have been determined, namely 4-[(4-halophen­yl)carbon­yl]morpholine, C11H12XNO2, for halo = iodo (X = I), bromo (X = Br), chloro (X = Cl) and fluoro (X = F). Computations have been used to determine the effect of halogen substitution on the structures and resonance energies. 4-Iodo-N-morpholinylbenzamide crystallized with a significant distortion of the amide bond (τ + χN = 33°). The present study supports the correlation between the Ar—C(O) axis twist angle and the twist angle of the amide N—C(O) bond. Comparison of resonance energies in synthetically valuable N-morpholinyl and N-piperidinyl amides demonstrates that the O atom of the morpholinyl ring has a negligible effect on amidic resonance in the series.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013463/fn3272sup1.cif
Contains datablocks BD268_a, BD144_a, BD138_1_a, BD264_a, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013463/fn3272BD268_asup2.hkl
Contains datablock BD268_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013463/fn3272BD144_asup3.hkl
Contains datablock BD144_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013463/fn3272BD138_1_asup4.hkl
Contains datablock BD138_1_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013463/fn3272BD264_asup5.hkl
Contains datablock BD264_a

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618013463/fn3272sup6.pdf
Computational details

CCDC references: 1850333; 1538098; 1850324; 1850335

Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

4-[(4-Iodophenyl)carbonyl]morpholine (BD268_a) top
Crystal data top
C11H12INO2F(000) = 616
Mr = 317.12Dx = 1.854 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5193 (3) ÅCell parameters from 7452 reflections
b = 12.2078 (4) Åθ = 3.3–26.0°
c = 8.8674 (3) ŵ = 2.80 mm1
β = 93.763 (3)°T = 100 K
V = 1136.27 (6) Å3Plate, colourless
Z = 40.5 × 0.4 × 0.3 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2207 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω–scanh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1510
Tmin = 0.518, Tmax = 1.000l = 1010
7452 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.2684P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2207 reflectionsΔρmax = 0.42 e Å3
144 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25090 (19)0.49287 (16)0.2721 (2)0.0151 (4)
H10.23320.54980.20430.018*
C20.3772 (2)0.46360 (16)0.3106 (2)0.0132 (4)
C30.4023 (2)0.38039 (16)0.4160 (2)0.0141 (4)
H30.48620.36120.44360.017*
C40.3037 (2)0.32591 (16)0.4801 (2)0.0148 (4)
H40.32120.27140.55170.018*
C50.1784 (2)0.35334 (16)0.4365 (2)0.0150 (4)
C60.1518 (2)0.43780 (17)0.3340 (2)0.0164 (4)
H60.06780.45720.30710.020*
N90.58356 (16)0.47781 (13)0.19736 (19)0.0133 (4)
O80.46903 (13)0.63067 (11)0.24035 (16)0.0163 (3)
C70.47978 (18)0.53010 (16)0.2454 (2)0.0124 (4)
C100.6874 (2)0.54433 (17)0.1424 (2)0.0149 (4)
H10A0.68550.61720.18590.018*
H10B0.67690.55110.03330.018*
C110.8136 (2)0.48979 (16)0.1873 (3)0.0191 (5)
H11A0.88200.53130.14620.023*
H11B0.82730.49020.29650.023*
O120.81748 (14)0.37967 (12)0.13401 (19)0.0229 (4)
C130.7192 (2)0.31622 (17)0.1958 (3)0.0191 (5)
H13A0.73180.31550.30510.023*
H13B0.72390.24130.16020.023*
C140.5893 (2)0.36269 (16)0.1504 (2)0.0144 (4)
H14A0.576 (2)0.3567 (17)0.042 (2)0.011 (5)*
H14B0.522 (2)0.322 (2)0.192 (3)0.020 (6)*
I150.02903 (2)0.26585 (2)0.52607 (2)0.01825 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0153 (11)0.0142 (10)0.0158 (10)0.0032 (8)0.0003 (8)0.0004 (8)
C20.0145 (11)0.0119 (9)0.0134 (10)0.0017 (8)0.0026 (8)0.0035 (8)
C30.0118 (10)0.0151 (10)0.0154 (10)0.0040 (8)0.0009 (8)0.0024 (8)
C40.0181 (11)0.0134 (10)0.0131 (10)0.0024 (8)0.0015 (8)0.0006 (8)
C50.0153 (11)0.0136 (10)0.0167 (10)0.0014 (8)0.0065 (8)0.0033 (8)
C60.0111 (11)0.0183 (10)0.0198 (11)0.0034 (8)0.0003 (8)0.0004 (8)
N90.0113 (9)0.0088 (8)0.0200 (9)0.0012 (7)0.0036 (7)0.0002 (7)
O80.0161 (8)0.0112 (7)0.0218 (8)0.0019 (6)0.0019 (6)0.0007 (6)
C70.0122 (11)0.0137 (9)0.0111 (9)0.0009 (8)0.0013 (8)0.0001 (8)
C100.0152 (11)0.0128 (10)0.0172 (10)0.0020 (8)0.0052 (8)0.0011 (8)
C110.0140 (11)0.0167 (11)0.0272 (12)0.0017 (9)0.0062 (9)0.0014 (9)
O120.0145 (8)0.0155 (7)0.0403 (10)0.0022 (6)0.0129 (7)0.0027 (7)
C130.0154 (11)0.0126 (10)0.0302 (12)0.0009 (9)0.0082 (9)0.0043 (9)
C140.0152 (11)0.0104 (10)0.0183 (11)0.0012 (8)0.0060 (8)0.0001 (8)
I150.01462 (9)0.01995 (9)0.02094 (9)0.00115 (5)0.00690 (6)0.00172 (5)
Geometric parameters (Å, º) top
C1—C61.384 (3)N9—C101.470 (3)
C1—C21.397 (3)O8—C71.233 (2)
C1—H10.9300C10—C111.515 (3)
C2—C31.394 (3)C10—H10A0.9700
C2—C71.496 (3)C10—H10B0.9700
C3—C41.385 (3)C11—O121.426 (2)
C3—H30.9300C11—H11A0.9700
C4—C51.390 (3)C11—H11B0.9700
C4—H40.9300O12—C131.430 (2)
C5—C61.391 (3)C13—C141.509 (3)
C5—I152.098 (2)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
N9—C71.357 (2)C14—H14A0.97 (2)
N9—C141.468 (3)C14—H14B0.96 (2)
C6—C1—C2120.56 (19)N9—C10—H10A109.9
C6—C1—H1119.7C11—C10—H10A109.9
C2—C1—H1119.7N9—C10—H10B109.9
C3—C2—C1119.1 (2)C11—C10—H10B109.9
C3—C2—C7123.02 (18)H10A—C10—H10B108.3
C1—C2—C7117.73 (18)O12—C11—C10111.76 (17)
C4—C3—C2120.74 (19)O12—C11—H11A109.3
C4—C3—H3119.6C10—C11—H11A109.3
C2—C3—H3119.6O12—C11—H11B109.3
C3—C4—C5119.50 (19)C10—C11—H11B109.3
C3—C4—H4120.2H11A—C11—H11B107.9
C5—C4—H4120.2C11—O12—C13110.29 (16)
C4—C5—C6120.44 (19)O12—C13—C14111.03 (17)
C4—C5—I15119.48 (15)O12—C13—H13A109.4
C6—C5—I15120.07 (16)C14—C13—H13A109.4
C1—C6—C5119.64 (19)O12—C13—H13B109.4
C1—C6—H6120.2C14—C13—H13B109.4
C5—C6—H6120.2H13A—C13—H13B108.0
C7—N9—C14126.05 (17)N9—C14—C13109.75 (17)
C7—N9—C10118.35 (17)N9—C14—H14A110.4 (13)
C14—N9—C10112.92 (16)C13—C14—H14A107.7 (13)
O8—C7—N9122.04 (18)N9—C14—H14B110.2 (14)
O8—C7—C2119.17 (18)C13—C14—H14B112.4 (14)
N9—C7—C2118.77 (17)H14A—C14—H14B106.3 (19)
N9—C10—C11109.13 (16)
C6—C1—C2—C32.0 (3)C10—N9—C7—C2176.20 (17)
C6—C1—C2—C7177.07 (18)C3—C2—C7—O8132.8 (2)
C1—C2—C3—C41.1 (3)C1—C2—C7—O842.1 (3)
C7—C2—C3—C4175.86 (18)C3—C2—C7—N945.5 (3)
C2—C3—C4—C51.2 (3)C1—C2—C7—N9139.70 (19)
C3—C4—C5—C62.6 (3)C7—N9—C10—C11144.61 (18)
C3—C4—C5—I15177.16 (14)C14—N9—C10—C1152.8 (2)
C2—C1—C6—C50.7 (3)N9—C10—C11—O1255.7 (2)
C4—C5—C6—C11.7 (3)C10—C11—O12—C1360.2 (2)
I15—C5—C6—C1178.08 (15)C11—O12—C13—C1460.2 (2)
C14—N9—C7—O8158.05 (19)C7—N9—C14—C13145.47 (19)
C10—N9—C7—O82.0 (3)C10—N9—C14—C1353.6 (2)
C14—N9—C7—C223.8 (3)O12—C13—C14—N956.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O8i0.97 (2)2.52 (2)3.480 (3)171.7 (18)
C14—H14B···O8ii0.96 (2)2.41 (2)3.069 (2)125.6 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2.
4-[(4-Bromophenyl)carbonyl]morpholine (BD144_a) top
Crystal data top
C11H12BrNO2Dx = 1.596 Mg m3
Mr = 270.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 5805 reflections
a = 9.9577 (2) Åθ = 3.1–26.0°
c = 9.8213 (2) ŵ = 3.64 mm1
V = 843.37 (4) Å3T = 100 K
Z = 3Plate, colourless
F(000) = 4080.5 × 0.45 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2180 independent reflections
Radiation source: fine-focus sealed tube2129 reflections with I > 2σ(I)
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1Rint = 0.046
ω–scanθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1012
Tmin = 0.776, Tmax = 1.000k = 1210
5805 measured reflectionsl = 1211
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.32 e Å3
2180 reflectionsΔρmin = 0.38 e Å3
150 parametersAbsolute structure: Flack x determined using 1007 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.007 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42153 (4)0.07632 (4)0.08969 (4)0.02375 (13)
N10.2551 (4)0.3767 (4)0.6554 (3)0.0185 (6)
O10.4186 (3)0.5968 (3)0.5427 (3)0.0229 (6)
C10.3508 (4)0.4544 (4)0.5518 (4)0.0171 (7)
C30.1615 (4)0.2074 (4)0.6681 (4)0.0199 (8)
H3A0.197 (4)0.165 (4)0.605 (4)0.027 (12)*
H3B0.05420.17970.65110.023 (11)*
C20.2206 (5)0.4597 (4)0.7606 (4)0.0208 (8)
H2B0.287 (4)0.571 (4)0.753 (3)0.023 (11)*
H2A0.10980.44560.74430.025 (12)*
O20.1320 (3)0.2354 (3)0.9102 (3)0.0235 (6)
C50.1773 (5)0.1614 (5)0.8105 (4)0.0233 (8)
H5A0.11340.04980.82000.028*
H5B0.28420.18890.82630.028*
C40.2289 (5)0.4002 (4)0.9003 (4)0.0233 (8)
H4A0.33530.42830.91950.028*
H4B0.19700.44950.96820.028*
C1P0.3722 (4)0.3616 (4)0.4415 (4)0.0159 (7)
C2P0.3019 (4)0.3508 (4)0.3160 (4)0.0180 (7)
H2P0.24370.39920.30290.022*
C3P0.3188 (4)0.2680 (4)0.2109 (4)0.0185 (7)
H3P0.264 (5)0.251 (5)0.123 (5)0.023 (11)*
C4P0.4098 (4)0.1999 (4)0.2318 (4)0.0172 (7)
C5P0.4841 (4)0.2142 (4)0.3525 (4)0.0210 (8)
H5P0.54720.17070.36330.025*
C6P0.4641 (4)0.2949 (4)0.4593 (4)0.0207 (8)
H6P0.51250.30380.54250.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0271 (2)0.0240 (2)0.02284 (19)0.01485 (18)0.00566 (16)0.00278 (16)
N10.0232 (16)0.0136 (15)0.0186 (16)0.0090 (13)0.0002 (13)0.0014 (11)
O10.0305 (14)0.0128 (13)0.0226 (14)0.0086 (11)0.0015 (11)0.0001 (10)
C10.0193 (17)0.0191 (18)0.0144 (17)0.0108 (15)0.0054 (14)0.0021 (14)
C30.0192 (19)0.0145 (19)0.024 (2)0.0067 (16)0.0013 (15)0.0038 (15)
C20.024 (2)0.0190 (18)0.021 (2)0.0116 (16)0.0002 (14)0.0043 (15)
O20.0246 (14)0.0191 (12)0.0224 (15)0.0077 (11)0.0034 (11)0.0007 (11)
C50.028 (2)0.0167 (18)0.024 (2)0.0102 (17)0.0019 (16)0.0007 (16)
C40.022 (2)0.0205 (18)0.0227 (19)0.0075 (15)0.0004 (15)0.0037 (16)
C1P0.0160 (17)0.0110 (16)0.0173 (18)0.0041 (13)0.0015 (14)0.0016 (13)
C2P0.0187 (17)0.0208 (18)0.0190 (19)0.0133 (15)0.0007 (14)0.0039 (14)
C3P0.0199 (18)0.0214 (18)0.0155 (18)0.0112 (15)0.0003 (14)0.0019 (14)
C4P0.0180 (17)0.0125 (16)0.0186 (18)0.0058 (13)0.0070 (14)0.0016 (14)
C5P0.0145 (17)0.0181 (18)0.033 (2)0.0098 (15)0.0018 (15)0.0009 (15)
C6P0.0206 (19)0.0197 (17)0.022 (2)0.0104 (16)0.0080 (15)0.0032 (15)
Geometric parameters (Å, º) top
Br1—C4P1.902 (4)C5—H5A0.9700
N1—C11.344 (5)C5—H5B0.9700
N1—C21.467 (5)C4—H4A0.9700
N1—C31.468 (5)C4—H4B0.9700
O1—C11.231 (5)C1P—C6P1.386 (5)
C1—C1P1.506 (5)C1P—C2P1.395 (5)
C3—C51.505 (5)C2P—C3P1.383 (5)
C3—H3A0.92 (4)C2P—H2P0.9300
C3—H3B0.9750C3P—C4P1.393 (5)
C2—C41.513 (6)C3P—H3P0.99 (5)
C2—H2B0.96 (4)C4P—C5P1.367 (5)
C2—H2A1.0517C5P—C6P1.395 (6)
O2—C51.428 (5)C5P—H5P0.9300
O2—C41.432 (4)C6P—H6P0.9300
C1—N1—C2120.5 (3)O2—C4—C2111.9 (3)
C1—N1—C3125.9 (3)O2—C4—H4A109.2
C2—N1—C3113.2 (3)C2—C4—H4A109.2
O1—C1—N1122.7 (3)O2—C4—H4B109.2
O1—C1—C1P119.3 (3)C2—C4—H4B109.2
N1—C1—C1P117.9 (3)H4A—C4—H4B107.9
N1—C3—C5109.0 (3)C6P—C1P—C2P120.0 (3)
N1—C3—H3A108 (2)C6P—C1P—C1122.3 (3)
C5—C3—H3A111 (2)C2P—C1P—C1117.7 (3)
N1—C3—H3B106.7C3P—C2P—C1P120.1 (3)
C5—C3—H3B109.9C3P—C2P—H2P120.0
H3A—C3—H3B112.2C1P—C2P—H2P120.0
N1—C2—C4110.2 (3)C2P—C3P—C4P118.9 (3)
N1—C2—H2B112 (2)C2P—C3P—H3P122 (3)
C4—C2—H2B112 (2)C4P—C3P—H3P119 (3)
N1—C2—H2A110.0C5P—C4P—C3P121.8 (4)
C4—C2—H2A110.2C5P—C4P—Br1119.9 (3)
H2B—C2—H2A102.3C3P—C4P—Br1118.2 (3)
C5—O2—C4109.9 (3)C4P—C5P—C6P119.1 (3)
O2—C5—C3111.8 (3)C4P—C5P—H5P120.4
O2—C5—H5A109.2C6P—C5P—H5P120.4
C3—C5—H5A109.2C1P—C6P—C5P120.0 (4)
O2—C5—H5B109.2C1P—C6P—H6P120.0
C3—C5—H5B109.2C5P—C6P—H6P120.0
H5A—C5—H5B107.9
C2—N1—C1—O13.1 (5)N1—C1—C1P—C6P76.6 (4)
C3—N1—C1—O1175.1 (3)O1—C1—C1P—C2P72.1 (4)
C2—N1—C1—C1P175.5 (3)N1—C1—C1P—C2P106.6 (4)
C3—N1—C1—C1P3.5 (5)C6P—C1P—C2P—C3P2.6 (5)
C1—N1—C3—C5134.4 (4)C1—C1P—C2P—C3P179.5 (3)
C2—N1—C3—C553.1 (4)C1P—C2P—C3P—C4P1.7 (5)
C1—N1—C2—C4135.3 (3)C2P—C3P—C4P—C5P0.7 (5)
C3—N1—C2—C451.7 (4)C2P—C3P—C4P—Br1176.3 (3)
C4—O2—C5—C360.8 (4)C3P—C4P—C5P—C6P2.2 (6)
N1—C3—C5—O257.4 (4)Br1—C4P—C5P—C6P174.9 (3)
C5—O2—C4—C258.7 (4)C2P—C1P—C6P—C5P1.2 (6)
N1—C2—C4—O253.9 (4)C1—C1P—C6P—C5P177.9 (3)
O1—C1—C1P—C6P104.7 (4)C4P—C5P—C6P—C1P1.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.92 (4)2.63 (3)3.257 (4)126 (3)
C2—H2B···O1ii0.96 (4)2.48 (4)3.322 (5)146 (3)
C3P—H3P···O2iii0.99 (5)2.43 (5)3.417 (5)174 (4)
Symmetry codes: (i) x+y, x, z1/3; (ii) y+1, xy+1, z+1/3; (iii) x, y, z1.
4-[(4-Chlorophenyl)carbonyl]morpholine (BD138_1_a) top
Crystal data top
C11H12ClNO2Dx = 1.359 Mg m3
Mr = 225.67Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31Cell parameters from 5673 reflections
a = 9.9808 (3) Åθ = 3.2–26.0°
c = 9.5853 (3) ŵ = 0.33 mm1
V = 826.93 (6) Å3T = 100 K
Z = 3Plate, colourless
F(000) = 3540.5 × 0.45 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω–scanh = 1212
5673 measured reflectionsk = 1211
1680 independent reflectionsl = 118
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.0699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.27 e Å3
1680 reflectionsΔρmin = 0.45 e Å3
185 parametersAbsolute structure: Flack x determined using 505 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3163 (3)0.2866 (3)0.4498 (3)0.0226 (5)
C20.1564 (3)0.1932 (3)0.4573 (3)0.0256 (5)
H20.11060.13920.53890.031*
C30.0650 (3)0.1804 (3)0.3433 (3)0.0290 (6)
H30.04180.11670.34720.035*
C40.1349 (3)0.2634 (3)0.2245 (3)0.0293 (6)
C50.2943 (3)0.3562 (3)0.2143 (3)0.0300 (6)
H50.335 (4)0.407 (4)0.137 (4)0.035 (8)*
C60.3843 (3)0.3654 (3)0.3272 (3)0.0267 (5)
H60.49150.42490.32110.032*
C70.4210 (3)0.2962 (3)0.5668 (3)0.0263 (6)
O80.5048 (2)0.2403 (2)0.55140 (19)0.0288 (4)
O120.4569 (2)0.5489 (2)0.9185 (2)0.0339 (5)
Cl150.02234 (9)0.25628 (8)0.08276 (8)0.0463 (2)
N9B0.4023 (5)0.3476 (5)0.6961 (4)0.0228 (8)0.65
C10A0.4949 (5)0.3523 (5)0.8162 (4)0.0252 (8)0.65
H10A0.57200.32630.78660.030*0.65
H10B0.42870.27630.88460.030*0.65
C11A0.5737 (6)0.5102 (6)0.8814 (5)0.0267 (9)0.65
H11A0.63010.51070.96400.032*0.65
H11B0.64650.58570.81610.032*0.65
C13A0.3819 (7)0.5609 (7)0.7974 (6)0.0294 (11)0.65
H13A0.45770.63540.73330.035*0.65
H13B0.31040.59600.82270.035*0.65
C14A0.2949 (4)0.4031 (4)0.7284 (4)0.0228 (7)0.65
H14A0.21440.33060.79040.027*0.65
H14B0.24630.41030.64320.027*0.65
N9A0.4587 (9)0.4097 (9)0.6589 (8)0.0210 (15)0.35
C10B0.5752 (9)0.4401 (10)0.7686 (8)0.0259 (15)0.35
H10C0.66470.54200.75520.031*0.35
H10D0.60880.36440.76230.031*0.35
C11B0.5065 (10)0.4310 (11)0.9087 (9)0.0248 (16)0.35
H11C0.58220.44960.98070.030*0.35
H11D0.41810.32850.92290.030*0.35
C13B0.3236 (12)0.4895 (13)0.8160 (11)0.029 (2)0.35
H13C0.24960.38190.83560.035*0.35
H13D0.27130.54890.82460.035*0.35
C14B0.3855 (9)0.5048 (8)0.6735 (9)0.0257 (16)0.35
H14C0.30230.47180.60620.031*0.35
H14D0.46080.61220.65490.031*0.35
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (12)0.0226 (11)0.0227 (13)0.0144 (10)0.0026 (10)0.0042 (10)
C20.0264 (12)0.0252 (12)0.0246 (13)0.0124 (10)0.0016 (10)0.0031 (10)
C30.0246 (12)0.0220 (12)0.0389 (15)0.0104 (10)0.0063 (11)0.0034 (11)
C40.0388 (14)0.0262 (13)0.0290 (14)0.0209 (11)0.0151 (12)0.0094 (11)
C50.0406 (15)0.0267 (13)0.0256 (15)0.0190 (12)0.0014 (12)0.0012 (11)
C60.0251 (12)0.0256 (12)0.0285 (14)0.0120 (10)0.0006 (11)0.0034 (10)
C70.0267 (13)0.0251 (12)0.0285 (14)0.0141 (11)0.0063 (10)0.0041 (11)
O80.0304 (9)0.0374 (10)0.0270 (11)0.0232 (8)0.0010 (8)0.0016 (8)
O120.0464 (11)0.0405 (11)0.0245 (10)0.0290 (9)0.0079 (8)0.0068 (8)
Cl150.0606 (5)0.0449 (4)0.0396 (4)0.0311 (4)0.0285 (4)0.0107 (4)
N9B0.026 (2)0.025 (2)0.021 (2)0.0159 (17)0.0027 (16)0.0002 (16)
C10A0.031 (2)0.024 (2)0.023 (2)0.0159 (18)0.0050 (18)0.0013 (18)
C11A0.024 (2)0.024 (2)0.027 (2)0.0087 (19)0.0026 (18)0.002 (2)
C13A0.040 (3)0.024 (3)0.029 (3)0.019 (2)0.008 (2)0.005 (2)
C14A0.0247 (18)0.025 (2)0.0214 (19)0.0146 (17)0.0008 (16)0.0038 (17)
N9A0.025 (4)0.026 (4)0.016 (4)0.016 (3)0.002 (3)0.001 (3)
C10B0.026 (4)0.031 (4)0.022 (4)0.016 (3)0.009 (3)0.003 (3)
C11B0.027 (4)0.020 (4)0.024 (4)0.010 (4)0.005 (3)0.001 (4)
C13B0.030 (5)0.025 (5)0.033 (5)0.014 (4)0.006 (4)0.002 (5)
C14B0.030 (4)0.018 (3)0.033 (4)0.015 (3)0.007 (3)0.003 (3)
Geometric parameters (Å, º) top
C1—C61.388 (4)C10A—H10A0.9700
C1—C21.391 (3)C10A—H10B0.9700
C1—C71.503 (3)C11A—H11A0.9700
C2—C31.388 (4)C11A—H11B0.9700
C2—H20.9300C13A—C14A1.518 (6)
C3—C41.375 (4)C13A—H13A0.9700
C3—H30.9300C13A—H13B0.9700
C4—C51.387 (4)C14A—H14A0.9700
C4—Cl151.741 (3)C14A—H14B0.9700
C5—C61.380 (4)N9A—C14B1.465 (10)
C5—H50.88 (3)N9A—C10B1.482 (10)
C6—H60.9300C10B—C11B1.490 (12)
C7—O81.224 (3)C10B—H10C0.9700
C7—N9A1.334 (8)C10B—H10D0.9700
C7—N9B1.389 (5)C11B—H11C0.9700
O12—C13A1.418 (6)C11B—H11D0.9700
O12—C11A1.444 (5)C13B—C14B1.475 (14)
O12—C11B1.490 (8)C13B—H13C0.9700
O12—C13B1.516 (10)C13B—H13D0.9700
N9B—C10A1.463 (5)C14B—H14C0.9700
N9B—C14A1.465 (6)C14B—H14D0.9700
C10A—C11A1.501 (6)
C6—C1—C2119.8 (2)O12—C13A—C14A108.7 (4)
C6—C1—C7117.9 (2)O12—C13A—H13A109.9
C2—C1—C7122.2 (2)C14A—C13A—H13A109.9
C3—C2—C1120.1 (3)O12—C13A—H13B109.9
C3—C2—H2119.9C14A—C13A—H13B109.9
C1—C2—H2119.9H13A—C13A—H13B108.3
C4—C3—C2119.0 (2)N9B—C14A—C13A109.7 (4)
C4—C3—H3120.5N9B—C14A—H14A109.7
C2—C3—H3120.5C13A—C14A—H14A109.7
C3—C4—C5121.8 (3)N9B—C14A—H14B109.7
C3—C4—Cl15119.9 (2)C13A—C14A—H14B109.7
C5—C4—Cl15118.3 (2)H14A—C14A—H14B108.2
C6—C5—C4118.7 (3)C7—N9A—C14B126.4 (6)
C6—C5—H5122 (2)C7—N9A—C10B120.2 (6)
C4—C5—H5119 (2)C14B—N9A—C10B113.2 (6)
C5—C6—C1120.5 (2)N9A—C10B—C11B109.7 (6)
C5—C6—H6119.7N9A—C10B—H10C109.7
C1—C6—H6119.7C11B—C10B—H10C109.7
O8—C7—N9A120.0 (4)N9A—C10B—H10D109.7
O8—C7—N9B121.6 (3)C11B—C10B—H10D109.7
O8—C7—C1119.5 (2)H10C—C10B—H10D108.2
N9A—C7—C1116.1 (4)C10B—C11B—O12109.5 (6)
N9B—C7—C1118.1 (2)C10B—C11B—H11C109.8
C13A—O12—C11A110.6 (3)O12—C11B—H11C109.8
C11B—O12—C13B102.9 (5)C10B—C11B—H11D109.8
C7—N9B—C10A121.0 (3)O12—C11B—H11D109.8
C7—N9B—C14A126.0 (3)H11C—C11B—H11D108.2
C10A—N9B—C14A113.0 (4)C14B—C13B—O12108.7 (7)
N9B—C10A—C11A110.6 (3)C14B—C13B—H13C110.0
N9B—C10A—H10A109.5O12—C13B—H13C110.0
C11A—C10A—H10A109.5C14B—C13B—H13D110.0
N9B—C10A—H10B109.5O12—C13B—H13D110.0
C11A—C10A—H10B109.5H13C—C13B—H13D108.3
H10A—C10A—H10B108.1N9A—C14B—C13B109.9 (7)
O12—C11A—C10A108.3 (3)N9A—C14B—H14C109.7
O12—C11A—H11A110.0C13B—C14B—H14C109.7
C10A—C11A—H11A110.0N9A—C14B—H14D109.7
O12—C11A—H11B110.0C13B—C14B—H14D109.7
C10A—C11A—H11B110.0H14C—C14B—H14D108.2
H11A—C11A—H11B108.4
C6—C1—C2—C30.9 (4)C7—N9B—C10A—C11A126.9 (4)
C7—C1—C2—C3175.9 (2)C14A—N9B—C10A—C11A52.4 (5)
C1—C2—C3—C41.1 (4)C13A—O12—C11A—C10A64.4 (5)
C2—C3—C4—C51.7 (4)N9B—C10A—C11A—O1256.5 (5)
C2—C3—C4—Cl15177.11 (19)C11A—O12—C13A—C14A64.7 (5)
C3—C4—C5—C60.3 (4)C7—N9B—C14A—C13A127.2 (4)
Cl15—C4—C5—C6178.54 (19)C10A—N9B—C14A—C13A52.0 (5)
C4—C5—C6—C11.7 (4)O12—C13A—C14A—N9B57.1 (5)
C2—C1—C6—C52.3 (4)O8—C7—N9A—C14B169.4 (6)
C7—C1—C6—C5177.5 (2)C1—C7—N9A—C14B13.0 (10)
C6—C1—C7—O864.8 (3)O8—C7—N9A—C10B16.6 (9)
C2—C1—C7—O8110.2 (3)C1—C7—N9A—C10B173.0 (6)
C6—C1—C7—N9A91.7 (5)C7—N9A—C10B—C11B123.5 (8)
C2—C1—C7—N9A93.3 (5)C14B—N9A—C10B—C11B51.1 (9)
C6—C1—C7—N9B124.7 (3)N9A—C10B—C11B—O1260.1 (8)
C2—C1—C7—N9B60.2 (3)C13B—O12—C11B—C10B67.8 (8)
O8—C7—N9B—C10A6.6 (5)C11B—O12—C13B—C14B68.7 (8)
C1—C7—N9B—C10A176.9 (3)C7—N9A—C14B—C13B121.7 (9)
O8—C7—N9B—C14A174.2 (3)C10B—N9A—C14B—C13B52.6 (9)
C1—C7—N9B—C14A3.9 (5)O12—C13B—C14B—N9A62.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O12i0.88 (3)2.48 (4)3.354 (4)178 (3)
C10A—H10A···O8ii0.972.433.240 (4)140
C10A—H10B···Cl15iii0.972.923.382 (4)110
C14A—H14B···O12iv0.972.553.282 (4)133
C10B—H10D···O8ii0.972.483.306 (7)143
C11B—H11C···O8v0.972.653.601 (8)166
C14B—H14C···O12iv0.972.543.251 (7)130
Symmetry codes: (i) x, y, z1; (ii) y+1, xy, z+1/3; (iii) x+y, x, z+2/3; (iv) x+y, x+1, z1/3; (v) x+y+1, x+1, z+2/3.
4-[(4-Fluorophenyl)carbonyl]morpholine (BD264_a) top
Crystal data top
C11H12FNO2Dx = 1.377 Mg m3
Mr = 209.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 12441 reflections
a = 7.3584 (5) Åθ = 3.0–26.0°
b = 7.2979 (5) ŵ = 0.11 mm1
c = 37.576 (2) ÅT = 100 K
V = 2017.9 (2) Å3Plate, colourless
Z = 80.2 × 0.15 × 0.1 mm
F(000) = 880
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1193 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1h = 99
ω–scank = 98
12441 measured reflectionsl = 3846
1977 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1977 reflectionsΔρmax = 0.19 e Å3
152 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5048 (3)0.3731 (3)0.39818 (5)0.0150 (5)
C20.6167 (3)0.2327 (3)0.41019 (5)0.0212 (5)
H20.69610.17560.39440.025*
C30.6111 (3)0.1773 (3)0.44536 (5)0.0225 (5)
H30.68590.08350.45350.027*
C40.4926 (3)0.2638 (3)0.46790 (5)0.0207 (5)
C50.3829 (3)0.4048 (3)0.45731 (5)0.0222 (5)
H50.30450.46130.47330.027*
C60.3916 (3)0.4614 (3)0.42214 (5)0.0193 (5)
H60.32080.55950.41460.023*
O80.54816 (18)0.60234 (18)0.35425 (3)0.0189 (4)
C70.5118 (3)0.4402 (3)0.36044 (5)0.0147 (5)
N90.4773 (2)0.3185 (2)0.33405 (4)0.0142 (4)
C100.4901 (3)0.3736 (3)0.29649 (5)0.0161 (5)
H10A0.54980.49180.29470.019*
H10B0.36920.38490.28640.019*
C110.5973 (3)0.2316 (3)0.27605 (5)0.0189 (5)
H11A0.5949 (18)0.2614 (17)0.2498 (4)0.015 (5)*
H11B0.72690.23050.28470.018*
O120.52018 (19)0.05262 (17)0.27991 (3)0.0201 (4)
C130.5174 (3)0.0010 (3)0.31667 (5)0.0177 (5)
H13A0.647 (3)0.001 (2)0.3263 (5)0.022 (6)*
H13B0.464 (2)0.125 (3)0.3176 (5)0.020 (5)*
C140.4050 (3)0.1331 (3)0.33829 (5)0.0165 (5)
H14A0.2806 (17)0.1330 (17)0.3295 (3)0.010 (5)*
H14B0.40530.09380.36420.012*
F150.48309 (18)0.20748 (16)0.50252 (3)0.0315 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0138 (11)0.0155 (11)0.0157 (11)0.0022 (10)0.0001 (9)0.0014 (8)
C20.0235 (13)0.0223 (13)0.0179 (12)0.0050 (11)0.0021 (9)0.0023 (10)
C30.0291 (14)0.0201 (12)0.0182 (12)0.0080 (11)0.0045 (10)0.0034 (10)
C40.0300 (14)0.0215 (11)0.0107 (11)0.0033 (12)0.0001 (10)0.0010 (9)
C50.0248 (13)0.0242 (13)0.0176 (12)0.0017 (11)0.0038 (10)0.0038 (10)
C60.0209 (12)0.0191 (12)0.0179 (12)0.0031 (10)0.0027 (9)0.0010 (10)
O80.0240 (8)0.0132 (8)0.0196 (8)0.0015 (7)0.0025 (6)0.0003 (6)
C70.0093 (11)0.0174 (11)0.0175 (11)0.0019 (9)0.0001 (9)0.0004 (9)
N90.0174 (10)0.0139 (9)0.0115 (9)0.0028 (8)0.0005 (8)0.0016 (7)
C100.0197 (12)0.0170 (11)0.0116 (11)0.0016 (11)0.0026 (9)0.0019 (8)
C110.0248 (13)0.0156 (12)0.0164 (12)0.0024 (10)0.0018 (10)0.0003 (9)
O120.0301 (9)0.0148 (7)0.0154 (7)0.0025 (7)0.0010 (7)0.0009 (6)
C130.0210 (14)0.0155 (12)0.0167 (11)0.0022 (11)0.0009 (11)0.0028 (9)
C140.0193 (12)0.0155 (11)0.0148 (11)0.0035 (10)0.0001 (10)0.0012 (10)
F150.0487 (9)0.0319 (8)0.0137 (6)0.0032 (7)0.0018 (6)0.0047 (5)
Geometric parameters (Å, º) top
C1—C61.385 (3)N9—C141.463 (2)
C1—C21.390 (3)N9—C101.470 (2)
C1—C71.501 (3)C10—C111.512 (3)
C2—C31.382 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.370 (3)C11—O121.431 (2)
C3—H30.9300C11—H11A1.010 (14)
C4—F151.366 (2)C11—H11B1.0073
C4—C51.366 (3)O12—C131.432 (2)
C5—C61.386 (3)C13—C141.508 (3)
C5—H50.9300C13—H13A1.02 (2)
C6—H60.9300C13—H13B1.001 (19)
O8—C71.235 (2)C14—H14A0.974 (13)
C7—N91.355 (2)C14—H14B1.0138
C6—C1—C2119.23 (18)N9—C10—H10A109.8
C6—C1—C7118.86 (18)C11—C10—H10A109.8
C2—C1—C7121.79 (18)N9—C10—H10B109.8
C3—C2—C1120.5 (2)C11—C10—H10B109.8
C3—C2—H2119.7H10A—C10—H10B108.2
C1—C2—H2119.7O12—C11—C10111.53 (16)
C4—C3—C2118.4 (2)O12—C11—H11A106.8 (8)
C4—C3—H3120.8C10—C11—H11A109.8 (8)
C2—C3—H3120.8O12—C11—H11B109.6
F15—C4—C5118.27 (19)C10—C11—H11B109.6
F15—C4—C3118.85 (19)H11A—C11—H11B109.4
C5—C4—C3122.88 (19)C11—O12—C13110.11 (15)
C4—C5—C6118.3 (2)O12—C13—C14111.05 (17)
C4—C5—H5120.8O12—C13—H13A109.4 (11)
C6—C5—H5120.8C14—C13—H13A109.5 (11)
C1—C6—C5120.6 (2)O12—C13—H13B106.2 (10)
C1—C6—H6119.7C14—C13—H13B110.7 (11)
C5—C6—H6119.7H13A—C13—H13B109.9 (15)
O8—C7—N9122.02 (17)N9—C14—C13109.46 (16)
O8—C7—C1119.86 (18)N9—C14—H14A107.8 (8)
N9—C7—C1118.12 (17)C13—C14—H14A109.4 (7)
C7—N9—C14126.47 (16)N9—C14—H14B111.4
C7—N9—C10120.76 (16)C13—C14—H14B109.5
C14—N9—C10112.38 (15)H14A—C14—H14B109.2
N9—C10—C11109.49 (16)
C6—C1—C2—C32.2 (3)C2—C1—C7—N959.3 (3)
C7—C1—C2—C3178.1 (2)O8—C7—N9—C14169.47 (18)
C1—C2—C3—C40.1 (3)C1—C7—N9—C1410.5 (3)
C2—C3—C4—F15178.61 (19)O8—C7—N9—C102.8 (3)
C2—C3—C4—C51.5 (3)C1—C7—N9—C10177.22 (17)
F15—C4—C5—C6179.61 (19)C7—N9—C10—C11133.04 (19)
C3—C4—C5—C60.4 (3)C14—N9—C10—C1153.7 (2)
C2—C1—C6—C53.2 (3)N9—C10—C11—O1255.7 (2)
C7—C1—C6—C5179.26 (19)C10—C11—O12—C1359.5 (2)
C4—C5—C6—C11.9 (3)C11—O12—C13—C1460.3 (2)
C6—C1—C7—O855.2 (3)C7—N9—C14—C13132.5 (2)
C2—C1—C7—O8120.7 (2)C10—N9—C14—C1354.7 (2)
C6—C1—C7—N9124.8 (2)O12—C13—C14—N957.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O12i1.010 (14)2.546 (13)3.265 (2)127.9 (9)
C13—H13A···O8ii1.02 (2)2.59 (2)3.572 (3)161.5 (14)
C13—H13B···O8iii1.001 (19)2.499 (18)3.242 (2)130.7 (14)
C14—H14A···O8iv0.974 (13)2.601 (12)3.395 (2)138.8 (10)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y1/2, z; (iii) x, y1, z; (iv) x+1/2, y1/2, z.
Summary of hydrogen-bond geometry (Å, °) for 1a1d top
D—H···AD—H (Å)H···A (Å)D···A (Å)D—H···A (°)
1a
C14—H14A···O8i0.97 (2)2.52 (2)3.480 (3)171.7 (18)
C14—H14B···O8ii0.96 (2)2.41 (2)3.069 (2)125.6 (18)
1b
C3—H3A···O2iii0.92 (4)2.63 (4)3.257 (4)126 (3)
C2—H2B···O1iv0.96 (4)2.48 (4)3.322 (5)146 (3)
C3P—H3P···O2v0.99 (5)2.43 (5)3.417 (5)174 (4)
1c
C5—H5···O12v0.88 (3)2.48 (4)3.353 (4)178 (3)
C10A—H10A···O8vi0.972.433.240 (4)140.3
C10A—H10B···Cl15vii0.972.923.382 (4)110.1
C14A—H14B···O12viii0.972.553.281 (4)132.6
C10B—H10D···O8vi0.972.483.307 (7)143.2
C11B—H11C···O8ix0.972.653.601 (8)166.1
C14B—H14C···O12viii0.972.543.250 (7)130.2
1d
C11—H11A···O12x1.010 (14)2.546 (13)3.265 (2)127.9 (9)
C13—H13A···O8xi1.02 (2)2.59 (2)3.572 (2)161.5 (14)
C13—H13B···O8xii1.001 (19)2.499 (18)3.242 (2)130.7 (14)
C14—H14A···O8xiii0.974 (13)2.601 (12)3.395 (2)138.8 (10)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+y, -x, z-1/3; (iv) -y+1, x-y+1, z+1/3; (v) x, y, z-1; (vi) -y+1, x-y, z+1/3; (vii) -x+y, -x, z+2/3; (viii) -x+y, -x+1, z-1/3; (ix) -x+y+1, -x+1, z+2/3; (x) -x+1, y+1/2, -z+1/2; (xi) -x+3/2, y-1/2, z; (xii) x, y-1, z; (xiii) -x+1/2, y-1/2, z.
Selected crystallographic structural parameters (Å, °) of 4-halobenzamides 1a1d top
EntryAmideN—C(O)CONC(O) τNC(O) χNCC(O) τ
11a (R = I)1.3571.23412.9019.9943.77
21b (R = Br)1.3451.2300.188.2874.30
31c (R = Cl)1.3891.2241.350.8962.54
41d (R = F)1.3541.2366.697.8157.28
5Benzamide1.3421.2650.020.0725.66
6Formamide1.3491.1930.00.00.0
Entries 1–4 are from this study and are X-ray structures, entry 5 is from Johansson & van de Streek (2016) and is an X-ray structure, and entry 6 is from Greenberg & Venanzi (1993) and are calculated values.
Resonance energies of amides 1a–1e calculated using the COSNAR methoda top
Entry1ER (kcal mol-1)
11a (R = I)15.3
21b (R = Br)15.2
31c (R = Cl)15.2
41d (R = F)15.0
51e (R = H)15.3
Note: (a) representative data on twisted amides: Szostak et al. (2016); representative data on bridged lactams: Greenberg et al. (1996) and Szostak et al. (2015).
Resonance energies of amides 2a–2e calculated using the COSNAR methoda top
Entry2ER (kcal mol-1)
12a (R = I)15.5
22b (R = Br)15.4
32c (R = Cl)15.5
42d (R = F)15.1
52e (R = H)15.5
Note: (a) representative data on twisted amides: Szostak et al. (2016); representative data on bridged lactams: Greenberg et al. (1996) and Szostak et al. (2015).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds