Download citation
Download citation
link to html
The ternary phase hexa­cerium tricosa­cadmium telluride, Ce6Cd23Te, was synthesized by a high-temperature reaction of the elements in sealed Nb ampoules and was structurally characterized by powder and single-crystal X-ray diffraction. The structure, established from single-crystal X-ray diffraction methods, is isopointal with the Zr6Zn23Si structure type (Pearson symbol cF120, cubic space group Fm\overline{3}m), a filled version of the Th6Mn23 structure with the same space group and Pearson symbol cF116. Though no Cd-containing rare-earth metal binaries are known to form with this structure, it appears that the addition of small amounts of a p-block element allows the formation of such inter­stitially stabilized ternary compounds. Temperature-dependent direct current (dc) magnetization measurements suggest local-moment magnetism arising from the Ce3+ ground state, with possible valence fluctuations at low temperature, inferred from the deviations from the Curie-Weiss law.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617001243/fn3229sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617001243/fn3229Isup2.hkl
Contains datablock I

CCDC reference: 1529484

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
Ce6Cd23TeMo Kα radiation, λ = 0.71073 Å
Mr = 3553.52Cell parameters from 787 reflections
Cubic, Fm3mθ = 6.4–33.2°
a = 14.1632 (4) ŵ = 27.16 mm1
V = 2841.09 (14) Å3T = 200 K
Z = 4Irregular, silver
F(000) = 60160.06 × 0.06 × 0.04 mm
Dx = 8.308 Mg m3
Data collection top
Bruker APEXII CCD area detector
diffractometer
322 independent reflections
Radiation source: fine-focus sealed tube304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 33.2°, θmin = 6.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1915
Tmin = 0.297, Tmax = 0.450k = 2121
2478 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0185P)2 + 11.5663P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.16Δρmax = 1.02 e Å3
322 reflectionsΔρmin = 1.19 e Å3
16 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000095 (7)
Special details top

Experimental. Crystals selected from a fresh reaction batch were put in a Paratone N oil and cut with a scalpel to the desired dimensions (under an optical microscope). The X-ray absorption coefficient is high, therefore we tried to minimize these effects by working with crystals in the range of 0.06–0.07 mm or smaller. The selected specimens were scooped with micro-loops (obtained from MiTeGen) and transferred immediately to the single-crystal X-ray diffractometer. A stream of cold nitrogen was used to freeze the oil and protect the crystals from the ambient air.

Data collection is performed with two batch runs. Frame width was 0.50 ° in ω. Data were merged and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved in a straightforward manner using direct methods, which provided all six positions. Subsequent full-matrix least squares/difference Fourier cycles confirmed the model. The isotropic refinement converged smoothly to satisfactory residuals. The temperature factors for all atoms were comparable. In the final least-squares cycles, all atoms were refined anisotropically.

Final difference Fourier map is flat and featureless. A small residual peak of slightly over 1 e- Å-3 was located at 0, 0.3384, y, which is ca 1.8 Å away from the Cd3 atom; the deepest hole is -1.2 e- Å-3 (coordinates 0.3946, x, x, which is ca 1.5 Å away from the Cd1 atom).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.28073 (4)0.00000.00000.00895 (13)
Cd10.33294 (2)0.33294 (2)0.33294 (2)0.01114 (15)
Cd20.12339 (3)0.12339 (3)0.12339 (3)0.01144 (14)
Cd30.00000.25000.25000.01013 (15)
Cd40.00000.00000.00000.0167 (4)
Te10.50000.50000.50000.0094 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0102 (2)0.00832 (16)0.00832 (16)0.0000.0000.000
Cd10.01114 (15)0.01114 (15)0.01114 (15)0.00183 (13)0.00183 (13)0.00183 (13)
Cd20.01144 (14)0.01144 (14)0.01144 (14)0.00104 (12)0.00104 (12)0.00104 (12)
Cd30.0082 (3)0.01110 (19)0.01110 (19)0.0000.0000.0006 (2)
Cd40.0167 (4)0.0167 (4)0.0167 (4)0.0000.0000.000
Te10.0094 (3)0.0094 (3)0.0094 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Ce1—Te1i3.1056 (6)Cd2—Cd1xiv3.0941 (5)
Ce1—Cd2ii3.3278 (4)Cd2—Cd1xiii3.0941 (5)
Ce1—Cd2iii3.3278 (4)Cd2—Ce1xviii3.3278 (4)
Ce1—Cd2iv3.3278 (4)Cd2—Ce1x3.3278 (4)
Ce1—Cd23.3278 (4)Cd3—Cd1xix2.8911 (3)
Ce1—Cd1v3.4269 (4)Cd3—Cd1xiv2.8911 (3)
Ce1—Cd1i3.4269 (4)Cd3—Cd1xx2.8911 (3)
Ce1—Cd1vi3.4269 (4)Cd3—Cd1xiii2.8911 (3)
Ce1—Cd1vii3.4269 (4)Cd3—Cd2xxi3.0798 (2)
Ce1—Cd3viii3.5675 (1)Cd3—Cd2v3.0798 (2)
Ce1—Cd3ix3.5675 (1)Cd3—Cd2xxii3.0798 (2)
Ce1—Cd3x3.5675 (1)Cd3—Ce1xxiii3.5675 (1)
Cd1—Cd3xi2.8911 (3)Cd3—Ce1x3.5675 (1)
Cd1—Cd3xii2.8911 (3)Cd3—Ce1xxiv3.5675 (1)
Cd1—Cd3xiii2.8911 (3)Cd3—Ce1xviii3.5675 (1)
Cd1—Cd2v3.0941 (5)Cd4—Cd2xxv3.0269 (6)
Cd1—Cd2xiv3.0941 (5)Cd4—Cd2xxi3.0269 (6)
Cd1—Cd2xiii3.0941 (5)Cd4—Cd2xxvi3.0269 (6)
Cd1—Cd1xiii3.3225 (10)Cd4—Cd2iv3.0269 (6)
Cd1—Cd1v3.3225 (10)Cd4—Cd2xxvii3.0269 (6)
Cd1—Cd1xiv3.3225 (10)Cd4—Cd2iii3.0269 (6)
Cd1—Ce1xv3.4269 (4)Cd4—Cd2ii3.0269 (6)
Cd1—Ce1xvi3.4269 (4)Te1—Ce1xxviii3.1056 (5)
Cd1—Ce1xvii3.4269 (4)Te1—Ce1xv3.1056 (6)
Cd2—Cd43.0269 (6)Te1—Ce1xxix3.1056 (6)
Cd2—Cd3xviii3.0798 (2)Te1—Ce1xvii3.1056 (6)
Cd2—Cd33.0798 (2)Te1—Ce1xxx3.1056 (6)
Cd2—Cd3x3.0798 (2)Te1—Ce1xvi3.1056 (6)
Cd2—Cd1v3.0941 (5)
Te1i—Ce1—Cd2ii132.040 (13)Cd3xviii—Cd2—Cd1xiv55.844 (7)
Te1i—Ce1—Cd2iii132.040 (13)Cd3—Cd2—Cd1xiv55.844 (7)
Cd2ii—Ce1—Cd2iii63.357 (14)Cd3x—Cd2—Cd1xiv108.15 (2)
Te1i—Ce1—Cd2iv132.040 (13)Cd1v—Cd2—Cd1xiv64.95 (2)
Cd2ii—Ce1—Cd2iv63.357 (14)Cd4—Cd2—Cd1xiii141.686 (13)
Cd2iii—Ce1—Cd2iv95.92 (3)Cd3xviii—Cd2—Cd1xiii108.15 (2)
Te1i—Ce1—Cd2132.040 (13)Cd3—Cd2—Cd1xiii55.844 (7)
Cd2ii—Ce1—Cd295.92 (3)Cd3x—Cd2—Cd1xiii55.844 (7)
Cd2iii—Ce1—Cd263.357 (14)Cd1v—Cd2—Cd1xiii64.95 (2)
Cd2iv—Ce1—Cd263.357 (14)Cd1xiv—Cd2—Cd1xiii64.95 (2)
Te1i—Ce1—Cd1v77.539 (11)Cd4—Cd2—Ce177.304 (13)
Cd2ii—Ce1—Cd1v150.42 (2)Cd3xviii—Cd2—Ce167.535 (3)
Cd2iii—Ce1—Cd1v98.308 (7)Cd3—Cd2—Ce1172.53 (2)
Cd2iv—Ce1—Cd1v98.308 (7)Cd3x—Cd2—Ce167.535 (3)
Cd2—Ce1—Cd1v54.501 (13)Cd1v—Cd2—Ce164.382 (13)
Te1i—Ce1—Cd1i77.539 (11)Cd1xiv—Cd2—Ce1118.349 (12)
Cd2ii—Ce1—Cd1i54.501 (13)Cd1xiii—Cd2—Ce1118.349 (12)
Cd2iii—Ce1—Cd1i98.308 (7)Cd4—Cd2—Ce1xviii77.304 (13)
Cd2iv—Ce1—Cd1i98.308 (7)Cd3xviii—Cd2—Ce1xviii172.53 (2)
Cd2—Ce1—Cd1i150.42 (2)Cd3—Cd2—Ce1xviii67.535 (3)
Cd1v—Ce1—Cd1i155.08 (2)Cd3x—Cd2—Ce1xviii67.535 (3)
Te1i—Ce1—Cd1vi77.539 (11)Cd1v—Cd2—Ce1xviii118.349 (12)
Cd2ii—Ce1—Cd1vi98.308 (7)Cd1xiv—Cd2—Ce1xviii118.349 (12)
Cd2iii—Ce1—Cd1vi150.42 (2)Cd1xiii—Cd2—Ce1xviii64.382 (13)
Cd2iv—Ce1—Cd1vi54.501 (13)Ce1—Cd2—Ce1xviii115.312 (9)
Cd2—Ce1—Cd1vi98.308 (7)Cd4—Cd2—Ce1x77.304 (13)
Cd1v—Ce1—Cd1vi87.331 (5)Cd3xviii—Cd2—Ce1x67.535 (3)
Cd1i—Ce1—Cd1vi87.331 (5)Cd3—Cd2—Ce1x67.535 (3)
Te1i—Ce1—Cd1vii77.539 (11)Cd3x—Cd2—Ce1x172.53 (2)
Cd2ii—Ce1—Cd1vii98.308 (7)Cd1v—Cd2—Ce1x118.349 (12)
Cd2iii—Ce1—Cd1vii54.501 (13)Cd1xiv—Cd2—Ce1x64.382 (13)
Cd2iv—Ce1—Cd1vii150.42 (2)Cd1xiii—Cd2—Ce1x118.349 (12)
Cd2—Ce1—Cd1vii98.308 (7)Ce1—Cd2—Ce1x115.312 (9)
Cd1v—Ce1—Cd1vii87.331 (5)Ce1xviii—Cd2—Ce1x115.312 (9)
Cd1i—Ce1—Cd1vii87.331 (5)Cd1xix—Cd3—Cd1xiv180.0
Cd1vi—Ce1—Cd1vii155.08 (2)Cd1xix—Cd3—Cd1xx70.15 (2)
Te1i—Ce1—Cd3viii97.008 (9)Cd1xiv—Cd3—Cd1xx109.85 (2)
Cd2ii—Ce1—Cd3viii52.920 (6)Cd1xix—Cd3—Cd1xiii109.85 (2)
Cd2iii—Ce1—Cd3viii52.920 (6)Cd1xiv—Cd3—Cd1xiii70.15 (2)
Cd2iv—Ce1—Cd3viii116.074 (13)Cd1xx—Cd3—Cd1xiii180.000 (13)
Cd2—Ce1—Cd3viii116.074 (13)Cd1xix—Cd3—Cd2xxi62.328 (10)
Cd1v—Ce1—Cd3viii135.367 (2)Cd1xiv—Cd3—Cd2xxi117.672 (10)
Cd1i—Ce1—Cd3viii48.779 (3)Cd1xx—Cd3—Cd2xxi62.328 (10)
Cd1vi—Ce1—Cd3viii135.367 (2)Cd1xiii—Cd3—Cd2xxi117.672 (10)
Cd1vii—Ce1—Cd3viii48.779 (3)Cd1xix—Cd3—Cd2v117.672 (10)
Te1i—Ce1—Cd3ix97.008 (9)Cd1xiv—Cd3—Cd2v62.328 (10)
Cd2ii—Ce1—Cd3ix52.920 (6)Cd1xx—Cd3—Cd2v117.672 (10)
Cd2iii—Ce1—Cd3ix116.074 (13)Cd1xiii—Cd3—Cd2v62.328 (10)
Cd2iv—Ce1—Cd3ix52.920 (6)Cd2xxi—Cd3—Cd2v180.00 (2)
Cd2—Ce1—Cd3ix116.074 (13)Cd1xix—Cd3—Cd2xxii62.328 (10)
Cd1v—Ce1—Cd3ix135.367 (2)Cd1xiv—Cd3—Cd2xxii117.672 (10)
Cd1i—Ce1—Cd3ix48.779 (3)Cd1xx—Cd3—Cd2xxii62.328 (10)
Cd1vi—Ce1—Cd3ix48.779 (3)Cd1xiii—Cd3—Cd2xxii117.672 (10)
Cd1vii—Ce1—Cd3ix135.367 (2)Cd2xxi—Cd3—Cd2xxii110.86 (2)
Cd3viii—Ce1—Cd3ix89.147 (2)Cd2v—Cd3—Cd2xxii69.14 (2)
Te1i—Ce1—Cd3x97.008 (9)Cd1xix—Cd3—Cd2117.672 (10)
Cd2ii—Ce1—Cd3x116.074 (13)Cd1xiv—Cd3—Cd262.328 (10)
Cd2iii—Ce1—Cd3x52.920 (6)Cd1xx—Cd3—Cd2117.672 (10)
Cd2iv—Ce1—Cd3x116.074 (13)Cd1xiii—Cd3—Cd262.328 (10)
Cd2—Ce1—Cd3x52.920 (6)Cd2xxi—Cd3—Cd269.14 (2)
Cd1v—Ce1—Cd3x48.779 (3)Cd2v—Cd3—Cd2110.86 (2)
Cd1i—Ce1—Cd3x135.367 (2)Cd2xxii—Cd3—Cd2180.0
Cd1vi—Ce1—Cd3x135.367 (2)Cd1xix—Cd3—Ce1xxiii116.927 (9)
Cd1vii—Ce1—Cd3x48.779 (3)Cd1xiv—Cd3—Ce1xxiii63.073 (9)
Cd3viii—Ce1—Cd3x89.147 (2)Cd1xx—Cd3—Ce1xxiii63.073 (9)
Cd3ix—Ce1—Cd3x165.984 (17)Cd1xiii—Cd3—Ce1xxiii116.927 (9)
Cd3xi—Cd1—Cd3xii120.0Cd2xxi—Cd3—Ce1xxiii120.455 (8)
Cd3xi—Cd1—Cd3xiii120.0Cd2v—Cd3—Ce1xxiii59.545 (8)
Cd3xii—Cd1—Cd3xiii120.0Cd2xxii—Cd3—Ce1xxiii59.545 (8)
Cd3xi—Cd1—Cd2v61.828 (3)Cd2—Cd3—Ce1xxiii120.455 (8)
Cd3xii—Cd1—Cd2v61.828 (3)Cd1xix—Cd3—Ce1x116.927 (9)
Cd3xiii—Cd1—Cd2v161.35 (2)Cd1xiv—Cd3—Ce1x63.073 (9)
Cd3xi—Cd1—Cd2xiv61.828 (3)Cd1xx—Cd3—Ce1x63.073 (9)
Cd3xii—Cd1—Cd2xiv161.35 (2)Cd1xiii—Cd3—Ce1x116.927 (9)
Cd3xiii—Cd1—Cd2xiv61.828 (3)Cd2xxi—Cd3—Ce1x59.545 (8)
Cd2v—Cd1—Cd2xiv110.092 (12)Cd2v—Cd3—Ce1x120.455 (8)
Cd3xi—Cd1—Cd2xiii161.35 (2)Cd2xxii—Cd3—Ce1x120.455 (8)
Cd3xii—Cd1—Cd2xiii61.828 (3)Cd2—Cd3—Ce1x59.545 (8)
Cd3xiii—Cd1—Cd2xiii61.828 (3)Ce1xxiii—Cd3—Ce1x75.984 (17)
Cd2v—Cd1—Cd2xiii110.092 (12)Cd1xix—Cd3—Ce1xxiv63.073 (9)
Cd2xiv—Cd1—Cd2xiii110.092 (12)Cd1xiv—Cd3—Ce1xxiv116.927 (9)
Cd3xi—Cd1—Cd1xiii54.927 (12)Cd1xx—Cd3—Ce1xxiv116.927 (9)
Cd3xii—Cd1—Cd1xiii106.942 (10)Cd1xiii—Cd3—Ce1xxiv63.073 (9)
Cd3xiii—Cd1—Cd1xiii106.942 (10)Cd2xxi—Cd3—Ce1xxiv120.455 (8)
Cd2v—Cd1—Cd1xiii57.526 (10)Cd2v—Cd3—Ce1xxiv59.545 (8)
Cd2xiv—Cd1—Cd1xiii57.526 (10)Cd2xxii—Cd3—Ce1xxiv59.545 (8)
Cd2xiii—Cd1—Cd1xiii106.422 (13)Cd2—Cd3—Ce1xxiv120.455 (8)
Cd3xi—Cd1—Cd1v106.942 (10)Ce1xxiii—Cd3—Ce1xxiv104.016 (17)
Cd3xii—Cd1—Cd1v106.942 (10)Ce1x—Cd3—Ce1xxiv180.0
Cd3xiii—Cd1—Cd1v54.927 (12)Cd1xix—Cd3—Ce1xviii63.073 (9)
Cd2v—Cd1—Cd1v106.422 (13)Cd1xiv—Cd3—Ce1xviii116.927 (9)
Cd2xiv—Cd1—Cd1v57.526 (10)Cd1xx—Cd3—Ce1xviii116.927 (9)
Cd2xiii—Cd1—Cd1v57.526 (10)Cd1xiii—Cd3—Ce1xviii63.073 (9)
Cd1xiii—Cd1—Cd1v60.0Cd2xxi—Cd3—Ce1xviii59.545 (8)
Cd3xi—Cd1—Cd1xiv106.942 (10)Cd2v—Cd3—Ce1xviii120.455 (8)
Cd3xii—Cd1—Cd1xiv54.927 (12)Cd2xxii—Cd3—Ce1xviii120.455 (8)
Cd3xiii—Cd1—Cd1xiv106.942 (10)Cd2—Cd3—Ce1xviii59.545 (8)
Cd2v—Cd1—Cd1xiv57.526 (10)Ce1xxiii—Cd3—Ce1xviii180.0
Cd2xiv—Cd1—Cd1xiv106.422 (13)Ce1x—Cd3—Ce1xviii104.016 (17)
Cd2xiii—Cd1—Cd1xiv57.526 (10)Ce1xxiv—Cd3—Ce1xviii75.984 (17)
Cd1xiii—Cd1—Cd1xiv60.0Cd2xxv—Cd4—Cd2180.00 (3)
Cd1v—Cd1—Cd1xiv60.0Cd2xxv—Cd4—Cd2xxi109.5
Cd3xi—Cd1—Ce1xv68.148 (7)Cd2—Cd4—Cd2xxi70.5
Cd3xii—Cd1—Ce1xv68.148 (7)Cd2xxv—Cd4—Cd2xxvi70.5
Cd3xiii—Cd1—Ce1xv137.53 (2)Cd2—Cd4—Cd2xxvi109.5
Cd2v—Cd1—Ce1xv61.117 (12)Cd2xxi—Cd4—Cd2xxvi70.5
Cd2xiv—Cd1—Ce1xv124.569 (8)Cd2xxv—Cd4—Cd2iv109.5
Cd2xiii—Cd1—Ce1xv124.569 (8)Cd2—Cd4—Cd2iv70.5
Cd1xiii—Cd1—Ce1xv109.612 (10)Cd2xxi—Cd4—Cd2iv109.5
Cd1v—Cd1—Ce1xv167.539 (11)Cd2xxvi—Cd4—Cd2iv180.00 (3)
Cd1xiv—Cd1—Ce1xv109.612 (10)Cd2xxv—Cd4—Cd2xxvii70.5
Cd3xi—Cd1—Ce1xvi137.53 (2)Cd2—Cd4—Cd2xxvii109.5
Cd3xii—Cd1—Ce1xvi68.148 (7)Cd2xxi—Cd4—Cd2xxvii70.5
Cd3xiii—Cd1—Ce1xvi68.148 (7)Cd2xxvi—Cd4—Cd2xxvii109.5
Cd2v—Cd1—Ce1xvi124.569 (8)Cd2iv—Cd4—Cd2xxvii70.5
Cd2xiv—Cd1—Ce1xvi124.569 (8)Cd2xxv—Cd4—Cd2iii109.5
Cd2xiii—Cd1—Ce1xvi61.117 (12)Cd2—Cd4—Cd2iii70.5
Cd1xiii—Cd1—Ce1xvi167.539 (11)Cd2xxi—Cd4—Cd2iii109.5
Cd1v—Cd1—Ce1xvi109.612 (10)Cd2xxvi—Cd4—Cd2iii70.5
Cd1xiv—Cd1—Ce1xvi109.612 (10)Cd2iv—Cd4—Cd2iii109.5
Ce1xv—Cd1—Ce1xvi79.703 (17)Cd2xxvii—Cd4—Cd2iii180.00 (3)
Cd3xi—Cd1—Ce1xvii68.148 (7)Cd2xxv—Cd4—Cd2ii70.5
Cd3xii—Cd1—Ce1xvii137.53 (2)Cd2—Cd4—Cd2ii109.5
Cd3xiii—Cd1—Ce1xvii68.148 (7)Cd2xxi—Cd4—Cd2ii180.00 (2)
Cd2v—Cd1—Ce1xvii124.569 (8)Cd2xxvi—Cd4—Cd2ii109.5
Cd2xiv—Cd1—Ce1xvii61.117 (12)Cd2iv—Cd4—Cd2ii70.5
Cd2xiii—Cd1—Ce1xvii124.569 (8)Cd2xxvii—Cd4—Cd2ii109.5
Cd1xiii—Cd1—Ce1xvii109.612 (10)Cd2iii—Cd4—Cd2ii70.5
Cd1v—Cd1—Ce1xvii109.612 (10)Ce1xxviii—Te1—Ce1xv90.0
Cd1xiv—Cd1—Ce1xvii167.539 (11)Ce1xxviii—Te1—Ce1xxix90.0
Ce1xv—Cd1—Ce1xvii79.703 (17)Ce1xv—Te1—Ce1xxix180.0
Ce1xvi—Cd1—Ce1xvii79.703 (17)Ce1xxviii—Te1—Ce1xvii90.0
Cd4—Cd2—Cd3xviii110.164 (11)Ce1xv—Te1—Ce1xvii90.0
Cd4—Cd2—Cd3110.164 (11)Ce1xxix—Te1—Ce1xvii90.0
Cd3xviii—Cd2—Cd3108.770 (11)Ce1xxviii—Te1—Ce1xxx90.0
Cd4—Cd2—Cd3x110.164 (11)Ce1xv—Te1—Ce1xxx90.0
Cd3xviii—Cd2—Cd3x108.770 (11)Ce1xxix—Te1—Ce1xxx90.0
Cd3—Cd2—Cd3x108.770 (11)Ce1xvii—Te1—Ce1xxx180.0
Cd4—Cd2—Cd1v141.686 (13)Ce1xxviii—Te1—Ce1xvi180.0
Cd3xviii—Cd2—Cd1v55.844 (7)Ce1xv—Te1—Ce1xvi90.0
Cd3—Cd2—Cd1v108.15 (2)Ce1xxix—Te1—Ce1xvi90.0
Cd3x—Cd2—Cd1v55.844 (7)Ce1xvii—Te1—Ce1xvi90.0
Cd4—Cd2—Cd1xiv141.686 (13)Ce1xxx—Te1—Ce1xvi90.0
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y, z; (iii) x, y, z; (iv) x, y, z; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y1/2, z+1/2; (viii) y+1/2, z1/2, x; (ix) z, x, y; (x) z, x, y; (xi) y+1/2, z, x+1/2; (xii) z, x+1/2, y+1/2; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y, z+1/2; (xv) x, y+1/2, z+1/2; (xvi) y+1/2, z+1/2, x; (xvii) z+1/2, x, y+1/2; (xviii) y, z, x; (xix) x1/2, y+1/2, z; (xx) x1/2, y, z+1/2; (xxi) x, y, z; (xxii) x, y+1/2, z+1/2; (xxiii) y, z+1/2, x+1/2; (xxiv) z, x+1/2, y+1/2; (xxv) x, y, z; (xxvi) x, y, z; (xxvii) x, y, z; (xxviii) y+1/2, z+1/2, x+1; (xxix) x+1, y+1/2, z+1/2; (xxx) z+1/2, x+1, y+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds