Download citation
Download citation
link to html
Unnatural cyclic α-amino acids play an important role in the search for bio­logically active compounds and macromolecules. Enanti­omers of natural amino acids with a D configuration are not naturally encoded, but can be chemically synthesized. The crystal structures of two enanti­omers obtained by a method of stereoselective synthesis, namely (5R,8S)-8-tert-butyl-7-meth­oxy-8-methyl-9-oxa-6-aza­spiro­[4.5]decane-2,10-dione, (1), and (5S,8R)-8-tert-butyl-7-meth­oxy-8-methyl-9-oxa-6-aza­spiro­[4.5]decane-2,10-dione, (2), both C14H21NO4, were determined by X-ray diffraction. Both enanti­omers crystallize isostructurally in the space group P21, with one mol­ecule in the asymmetric unit and with the same packing motif. The crystal structures are stabilized by C—H...O hydrogen bonds, resulting in the formation of chains along the [100] and [010] directions. The conformation of the 3,6-di­hydro-2H-1,4-oxazin-2-one fragment was compared with other crystal structures possessing this heterocyclic moiety. The comparison showed that the title compounds are not exceptional among structures containing the 3,6-di­hydro-2H-1,4-oxazin-2-one fragment. The planar moiety was more frequently observed in derivatives in which this fragment was not condensed with other rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617009068/fn3237sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009068/fn32371sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009068/fn32372sup3.hkl
Contains datablock 2

CCDC references: 1556628; 1556627

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (1); CrysAlis PRO (Agilent, 2014) for (2). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (1); CrysAlis PRO (Agilent, 2014) for (2). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (1); CrysAlis PRO (Agilent, 2014) for (2). For both compounds, program(s) used to refine structure: SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(1) (5R,8S)-8-tert-Butyl-7-methoxy-8-methyl-9-oxa-6-azaspiro[4.5]decan-2,10-dione top
Crystal data top
C14H21NO4F(000) = 288
Mr = 267.32Dx = 1.218 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 7013 reflections
a = 8.7136 (2) Åθ = 3.4–71.3°
b = 6.3606 (2) ŵ = 0.73 mm1
c = 13.3613 (3) ÅT = 293 K
β = 100.220 (2)°Block, colourless
V = 728.78 (3) Å30.3 × 0.2 × 0.15 mm
Z = 2
Data collection top
Rigaku Oxford Diffraction SuperNova Dual Source
diffractometer with an Atlas detector
2784 independent reflections
Radiation source: micro-focus sealed X-ray tube2687 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.3756 pixels mm-1θmax = 71.3°, θmin = 3.4°
ω scansh = 1010
Absorption correction: gaussian
(CrysAlis PRO (Rigaku OD, 2015)
k = 77
Tmin = 0.67, Tmax = 0.789l = 1616
9732 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0495P)2 + 0.0486P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.087Δρmax = 0.14 e Å3
S = 1.04Δρmin = 0.12 e Å3
2784 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
178 parametersExtinction coefficient: 0.036 (4)
1 restraintAbsolute structure: Flack x determined using 1165 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.05 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.7582 (2)0.0099 (3)0.77356 (13)0.0518 (4)
O90.91198 (16)0.1048 (2)0.80511 (11)0.0625 (4)
C101.0452 (2)0.0238 (3)0.78789 (14)0.0540 (4)
C51.04114 (19)0.1531 (3)0.71098 (12)0.0469 (4)
N60.88669 (16)0.2157 (2)0.65914 (10)0.0450 (3)
C70.76752 (19)0.1439 (3)0.68780 (12)0.0457 (4)
C120.6530 (3)0.1922 (5)0.73256 (19)0.0778 (7)
H12A0.65870.29930.78370.117*
H12B0.68630.24910.67340.117*
H12C0.54750.14340.71470.117*
C130.7148 (2)0.0970 (4)0.87027 (14)0.0623 (6)
C140.7210 (4)0.0686 (7)0.9554 (2)0.1028 (11)
H14A0.70220.00151.01640.154*
H14B0.8220.13360.96790.154*
H14C0.64270.17370.93480.154*
C150.8297 (3)0.2731 (6)0.90700 (19)0.0885 (9)
H15A0.79870.34280.9640.133*
H15B0.83060.37230.8530.133*
H15C0.93220.2150.92720.133*
C160.5514 (3)0.1913 (6)0.8486 (2)0.0871 (9)
H16A0.54490.29180.79450.131*
H16B0.53010.25990.90870.131*
H16C0.47640.08160.82920.131*
O70.62354 (14)0.1949 (3)0.63816 (9)0.0572 (4)
C110.6178 (2)0.3215 (4)0.54812 (15)0.0606 (5)
H11A0.66510.24620.49920.091*
H11B0.67340.45050.56560.091*
H11C0.51120.35230.51950.091*
O101.16585 (18)0.0998 (3)0.83021 (13)0.0809 (6)
C41.1303 (2)0.3520 (3)0.75557 (15)0.0578 (5)
H4A1.06470.44050.78950.069*
H4B1.22330.31460.80360.069*
C31.1724 (3)0.4627 (4)0.66307 (18)0.0701 (6)
H3A1.09420.5670.63710.084*
H3B1.27280.53180.68040.084*
C21.1780 (2)0.2925 (4)0.58571 (15)0.0579 (5)
C11.1331 (2)0.0863 (4)0.62779 (14)0.0533 (4)
H1A1.22480.00530.65640.064*
H1B1.06870.00360.57550.064*
O21.2125 (2)0.3169 (4)0.50296 (14)0.0856 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0493 (9)0.0616 (11)0.0453 (9)0.0009 (8)0.0106 (7)0.0078 (8)
O90.0619 (8)0.0647 (9)0.0644 (8)0.0124 (7)0.0206 (6)0.0245 (7)
C100.0542 (10)0.0616 (11)0.0472 (9)0.0104 (9)0.0117 (7)0.0076 (8)
C50.0457 (8)0.0531 (10)0.0416 (8)0.0030 (7)0.0067 (6)0.0033 (7)
N60.0459 (7)0.0483 (8)0.0401 (7)0.0012 (6)0.0058 (5)0.0033 (6)
C70.0468 (9)0.0512 (10)0.0382 (8)0.0016 (7)0.0054 (6)0.0003 (7)
C120.0902 (16)0.0731 (15)0.0710 (13)0.0245 (14)0.0168 (12)0.0070 (13)
C130.0527 (9)0.0942 (16)0.0414 (8)0.0061 (11)0.0124 (7)0.0066 (10)
C140.105 (2)0.149 (3)0.0607 (14)0.022 (2)0.0338 (14)0.0396 (18)
C150.0818 (15)0.124 (2)0.0620 (13)0.0082 (16)0.0184 (11)0.0339 (15)
C160.0619 (12)0.132 (3)0.0710 (14)0.0202 (15)0.0216 (10)0.0025 (16)
O70.0456 (6)0.0755 (9)0.0488 (7)0.0002 (6)0.0041 (5)0.0097 (6)
C110.0565 (10)0.0712 (13)0.0504 (10)0.0036 (10)0.0007 (8)0.0116 (10)
O100.0643 (9)0.1032 (13)0.0752 (10)0.0257 (9)0.0124 (7)0.0369 (10)
C40.0520 (9)0.0655 (13)0.0539 (10)0.0045 (9)0.0037 (7)0.0103 (9)
C30.0709 (13)0.0628 (13)0.0773 (15)0.0144 (11)0.0149 (11)0.0001 (11)
C20.0480 (9)0.0673 (12)0.0604 (11)0.0052 (9)0.0148 (8)0.0107 (10)
C10.0525 (9)0.0604 (11)0.0482 (9)0.0062 (9)0.0125 (7)0.0028 (8)
O20.0998 (12)0.0915 (12)0.0765 (10)0.0156 (11)0.0460 (9)0.0243 (10)
Geometric parameters (Å, º) top
C8—O91.462 (2)C15—H15A0.96
C8—C121.519 (3)C15—H15B0.96
C8—C71.520 (2)C15—H15C0.96
C8—C131.565 (3)C16—H16A0.96
O9—C101.327 (3)C16—H16B0.96
C10—O101.203 (2)C16—H16C0.96
C10—C51.520 (3)O7—C111.441 (2)
C5—N61.456 (2)C11—H11A0.96
C5—C11.541 (2)C11—H11B0.96
C5—C41.548 (3)C11—H11C0.96
N6—C71.255 (2)C4—C31.523 (3)
C7—O71.351 (2)C4—H4A0.97
C12—H12A0.96C4—H4B0.97
C12—H12B0.96C3—C21.503 (3)
C12—H12C0.96C3—H3A0.97
C13—C151.524 (4)C3—H3B0.97
C13—C161.525 (3)C2—O21.206 (2)
C13—C141.544 (4)C2—C11.506 (3)
C14—H14A0.96C1—H1A0.97
C14—H14B0.96C1—H1B0.97
C14—H14C0.96
O9—C8—C12104.63 (19)C13—C15—H15B109.5
O9—C8—C7108.34 (14)H15A—C15—H15B109.5
C12—C8—C7109.20 (16)C13—C15—H15C109.5
O9—C8—C13106.55 (14)H15A—C15—H15C109.5
C12—C8—C13114.24 (17)H15B—C15—H15C109.5
C7—C8—C13113.32 (18)C13—C16—H16A109.5
C10—O9—C8125.09 (15)C13—C16—H16B109.5
O10—C10—O9118.72 (19)H16A—C16—H16B109.5
O10—C10—C5121.94 (18)C13—C16—H16C109.5
O9—C10—C5119.24 (16)H16A—C16—H16C109.5
N6—C5—C10115.66 (15)H16B—C16—H16C109.5
N6—C5—C1106.71 (13)C7—O7—C11115.83 (14)
C10—C5—C1109.34 (15)O7—C11—H11A109.5
N6—C5—C4108.54 (15)O7—C11—H11B109.5
C10—C5—C4113.26 (15)H11A—C11—H11B109.5
C1—C5—C4102.30 (15)O7—C11—H11C109.5
C7—N6—C5120.02 (15)H11A—C11—H11C109.5
N6—C7—O7120.63 (16)H11B—C11—H11C109.5
N6—C7—C8128.47 (15)C3—C4—C5104.02 (15)
O7—C7—C8110.85 (14)C3—C4—H4A111
C8—C12—H12A109.5C5—C4—H4A111
C8—C12—H12B109.5C3—C4—H4B111
H12A—C12—H12B109.5C5—C4—H4B111
C8—C12—H12C109.5H4A—C4—H4B109
H12A—C12—H12C109.5C2—C3—C4105.49 (19)
H12B—C12—H12C109.5C2—C3—H3A110.6
C15—C13—C16108.0 (3)C4—C3—H3A110.6
C15—C13—C14109.2 (2)C2—C3—H3B110.6
C16—C13—C14108.5 (2)C4—C3—H3B110.6
C15—C13—C8110.12 (16)H3A—C3—H3B108.8
C16—C13—C8111.65 (17)O2—C2—C3125.6 (2)
C14—C13—C8109.3 (2)O2—C2—C1125.3 (2)
C13—C14—H14A109.5C3—C2—C1109.15 (16)
C13—C14—H14B109.5C2—C1—C5103.42 (16)
H14A—C14—H14B109.5C2—C1—H1A111.1
C13—C14—H14C109.5C5—C1—H1A111.1
H14A—C14—H14C109.5C2—C1—H1B111.1
H14B—C14—H14C109.5C5—C1—H1B111.1
C13—C15—H15A109.5H1A—C1—H1B109
C12—C8—O9—C10137.0 (2)O9—C8—C13—C1563.4 (2)
C7—C8—O9—C1020.6 (3)C12—C8—C13—C15178.4 (2)
C13—C8—O9—C10101.6 (2)C7—C8—C13—C1555.7 (2)
C8—O9—C10—O10169.22 (19)O9—C8—C13—C16176.6 (2)
C8—O9—C10—C514.3 (3)C12—C8—C13—C1661.6 (3)
O10—C10—C5—N6174.52 (19)C7—C8—C13—C1664.4 (3)
O9—C10—C5—N61.8 (3)O9—C8—C13—C1456.6 (2)
O10—C10—C5—C154.1 (3)C12—C8—C13—C1458.4 (2)
O9—C10—C5—C1122.26 (19)C7—C8—C13—C14175.61 (19)
O10—C10—C5—C459.3 (3)N6—C7—O7—C114.3 (3)
O9—C10—C5—C4124.4 (2)C8—C7—O7—C11173.34 (17)
C10—C5—N6—C78.8 (2)N6—C5—C4—C373.95 (18)
C1—C5—N6—C7130.67 (17)C10—C5—C4—C3156.16 (17)
C4—C5—N6—C7119.74 (18)C1—C5—C4—C338.61 (19)
C5—N6—C7—O7177.67 (15)C5—C4—C3—C225.7 (2)
C5—N6—C7—C80.5 (3)C4—C3—C2—O2177.5 (2)
O9—C8—C7—N613.4 (3)C4—C3—C2—C12.6 (2)
C12—C8—C7—N6126.8 (2)O2—C2—C1—C5158.34 (19)
C13—C8—C7—N6104.6 (2)C3—C2—C1—C521.5 (2)
O9—C8—C7—O7164.06 (15)N6—C5—C1—C277.38 (18)
C12—C8—C7—O750.7 (2)C10—C5—C1—C2156.85 (15)
C13—C8—C7—O777.93 (19)C4—C5—C1—C236.53 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O2i0.962.583.476 (3)155
C12—H12B···O2ii0.962.693.548 (3)149
C15—H15A···O10iii0.962.743.596 (3)149
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+2.
(2) (5S,8R)-8-tert-Butyl-7-methoxy-8-methyl-9-oxa-6-azaspiro[4.5]decane-2,10-dione top
Crystal data top
C14H21NO4F(000) = 288
Mr = 267.32Dx = 1.224 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2829 reflections
a = 8.7007 (3) Åθ = 3.1–28.5°
b = 6.3466 (2) ŵ = 0.09 mm1
c = 13.3458 (4) ÅT = 293 K
β = 100.243 (3)°Block, colourless
V = 725.21 (4) Å30.34 × 0.27 × 0.1 mm
Z = 2
Data collection top
Rigaku Oxford Diffraction SuperNova Dual Source
diffractometer with an Atlas detector
3396 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2235 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.3756 pixels mm-1θmax = 28.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 88
Tmin = 0.800, Tmax = 1l = 1717
9804 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.0692P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.12 e Å3
3396 reflectionsΔρmin = 0.15 e Å3
172 parametersAbsolute structure: Flack x determined using 774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
1 restraintAbsolute structure parameter: 0.5 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O90.5881 (3)0.4090 (4)0.69474 (18)0.0612 (7)
O100.3340 (3)0.4043 (5)0.6699 (2)0.0793 (9)
O20.2874 (3)0.0121 (5)0.9970 (2)0.0829 (9)
O70.8769 (2)0.1094 (4)0.86184 (15)0.0565 (6)
N60.6134 (3)0.0889 (4)0.84076 (18)0.0447 (6)
C70.7325 (4)0.1604 (5)0.8123 (2)0.0456 (8)
C80.7420 (4)0.3133 (6)0.7262 (2)0.0503 (8)
C100.4541 (4)0.3267 (6)0.7122 (2)0.0540 (9)
C50.4587 (3)0.1519 (5)0.7888 (2)0.0449 (8)
C10.3674 (4)0.2171 (6)0.8721 (2)0.0527 (8)
H1A0.43220.29980.92440.063*
H1B0.27560.29870.84370.063*
C130.7855 (4)0.2079 (7)0.6300 (2)0.0624 (10)
C160.9484 (4)0.1132 (9)0.6517 (3)0.0869 (14)
H16A1.0230.22150.67540.13*
H16B0.97230.05220.59040.13*
H16C0.95280.00610.70290.13*
C20.3223 (4)0.0127 (7)0.9141 (3)0.0556 (9)
C140.6703 (5)0.0321 (9)0.5926 (3)0.0847 (14)
H14A0.56630.08850.57840.127*
H14B0.67620.07460.64420.127*
H14C0.69570.02850.53170.127*
C150.7788 (6)0.3716 (10)0.5444 (3)0.0989 (17)
H15A0.67630.43270.52990.148*
H15B0.80140.30420.48430.148*
H15C0.85450.48010.56550.148*
C40.3693 (4)0.0481 (6)0.7447 (3)0.0585 (10)
H4A0.27580.01090.69670.07*
H4B0.43470.13670.71050.07*
C120.8465 (5)0.4980 (7)0.7669 (3)0.0764 (12)
H12A0.95120.44860.78950.115*
H12B0.80830.56160.82290.115*
H12C0.84590.60040.71380.115*
C30.3281 (5)0.1588 (6)0.8369 (3)0.0695 (11)
H3A0.22770.22860.81970.083*
H3B0.40670.26280.8630.083*
C110.8824 (4)0.0170 (7)0.9517 (2)0.0601 (9)
H11A0.98920.04490.98140.09*
H11B0.8290.14780.93390.09*
H11C0.83250.05710.99990.09*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O90.0588 (15)0.0650 (15)0.0630 (14)0.0114 (13)0.0191 (12)0.0269 (12)
O100.0634 (17)0.101 (2)0.0735 (17)0.0297 (16)0.0121 (13)0.0361 (16)
O20.097 (2)0.0891 (19)0.0738 (17)0.0140 (17)0.0450 (16)0.0233 (16)
O70.0439 (12)0.0766 (16)0.0467 (12)0.0005 (12)0.0023 (10)0.0106 (12)
N60.0424 (15)0.0513 (16)0.0401 (13)0.0000 (13)0.0061 (11)0.0029 (12)
C70.0469 (19)0.051 (2)0.0376 (15)0.0015 (16)0.0029 (14)0.0012 (15)
C80.0426 (18)0.064 (2)0.0443 (17)0.0006 (17)0.0082 (14)0.0079 (16)
C100.053 (2)0.064 (2)0.0455 (18)0.0091 (19)0.0114 (16)0.0072 (17)
C50.0441 (17)0.0508 (19)0.0391 (15)0.0016 (15)0.0056 (13)0.0031 (15)
C10.0512 (19)0.062 (2)0.0462 (18)0.0065 (18)0.0130 (15)0.0041 (17)
C130.052 (2)0.095 (3)0.0408 (17)0.005 (2)0.0110 (15)0.0073 (19)
C160.059 (2)0.135 (4)0.070 (2)0.020 (3)0.0202 (19)0.002 (3)
C20.0433 (18)0.065 (2)0.060 (2)0.0073 (17)0.0136 (16)0.0103 (19)
C140.083 (3)0.112 (4)0.060 (2)0.005 (3)0.017 (2)0.032 (3)
C150.101 (3)0.143 (5)0.059 (2)0.022 (3)0.032 (2)0.038 (3)
C40.052 (2)0.067 (3)0.054 (2)0.0018 (18)0.0031 (16)0.0098 (18)
C120.089 (3)0.073 (3)0.068 (2)0.026 (2)0.016 (2)0.007 (2)
C30.071 (3)0.063 (2)0.075 (3)0.011 (2)0.013 (2)0.001 (2)
C110.052 (2)0.074 (2)0.0495 (18)0.0027 (19)0.0024 (15)0.0119 (19)
Geometric parameters (Å, º) top
O9—C101.335 (4)C16—H16B0.96
O9—C81.462 (4)C16—H16C0.96
O10—C101.202 (4)C2—C31.506 (5)
O2—C21.210 (4)C14—H14A0.96
O7—C71.351 (3)C14—H14B0.96
O7—C111.437 (4)C14—H14C0.96
N6—C71.251 (4)C15—H15A0.96
N6—C51.456 (4)C15—H15B0.96
C7—C81.517 (4)C15—H15C0.96
C8—C121.524 (5)C4—C31.515 (5)
C8—C131.553 (5)C4—H4A0.97
C10—C51.504 (5)C4—H4B0.97
C5—C11.534 (4)C12—H12A0.96
C5—C41.549 (5)C12—H12B0.96
C1—C21.493 (5)C12—H12C0.96
C1—H1A0.97C3—H3A0.97
C1—H1B0.97C3—H3B0.97
C13—C161.519 (5)C11—H11A0.96
C13—C141.523 (6)C11—H11B0.96
C13—C151.538 (6)C11—H11C0.96
C16—H16A0.96
C10—O9—C8124.8 (3)O2—C2—C1125.6 (4)
C7—O7—C11115.6 (2)O2—C2—C3125.2 (4)
C7—N6—C5120.1 (3)C1—C2—C3109.2 (3)
N6—C7—O7120.9 (3)C13—C14—H14A109.5
N6—C7—C8128.5 (3)C13—C14—H14B109.5
O7—C7—C8110.7 (3)H14A—C14—H14B109.5
O9—C8—C7108.2 (2)C13—C14—H14C109.5
O9—C8—C12103.9 (3)H14A—C14—H14C109.5
C7—C8—C12109.4 (3)H14B—C14—H14C109.5
O9—C8—C13106.7 (2)C13—C15—H15A109.5
C7—C8—C13113.9 (3)C13—C15—H15B109.5
C12—C8—C13114.1 (3)H15A—C15—H15B109.5
O10—C10—O9118.1 (3)C13—C15—H15C109.5
O10—C10—C5122.5 (3)H15A—C15—H15C109.5
O9—C10—C5119.3 (3)H15B—C15—H15C109.5
N6—C5—C10115.9 (3)C3—C4—C5104.3 (3)
N6—C5—C1106.4 (2)C3—C4—H4A110.9
C10—C5—C1109.8 (3)C5—C4—H4A110.9
N6—C5—C4108.4 (3)C3—C4—H4B110.9
C10—C5—C4113.3 (3)C5—C4—H4B110.9
C1—C5—C4101.9 (3)H4A—C4—H4B108.9
C2—C1—C5104.0 (3)C8—C12—H12A109.5
C2—C1—H1A111C8—C12—H12B109.5
C5—C1—H1A111H12A—C12—H12B109.5
C2—C1—H1B111C8—C12—H12C109.5
C5—C1—H1B111H12A—C12—H12C109.5
H1A—C1—H1B109H12B—C12—H12C109.5
C16—C13—C14108.1 (4)C2—C3—C4105.2 (3)
C16—C13—C15108.6 (3)C2—C3—H3A110.7
C14—C13—C15108.4 (3)C4—C3—H3A110.7
C16—C13—C8111.7 (3)C2—C3—H3B110.7
C14—C13—C8110.1 (3)C4—C3—H3B110.7
C15—C13—C8109.9 (4)H3A—C3—H3B108.8
C13—C16—H16A109.5O7—C11—H11A109.5
C13—C16—H16B109.5O7—C11—H11B109.5
H16A—C16—H16B109.5H11A—C11—H11B109.5
C13—C16—H16C109.5O7—C11—H11C109.5
H16A—C16—H16C109.5H11A—C11—H11C109.5
H16B—C16—H16C109.5H11B—C11—H11C109.5
C5—N6—C7—O7177.7 (2)O10—C10—C5—C459.6 (5)
C5—N6—C7—C80.0 (5)O9—C10—C5—C4124.7 (3)
C11—O7—C7—N64.4 (4)N6—C5—C1—C277.4 (3)
C11—O7—C7—C8173.7 (3)C10—C5—C1—C2156.5 (3)
C10—O9—C8—C721.1 (4)C4—C5—C1—C236.1 (3)
C10—O9—C8—C12137.3 (3)O9—C8—C13—C16176.6 (3)
C10—O9—C8—C13101.8 (4)C7—C8—C13—C1664.0 (4)
N6—C7—C8—O913.9 (5)C12—C8—C13—C1662.5 (4)
O7—C7—C8—O9163.9 (2)O9—C8—C13—C1463.3 (4)
N6—C7—C8—C12126.5 (4)C7—C8—C13—C1456.0 (4)
O7—C7—C8—C1251.4 (4)C12—C8—C13—C14177.5 (3)
N6—C7—C8—C13104.6 (4)O9—C8—C13—C1556.0 (4)
O7—C7—C8—C1377.6 (3)C7—C8—C13—C15175.3 (3)
C8—O9—C10—O10169.3 (3)C12—C8—C13—C1558.2 (4)
C8—O9—C10—C514.8 (5)C5—C1—C2—O2158.6 (3)
C7—N6—C5—C108.6 (4)C5—C1—C2—C321.1 (3)
C7—N6—C5—C1131.0 (3)N6—C5—C4—C373.6 (3)
C7—N6—C5—C4120.0 (3)C10—C5—C4—C3156.3 (3)
O10—C10—C5—N6174.2 (3)C1—C5—C4—C338.4 (3)
O9—C10—C5—N61.5 (4)O2—C2—C3—C4177.2 (3)
O10—C10—C5—C153.6 (5)C1—C2—C3—C43.1 (4)
O9—C10—C5—C1122.1 (3)C5—C4—C3—C225.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.962.573.468 (5)155
C14—H14C···O10ii0.962.693.589 (4)156
C12—H12B···O2iii0.962.723.549 (5)145
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds