Download citation
Download citation
link to html
The crystal structures of two new bimetallic uranyl–transition metal compounds with diglycolic acid [or 2-(carb­oxy­meth­oxy)acetic acid] have been hydro­thermally synthesized and structurally characterized via single-crystal X-ray diffraction. The compounds, namely catena-poly[[[tetra­aqua­manganese(II)]-μ-2,2′-oxydi­acetato-[dioxidouranium(VI)]-μ-2,2′-oxydi­acetato] dihydrate], {[MnU(C4H4O5)2O2(H2O)4]·2H2O}n, and catena-poly[[[tetra­aqua­cobalt(II)]-μ-2,2′-oxy­di­acetato-[dioxidouranium(VI)]-μ-2,2′-oxydi­acetato] dihydrate], {[CoU(C4H4O5)2O2(H2O)4]·2H2O}n, both crystallize in the triclinic space group P\overline{1}. These compounds form one-dimensional chains via alternating uranyl and transition metal building units. The chains then assemble into three-dimensional supra­molecular networks through several hydrogen bonds between water mol­ecules and diglycolate ligands. Luminescence measurements were conducted and no uranyl emission was observed in either compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617009263/fn3236sup1.cif
Contains datablocks compound_1, compound_2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009263/fn3236compound_1sup2.hkl
Contains datablock compound_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617009263/fn3236compound_2sup3.hkl
Contains datablock compound_2

CCDC references: 1557252; 1557251

Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

catena-Poly[[[tetraaquamanganese(II)]-µ-2,2'-oxydiacetato-[dioxidouranium(VI)]-µ-2,2'-oxydiacetato] dihydrate] (compound_1) top
Crystal data top
[MnU(C4H4O5)2O2(H2O)4]·2H2OZ = 1
Mr = 697.21F(000) = 329
Triclinic, P1Dx = 2.458 Mg m3
a = 6.997 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.185 (3) ÅCell parameters from 9945 reflections
c = 11.043 (3) Åθ = 3.3–29.6°
α = 106.356 (12)°µ = 9.35 mm1
β = 93.891 (10)°T = 100 K
γ = 115.130 (16)°Rod, yellow
V = 470.9 (3) Å30.20 × 0.13 × 0.08 mm
Data collection top
Bruker D8 Quest/Photon 100
diffractometer
2656 reflections with I > 2σ(I)
Radiation source: microfocus sealed tube, multilayer mirrorsRint = 0.031
ω scansθmax = 29.7°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 99
Tmin = 0.315, Tmax = 0.661k = 109
20833 measured reflectionsl = 1515
2656 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.011H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.028 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.0378P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2656 reflectionsΔρmax = 0.51 e Å3
148 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.50000.50000.50000.00443 (3)
Mn11.00001.00001.00000.00682 (6)
O10.31002 (19)0.3395 (2)0.57390 (12)0.0106 (2)
OW21.32207 (19)1.0815 (2)1.08513 (12)0.0106 (2)
O21.00113 (19)0.71391 (19)0.86352 (11)0.0098 (2)
OW11.1330 (2)1.1991 (2)0.87771 (12)0.0114 (2)
O30.7745 (2)0.6728 (2)0.69443 (12)0.0122 (2)
O40.75987 (19)0.33328 (19)0.54865 (11)0.0104 (2)
O50.57021 (19)0.08790 (19)0.24614 (11)0.0111 (2)
O60.4839 (2)0.1738 (2)0.34434 (12)0.0108 (2)
C10.8895 (2)0.6136 (3)0.75043 (15)0.0072 (3)
C20.8952 (3)0.4083 (3)0.67277 (15)0.0088 (3)
H2A1.04480.43920.66460.011*
H2B0.84020.29640.71470.011*
C30.7647 (3)0.1498 (3)0.45938 (15)0.0083 (3)
H3A0.73320.03260.49680.010*
H3B0.90920.19260.43820.010*
C40.5946 (2)0.0703 (3)0.33929 (15)0.0070 (3)
OW30.3221 (2)0.6470 (2)0.00954 (13)0.0119 (2)
HW2B1.364 (4)1.113 (4)1.159 (3)0.018*
HW2A1.425 (4)1.158 (4)1.065 (3)0.018*
HW1B1.196 (4)1.335 (5)0.915 (3)0.018*
HW1A1.208 (4)1.175 (4)0.830 (3)0.018*
HW3A0.373 (4)0.723 (4)0.068 (3)0.018*
HW3B0.232 (4)0.680 (4)0.032 (3)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00530 (4)0.00439 (4)0.00343 (4)0.00323 (3)0.00019 (3)0.00020 (3)
Mn10.00759 (14)0.00642 (14)0.00551 (14)0.00411 (12)0.00027 (11)0.00025 (12)
O10.0112 (5)0.0106 (5)0.0116 (5)0.0060 (4)0.0038 (4)0.0043 (4)
OW20.0086 (5)0.0146 (6)0.0068 (5)0.0051 (5)0.0002 (4)0.0021 (4)
O20.0113 (5)0.0096 (5)0.0064 (5)0.0062 (4)0.0022 (4)0.0013 (4)
OW10.0152 (5)0.0096 (6)0.0106 (5)0.0070 (5)0.0045 (5)0.0026 (4)
O30.0148 (5)0.0114 (5)0.0098 (5)0.0098 (5)0.0031 (4)0.0019 (4)
O40.0149 (5)0.0104 (5)0.0056 (5)0.0099 (5)0.0031 (4)0.0029 (4)
O50.0142 (5)0.0115 (5)0.0067 (5)0.0085 (5)0.0000 (4)0.0016 (4)
O60.0134 (5)0.0118 (5)0.0084 (5)0.0099 (5)0.0013 (4)0.0004 (4)
C10.0068 (6)0.0070 (6)0.0067 (6)0.0034 (5)0.0009 (5)0.0005 (5)
C20.0109 (7)0.0086 (7)0.0060 (6)0.0065 (6)0.0022 (5)0.0011 (5)
C30.0111 (7)0.0078 (7)0.0066 (6)0.0069 (6)0.0006 (5)0.0002 (5)
C40.0079 (6)0.0074 (6)0.0062 (6)0.0041 (5)0.0020 (5)0.0021 (5)
OW30.0123 (5)0.0107 (5)0.0115 (6)0.0066 (5)0.0006 (4)0.0006 (5)
Geometric parameters (Å, º) top
U1—O1i1.7715 (13)O2—C11.2536 (19)
U1—O11.7715 (13)OW1—HW1B0.84 (3)
U1—O3i2.3988 (14)OW1—HW1A0.81 (3)
U1—O32.3988 (14)O3—C11.258 (2)
U1—O42.6664 (13)O4—C31.4215 (19)
U1—O4i2.6664 (13)O4—C21.4283 (18)
U1—O62.4374 (15)O5—C41.238 (2)
U1—O6i2.4374 (15)O6—C41.2763 (19)
Mn1—O22.1835 (14)C1—C21.502 (2)
Mn1—O2ii2.1835 (14)C2—H2A0.9900
Mn1—OW1ii2.2053 (14)C2—H2B0.9900
Mn1—OW12.2053 (14)C3—C41.511 (2)
Mn1—OW2ii2.1417 (13)C3—H3A0.9900
Mn1—OW22.1417 (13)C3—H3B0.9900
OW2—HW2B0.78 (3)OW3—HW3A0.83 (3)
OW2—HW2A0.79 (3)OW3—HW3B0.81 (3)
O1i—U1—O1180.00 (8)O2ii—Mn1—OW1ii92.01 (6)
O1i—U1—O3i91.23 (6)OW2ii—Mn1—OW190.67 (5)
O1—U1—O3i88.77 (6)OW2—Mn1—OW189.33 (5)
O1i—U1—O388.76 (6)O2—Mn1—OW192.01 (6)
O1—U1—O391.24 (6)O2ii—Mn1—OW187.99 (6)
O3i—U1—O3180.0OW1ii—Mn1—OW1180.0
O1i—U1—O688.72 (6)Mn1—OW2—HW2B123.8 (19)
O1—U1—O691.28 (6)Mn1—OW2—HW2A122.6 (19)
O3i—U1—O663.74 (4)HW2B—OW2—HW2A102 (3)
O3—U1—O6116.26 (4)C1—O2—Mn1125.01 (11)
O1i—U1—O6i91.28 (6)Mn1—OW1—HW1B116.6 (17)
O1—U1—O6i88.72 (6)Mn1—OW1—HW1A121.6 (18)
O3i—U1—O6i116.26 (4)HW1B—OW1—HW1A105 (2)
O3—U1—O6i63.74 (4)C1—O3—U1134.41 (11)
O6—U1—O6i180.00 (6)C3—O4—C2112.86 (12)
O1i—U1—O490.18 (5)C3—O4—U1124.24 (9)
O1—U1—O489.82 (5)C2—O4—U1122.66 (9)
O3i—U1—O4121.89 (4)C4—O6—U1134.50 (10)
O3—U1—O458.11 (4)O2—C1—O3125.34 (15)
O6—U1—O458.23 (4)O2—C1—C2118.26 (14)
O6i—U1—O4121.77 (4)O3—C1—C2116.39 (14)
O1i—U1—O4i89.82 (5)O4—C2—C1106.18 (12)
O1—U1—O4i90.18 (5)O4—C2—H2A110.5
O3i—U1—O4i58.11 (4)C1—C2—H2A110.5
O3—U1—O4i121.89 (4)O4—C2—H2B110.5
O6—U1—O4i121.77 (4)C1—C2—H2B110.5
O6i—U1—O4i58.23 (4)H2A—C2—H2B108.7
O4—U1—O4i180.0O4—C3—C4107.21 (12)
OW2ii—Mn1—OW2180.0O4—C3—H3A110.3
OW2ii—Mn1—O294.72 (5)C4—C3—H3A110.3
OW2—Mn1—O285.28 (5)O4—C3—H3B110.3
OW2ii—Mn1—O2ii85.28 (5)C4—C3—H3B110.3
OW2—Mn1—O2ii94.72 (5)H3A—C3—H3B108.5
O2—Mn1—O2ii180.00 (6)O5—C4—O6125.20 (15)
OW2ii—Mn1—OW1ii89.33 (5)O5—C4—C3119.22 (14)
OW2—Mn1—OW1ii90.67 (5)O6—C4—C3115.57 (14)
O2—Mn1—OW1ii87.99 (6)HW3A—OW3—HW3B105 (3)
Mn1—O2—C1—O36.5 (2)O3—C1—C2—O40.21 (19)
Mn1—O2—C1—C2174.91 (10)C2—O4—C3—C4172.81 (13)
U1—O3—C1—O2167.43 (12)U1—O4—C3—C41.70 (17)
U1—O3—C1—C214.0 (2)U1—O6—C4—O5174.84 (11)
C3—O4—C2—C1174.44 (13)U1—O6—C4—C36.3 (2)
U1—O4—C2—C110.96 (16)O4—C3—C4—O5178.97 (14)
O2—C1—C2—O4178.47 (14)O4—C3—C4—O62.08 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O5iii0.81 (3)2.05 (3)2.8288 (19)162 (2)
OW1—HW1B···OW3iv0.84 (3)1.91 (3)2.750 (2)175 (3)
OW2—HW2A···OW3v0.79 (3)2.00 (3)2.788 (2)178 (3)
OW2—HW2B···O3ii0.78 (3)2.45 (3)2.8837 (19)117 (2)
OW2—HW2B···O6iv0.78 (3)2.01 (3)2.7872 (19)174 (3)
OW3—HW3A···O5vi0.83 (3)2.04 (3)2.8480 (19)165 (2)
OW3—HW3B···OW2vii0.81 (3)2.57 (3)3.000 (2)114 (2)
OW3—HW3B···O2vii0.81 (3)2.06 (3)2.8478 (19)165 (3)
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y+1, z; (vii) x1, y, z1.
catena-Poly[[[tetraaquacobalt(II)]-µ-2,2'-oxydiacetato-[dioxidouranium(VI)]-µ-2,2'-oxydiacetato] dihydrate] (compound_2) top
Crystal data top
[CoU(C4H4O5)2O2(H2O)4]·2H2OZ = 1
Mr = 701.20F(000) = 331
Triclinic, P1Dx = 2.473 Mg m3
a = 6.997 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.185 (3) ÅCell parameters from 9382 reflections
c = 11.043 (3) Åθ = 3.3–29.6°
α = 106.356 (12)°µ = 9.56 mm1
β = 93.891 (10)°T = 100 K
γ = 115.130 (16)°Block, yellow
V = 470.9 (3) Å30.26 × 0.21 × 0.19 mm
Data collection top
Bruker D8 Quest/Photon 100
diffractometer
2596 reflections with I > 2σ(I)
Radiation source: microfocus sealed tube, multilayer mirrorsRint = 0.048
ω scansθmax = 29.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 99
Tmin = 0.209, Tmax = 0.382k = 89
16760 measured reflectionsl = 1515
2596 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.0378P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.027
2596 reflectionsΔρmax = 0.78 e Å3
148 parametersΔρmin = 2.07 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.50000.50000.50000.00469 (4)
Co11.00001.00001.00000.00626 (8)
O10.3078 (3)0.3366 (3)0.57473 (16)0.0108 (3)
OW21.3095 (3)1.0786 (3)1.08379 (16)0.0099 (3)
O21.0003 (3)0.7221 (3)0.86811 (16)0.0096 (3)
OW11.1256 (3)1.1923 (3)0.88058 (16)0.0109 (3)
O30.7765 (3)0.6792 (3)0.69554 (16)0.0125 (3)
O40.7624 (3)0.3373 (3)0.55069 (15)0.0106 (3)
O50.5763 (3)0.0853 (3)0.24531 (15)0.0116 (3)
O60.4832 (3)0.1711 (3)0.34431 (17)0.0119 (3)
C10.8910 (3)0.6208 (3)0.7536 (2)0.0078 (4)
C20.8986 (3)0.4146 (4)0.6762 (2)0.0092 (4)
H2A1.04860.44660.66840.011*
H2B0.84430.30320.71850.011*
C30.7684 (4)0.1539 (4)0.4610 (2)0.0087 (4)
H3A0.73780.03700.49860.010*
H3B0.91320.19790.44020.010*
C40.5975 (3)0.0716 (3)0.3393 (2)0.0074 (4)
OW30.3256 (3)0.6502 (3)0.00995 (17)0.0120 (3)
HW2B1.345 (6)1.113 (6)1.162 (4)0.018*
HW2A1.420 (6)1.160 (6)1.065 (3)0.018*
HW1B1.190 (6)1.331 (6)0.917 (3)0.018*
HW1A1.194 (5)1.163 (6)0.831 (3)0.018*
HW3A0.381 (6)0.735 (6)0.071 (4)0.018*
HW3B0.238 (6)0.686 (6)0.032 (4)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00538 (6)0.00511 (6)0.00354 (6)0.00367 (4)0.00018 (4)0.00028 (4)
Co10.00654 (17)0.00646 (18)0.00524 (17)0.00403 (15)0.00014 (14)0.00007 (14)
O10.0124 (7)0.0115 (7)0.0108 (7)0.0074 (6)0.0033 (6)0.0037 (6)
OW20.0080 (7)0.0135 (8)0.0065 (7)0.0049 (6)0.0003 (5)0.0015 (6)
O20.0110 (7)0.0105 (8)0.0064 (7)0.0069 (6)0.0012 (6)0.0007 (6)
OW10.0136 (7)0.0093 (8)0.0100 (7)0.0062 (6)0.0038 (6)0.0021 (6)
O30.0156 (8)0.0127 (8)0.0094 (7)0.0111 (6)0.0025 (6)0.0016 (6)
O40.0150 (7)0.0108 (7)0.0056 (7)0.0099 (6)0.0031 (6)0.0028 (6)
O50.0140 (7)0.0127 (8)0.0077 (7)0.0090 (7)0.0006 (6)0.0013 (6)
O60.0134 (7)0.0147 (8)0.0090 (7)0.0103 (7)0.0007 (6)0.0007 (6)
C10.0066 (8)0.0086 (9)0.0074 (9)0.0038 (7)0.0008 (7)0.0013 (7)
C20.0107 (9)0.0100 (9)0.0064 (9)0.0070 (8)0.0019 (7)0.0006 (7)
C30.0101 (9)0.0086 (9)0.0074 (9)0.0067 (8)0.0004 (7)0.0005 (7)
C40.0085 (9)0.0080 (9)0.0068 (9)0.0048 (7)0.0024 (7)0.0023 (7)
OW30.0122 (7)0.0113 (8)0.0119 (8)0.0073 (6)0.0002 (6)0.0011 (6)
Geometric parameters (Å, º) top
U1—O1i1.7953 (17)O2—C11.262 (3)
U1—O11.7953 (17)OW1—HW1B0.85 (4)
U1—O3i2.4115 (18)OW1—HW1A0.79 (4)
U1—O32.4115 (18)O3—C11.263 (3)
U1—O42.6649 (17)O4—C31.427 (3)
U1—O4i2.6649 (17)O4—C21.441 (3)
U1—O62.4502 (19)O5—C41.244 (3)
U1—O6i2.4502 (19)O6—C41.274 (3)
Co1—O22.1151 (18)C1—C21.512 (3)
Co1—O2ii2.1151 (18)C2—H2A0.9900
Co1—OW1ii2.1386 (18)C2—H2B0.9900
Co1—OW12.1386 (18)C3—C41.523 (3)
Co1—OW2ii2.0638 (17)C3—H3A0.9900
Co1—OW22.0638 (17)C3—H3B0.9900
OW2—HW2B0.82 (4)OW3—HW3A0.88 (4)
OW2—HW2A0.83 (4)OW3—HW3B0.81 (4)
O1i—U1—O1180.00 (11)O2ii—Co1—OW1ii92.28 (7)
O1i—U1—O3i91.69 (7)OW2ii—Co1—OW189.62 (7)
O1—U1—O3i88.31 (7)OW2—Co1—OW190.38 (7)
O1i—U1—O388.31 (7)O2—Co1—OW192.28 (7)
O1—U1—O391.69 (7)O2ii—Co1—OW187.72 (7)
O3i—U1—O3180.0OW1ii—Co1—OW1180.00 (5)
O1i—U1—O689.18 (7)Co1—OW2—HW2B120 (2)
O1—U1—O690.82 (7)Co1—OW2—HW2A123 (2)
O3i—U1—O663.10 (6)HW2B—OW2—HW2A103 (3)
O3—U1—O6116.90 (6)C1—O2—Co1125.81 (15)
O1i—U1—O6i90.82 (7)Co1—OW1—HW1B117 (2)
O1—U1—O6i89.18 (7)Co1—OW1—HW1A121 (3)
O3i—U1—O6i116.90 (6)HW1B—OW1—HW1A107 (3)
O3—U1—O6i63.10 (6)C1—O3—U1134.13 (15)
O6—U1—O6i180.00 (8)C3—O4—C2113.26 (16)
O1i—U1—O490.23 (7)C3—O4—U1123.78 (12)
O1—U1—O489.77 (7)C2—O4—U1122.74 (12)
O3i—U1—O4121.71 (5)C4—O6—U1133.98 (15)
O3—U1—O458.29 (6)O2—C1—O3125.4 (2)
O6—U1—O458.68 (6)O2—C1—C2118.53 (19)
O6i—U1—O4121.32 (6)O3—C1—C2116.11 (19)
O1i—U1—O4i89.77 (7)O4—C2—C1106.18 (17)
O1—U1—O4i90.23 (7)O4—C2—H2A110.5
O3i—U1—O4i58.29 (5)C1—C2—H2A110.5
O3—U1—O4i121.71 (6)O4—C2—H2B110.5
O6—U1—O4i121.31 (6)C1—C2—H2B110.5
O6i—U1—O4i58.68 (6)H2A—C2—H2B108.7
O4—U1—O4i180.00 (5)O4—C3—C4107.73 (17)
OW2ii—Co1—OW2180.0O4—C3—H3A110.2
OW2ii—Co1—O294.34 (7)C4—C3—H3A110.2
OW2—Co1—O285.66 (7)O4—C3—H3B110.2
OW2ii—Co1—O2ii85.66 (7)C4—C3—H3B110.2
OW2—Co1—O2ii94.34 (7)H3A—C3—H3B108.5
O2—Co1—O2ii180.00 (9)O5—C4—O6125.1 (2)
OW2ii—Co1—OW1ii90.38 (7)O5—C4—C3119.47 (19)
OW2—Co1—OW1ii89.62 (7)O6—C4—C3115.41 (18)
O2—Co1—OW1ii87.72 (7)HW3A—OW3—HW3B103 (3)
Co1—O2—C1—O36.0 (3)O3—C1—C2—O40.7 (3)
Co1—O2—C1—C2175.44 (14)C2—O4—C3—C4172.88 (17)
U1—O3—C1—O2165.78 (16)U1—O4—C3—C41.8 (2)
U1—O3—C1—C215.6 (3)U1—O6—C4—O5172.96 (16)
C3—O4—C2—C1174.25 (17)U1—O6—C4—C38.2 (3)
U1—O4—C2—C111.0 (2)O4—C3—C4—O5178.09 (19)
O2—C1—C2—O4179.37 (19)O4—C3—C4—O63.0 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O5iii0.79 (4)2.07 (4)2.833 (2)161 (3)
OW1—HW1B···OW3iv0.85 (4)1.95 (4)2.804 (3)176 (3)
OW2—HW2A···OW3v0.83 (4)1.99 (4)2.817 (3)177 (3)
OW2—HW2B···O3ii0.82 (4)2.32 (4)2.833 (2)122 (3)
OW2—HW2B···O6iv0.82 (4)2.02 (4)2.821 (2)166 (3)
OW3—HW3A···O5vi0.88 (4)2.00 (4)2.849 (3)165 (3)
OW3—HW3B···OW2vii0.81 (4)2.55 (4)3.013 (3)118 (3)
OW3—HW3B···O2vii0.81 (4)2.08 (4)2.870 (3)166 (4)
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y+1, z; (vii) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds