Download citation
Download citation
link to html
Six derivatives of 4-amino-1,5-dimethyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one (4-amino­anti­pyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen-bonding motifs compared to the original 4-amino­anti­pyrine. The derivatives were synthesized from the reactions of 4-amino­anti­pyrine with various aldehyde-, ketone- and ester-containing mol­ecules, producing (Z)-methyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)amino]­but-2-enoate, C16H19N3O3, (II), (Z)-ethyl 3-[(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyra­zol-4-yl)amino]­but-2-enoate, C17H21N3O3, (III), ethyl 2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)amino]­cyclo­hex-1-ene­carboxyl­ate, C20H25N3O3, (IV), (Z)-ethyl 3-[(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)amino]-3-phenyl­acrylate, C22H23N3O3, (V), 2-cyano-N-(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)acetamide, C14H14N4O2, (VI), and (E)-methyl 4-{[(1,5-dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)amino]­meth­yl}ben­zoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one mol­ecule on a general position. The hydrogen bonding in (I) forms chains of molecules via inter­molecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six-membered intra­molecular N—H...O hydrogen-bonded ring in (II)–(V) and an inter­molecular N—H...O hydrogen bond in (VI), whereas there is an intra­molecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π inter­actions, while C—H...π inter­actions are observed in (II), C—H...O inter­actions are observed in (I), (III), (V) and (VI), and a C—O...π inter­action is observed in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614027247/fn3185sup1.cif
Contains datablocks global, I, II, III, IV, V, VI, VII

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185Isup16.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185Isup9.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185IIsup10.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185IIsup17.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185IIsup3.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185IIIsup11.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185IIIsup18.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185IIIsup4.hkl
Contains datablock III

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185IVsup12.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185IVsup19.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185IVsup5.hkl
Contains datablock IV

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185Vsup13.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185Vsup20.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185Vsup6.hkl
Contains datablock V

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185VIsup14.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185VIsup21.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185VIsup7.hkl
Contains datablock VI

mol

MDL mol file https://doi.org/10.1107/S2053229614027247/fn3185VIIsup15.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614027247/fn3185VIIsup22.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614027247/fn3185VIIsup8.hkl
Contains datablock VII

CCDC references: 1039216; 1039215; 1039214; 1039213; 1039212; 1039211; 1039210

Introduction top

4-Amino­anti­pyrine (4-AAP), (I), is an anti-inflammatory agent which is mainly used as a reagent to detect phenols and peroxides (Adam, 2013). The use of 4-AAP as a nonsteroidal anti-inflammatory drug is rare because the drug causes agranulocytosis, i.e. a drop in the number of infection-fighting white blood cells (Adam, 2013). Some derivatives of 4-amino­anti­pyrines, such as dipyrone – an anti-inflammatory which is still in use – have medicinal properties (Li et al., 2013, and references therein). 4-AAP can be modified easily by reacting it with either an aldehyde, ketone or ester functional group to form Schiff bases and the prepared derivatives then show increased biological activities, such as anti­tumor, fungicidal, bactericidal, anti­viral, anti-inflammatory, anti­pyretic, analgesic, anti­proliferative and anti­oxidant activities (Cunha et al., 2005; Schilf et al., 2013). Metal complexes of 4-AAP-derived Schiff bases have been prepared and tested for biological activity also (Leelavathy & Antony, 2013; El-Bindary et al., 2013). Molecular salt complexes have also been prepared with quinol and picric acid (Adam, 2013). We synthesized six derivatives of 4-AAP, (II)–(VII) (see Scheme 1), and discuss the changes in molecular packing and hydrogen bonding compared to the parent 4-AAP, (I) (Scheme 1), and to related compounds in the Cambridge Structural Database (CSD, Version 5.34, with a May 2013 update; Groom & Allen, 2014). The derivatization is carried out with the molecules shown in Scheme 2. This report is a continuation of structural studies that look at how the hydrogen bonding changes in a series of related structures by varying the substituents on an organic backbone (Omondi et al., 2009; Lemmerer & Michael, 2010a,b, 2011).

Experimental top

Synthesis and crystallization top

All chemicals were purchased from commercial sources and used as received. Crystals where grown by slow evaporation under ambient conditions of a methanol solution containing a 1:1 ratio of 4-amino­anti­pyrine and the aldehyde/ketone and ester rea­ctant. The solutions were stirred and heated gently overnight to allow for complete reaction. Detailed masses and volumes are as follows: for (II), 4-AAP (0.100 g, 0.492 mmol) and methyl 3-oxo­butano­ate (see A in Scheme 2; 0.058 g, 0.500 mmol) in 8 ml methanol; for (III), 4-AAP (0.100 g, 0.492 mmol) and ethyl 3-oxo­butano­ate (B; 0.065 g, 0.500 mmol) in 8 ml methanol; for (IV), 4-AAP (0.100 g, 0.492 mmol) and ethyl 2-oxo­cyclo­hexane­carboxyl­ate (C; 0.085 g, 0.500 mmol) in 8 ml methanol; for (V), 4-AAP (0.100 g, 0.492 mmol) and ethyl 3-oxo-3-phenyl­propano­ate (D; 0.096 g, 0.500 mmol) in 8 ml methanol; for (VI), 4-AAP (0.100 g, 0.492 mmol) and 4-formyl­benzoate (E; 0.082 g, 0.500 mmol) in 8 ml methanol; for (VI), 4-AAP (0.100 g, 0.492 mmol) and ethyl cyano­acetate (F; 0.057 g, 0.500 mmol) in 8 ml methanol.

Refinement top

Cell determination, data collection and structure refinement details are summarized in Table 1. For all compounds, C-bound H atoms were placed geometrically [C—H = C—H = 0.95 (alkene), 0.98 (methyl­ene and CH3), 0.99 (ethyl­ene, –CH2–) or 0.95 Å (aromatic)] and refined as riding, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference maps and their coordinates allowed to refine freely, with Uiso(H) = 1.5Ueq(N).

In (I), the absolute structure was chosen arbitrarily, and refinement of the absolute structure parameter (Flack & Bernardinelli, 2000) was not posible as molybdenum radiation was used. The Friedel pairs of reflections were thus merged prior to the final refinements. In addition, the crystals of (I) showed twinning, and the twin law (1 0 0 1 1 0 0 0 ¯), with the batch scale factor refining to 0.42502, resulted in a significant improvement of the refinement statistics.

Results and discussion top

The molecular structures and atomic numbering schemes of the asymmetric units of compounds (I)–(VII) are shown in Fig. 1, and the packing diagrams are shown in Figs. 2–4.

Recently, the room-temperature crystal structure of 4-AAP, (I), was reported (Li et al., 2013; CCDC deposition number 801822). The crystallographic indicators show a poor-quality data set [Rint = 0.097 and R1 (all data) = 0.0992] with low redundancy. Crystals grown from propan-2-ol by us showed bipyramidal crystal habits, and were observed as twinned under polarized light microscopy. We collected a low-temperature data set with the same unit cell as reported previously, with higher redundancy, and after applying a twin law, a much improved set of crystallographic discrepancy factors was obtained. Comparable bond lengths and angles are observed. The asymmetric unit consists of one 4-AAP molecule on a general position in the hexagonal space group P61. The hydrogen bonding involves only one of the H atoms on the amine N3 atom (H3A). This forms a hydrogen bond to carbonyl atom O1i of an adjacent molecule to form an infinite chain with graph set C(4) (Bernstein et al., 1995) (Fig. 2; see Table 2 for hydrogen-bond geometry and symmetry code). Ultimately, by virtue of the sixfold screw axis that defines the chain, a symmetrically pleasing helical form results down the crystallographic c axis (Fig. 3). Adjacent 4-AAP moleclues inter­act along the b axis by C8—H8···O1 hydrogen bonding [not in Table 2?], and along the a axis, there is a ππ inter­action between the benzene (atoms C6–C11) and pyrazole (atoms C1–N1) rings, with a centroid–centroid (Cg···Cgviii) distance of 3.9705 (15) Å [symmetry code: (viii) y, -x+y+1, z+1/6].

The reaction of the ketone group of methyl 3-oxo­butano­ate with the amine group of 4-AAP produced enamine (II). The formation of an enamine favours the formation of an intra­molecular six-membered hydrogen-bonded ring with graph set S(6) (Etter, 1990) involving amine atom H3 to ester carbonyl atom O2 (Fig. 1; see Table 3 for hydrogen-bond geometry). The molecules pack in a head-to-tail fashion along the a axis, with two inter­molecular inter­actions involving π systems (Fig. 4a). Firstly, atom C10 inter­acts with the centroid (Cg1) of the benzene ring through atom H10 [C10—H10···Cg1ix = 2.75 Å and C10—H10···Cg1viii = 172°; symmetry code: (ix) -x+1, y+1/2, -z+3/2]. Secondly, the five-membered pyrazole ring forms a close contact with the O1 ketone group of a neighbouring inversion-related molecule, such that the centroid of the pyrazole ring (Cg2) has an O1···Cg2iv distance of 3.7581 (12) Å [symmetry code: (iv) -x+1, -y+1, -z+1].

The reaction of the ketone group of ethyl 3-oxo­butano­ate with the amine group of 4-AAP produced enamine (III). Amine atom H3 forms an inter­molecular hydrogen bond with graph set S(6) to ester carbonyl atom O2, similar to (II) (Fig. 1). However, it has additional C—H···O hydrogen-bond inter­actions, viz. C11—H11···O1ii, forming an R22(12) hydrogen-bonded ring, and C8—H8···O3iii, forming an R44(28) ring (Fig. 4b; see Table 4 for hydrogen-bond geometry and symmetry codes). Additionally, the molecules pack anti­parallel along the c axis, stabilized by centrosymmtric ππ inter­actions between adjacent pyrazole rings [Cg···Cgiv = 3.9668 (9) Å].

The reaction of the ketone group of ethyl 2-oxo­cyclo­hexane­carboxyl­ate with the amine group of 4-AAP produced enamine (IV). Amine atom H3 forms an inter­molecular hydrogen bond with graph set S(6) to ester carbonyl atom O2 (Fig. 1 and Table 5). The molecules pack anti­parallel along the c axis, stabilized again by centrosymmtric ππ inter­actions between adjacent pyrazole rings [Cg···Cgiv = 4.3240 (7) Å] (Fig. 4c).

The reaction of the ketone group of ethyl 3-oxo-3-phenyl­propano­ate with the amine group of 4-AAP produced enamine (V). Amine atom H3 forms an inter­molecular hydrogen bond with graph set S(6) to ester carbonyl atom O2, similar to (II) (Fig. 1). However, it has an additional N3—H3···O2iv hydrogen-bond inter­action between neighbouring molecules, thus forming also an R22(4) hydrogen-bonded ring dimer (Fig. 4d; see Table 6 for hydrogen-bond geometry and symmetry codes). The dimers are connected via a weak C8—H8···O1v hydrogen bond along the a axis. Along the c axis, molecules are stabilized again by centrosymmtric ππ inter­actions, this time between adjacent benzene rings [Cg···Cgx = 4.3681 (8) Å; symmetry code: (x) -x+2, -y, -z+1] (Fig. 4d).

The reaction of the ester group of ethyl cyano­acetate with the amine group of 4-AAP produced enamine (VI). Amine atom H3 forms an inter­molecular N—H···O hydrogen bond to ring carbonyl atom O1vi of a neighbouring molecule producing an R22(10) hydrogen-bonded ring dimer (Fig. 1; see Table 7 for hydrogen-bond geometry and symmetry codes). In addition, there is an inter­molecular C9—H9···O2vii hydrogen bond between translationally related molecules along the b axis. A ππ inter­action is observed along the a axis between pyrazole rings [Cg···Cgxi = 4.2438 (8) Å; symmetry code: (xi) -x, -y+1, -z] (Fig. 4e).

The reaction of the aldehyde group of methyl 4-formyl­benzoate with the amine group of 4-AAP produced imine (VII), in contrast to the tautomerization to an enamine seen in the other compounds. Alkene atom H12 forms an intra­molecular C—H···O hydrogen bond with graph set S(6) to ring carbonyl atom O1 (Fig. 1), which is different to the intra­molecular hydrogen bonds observed in all the other compounds. The packing diagram of (VII) (Fig. 4f; see Table 8 for hydrogen-bond geometry and symmetry codes) shows a head-to tail arrangement and the ππ inter­actions between the pyrazole and benzene rings of adjacent molecules along the c axis. The centroid of the pyrazole ring (Cg1) is 3.6772 (7) Å from the centroid of the benzene ring at (-x+1/2, -y+1/2, -z+1). [No H-bond data for (VII) is included in the CIF]

Comparatively, there is similarity and some variation in the hydrogen-bonding inter­actions that derivatives (II)–(VII) of 4-AAP show compared to the parent compound, (I). There are four intra­molecular N—H···O hydrogen bonds that form between the enamine N3 and ester carbonyl O2 atoms in (II) and (IV)–(VI). However, in (V), the pattern is slightly different due to the bifurcated nature of the H3···O2 inter­action. The bifurcation of the three-centred inter­action was confirmed by summing the angles around atom H3 and the sum was 356°. In the one structure that does not form the enamine tautomer, but rather the imine tautomer, i.e. (VII), an intra­molecular S(6) hydrogen bond is formed, but this time a weaker C—H···O-type inter­action is observed. The molecule in the crystal of (VII) is an imine because the formation of an enamine would have required the removal of the aromaticity of the benzene ring, which is unfavourable. Since the molecule is in the imine form, it does not possess the amine hydrogen-bond donor. The presence of two different aromatic-ring systems, viz. pyrazole and benzene, in all the compounds results in numerous ππ inter­actions. In terms of significant inter­molecular inter­actions involving weak hydrogen bonding, there are two C—H···O inter­actions and one C—H···π inter­action in addition to the stronger N—H···O hydrogen bonds.

Compared to other derivatized structures that have the 4-amino­anti­pyrine backbone, there are 146 (136 neither solvated nor hydrated) structures in the CSD that all crystallize in the imine form and only six that crystallize in the enamine form. Unsurprisingly, all 136 of the imine structures have the intra­molecular C—H···O S(6) hydrogen bond, as seen in (VII). Similarly, for the five unsolvated enamine structures of the original six, all have the intra­molecular N—H···O hydrogen bond. However, if one adds the criteria of having a CO carbonyl group three C atoms away, as is seen for the derivatized compounds (II)–(VII), then the number of resulting compounds without any solvent that have the imine tautomer decreases to only one. The five enamines found in the literature all contain a carbonyl group, indicating that the presence of a second carbonyl group favours the formation of an enamine over an imine.

Computing details top

For all compounds, data collection: APEX3 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective views of compounds (I)–(VII), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the one-dimensional hydrogen-bonded chain down the sixfold screw axis in (I). Note the lack of any hydrogen-bond interactions of the second amine H facing towards the centre of the helix. H atoms not involved in hydrogen-bonding interactions have been omitted for clarity. The hydrogen bonds are displayed as in Fig. 2.
[Figure 3] Fig. 3. (a) Packing diagram of (II). (b) View of the intermolecular C—H···O hydrogen bonds forming a sequence of R22(12) and R44(28) rings in (III). (c) Packing diagram of (IV); note the absence of any intermolecular hydrogen-bond interactions. (d) View of the inter- and intramolecular N—H···O hydrogen bonds forming an R22(4) ring and an S(6) ring in (V). (e) Packing diagram of (VI); note the absence of any intermolecular hydrogen-bond interactions. (f) View of the intermolecular N—H···O hydrogen bonds forming an R22(10) ring and a chain of C—H···O hydrogen bonds in (VII). H atoms not involved in hydrogen-bond interactions have been omitted for clarity. The hydrogen bonds are displayed as in Fig. 2.
(I) 4-Amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C11H13N3ODx = 1.321 Mg m3
Mr = 203.24Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P61Cell parameters from 5670 reflections
Hall symbol: P 61θ = 3.2–25.2°
a = 7.4519 (1) ŵ = 0.09 mm1
c = 31.8705 (7) ÅT = 173 K
V = 1532.69 (5) Å3Prism, colourless
Z = 60.45 × 0.18 × 0.15 mm
F(000) = 648
Data collection top
Bruker D8 Venture Photon CMOS
diffractometer
2353 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 1.3°
Tmin = 0.95, Tmax = 0.96h = 99
13962 measured reflectionsk = 99
2455 independent reflectionsl = 4242
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0558P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.026
wR(F2) = 0.083Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.15 e Å3
2455 reflectionsAbsolute structure: Flack x determined using 1076 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
147 parametersAbsolute structure parameter: 0.2 (10)
1 restraint
Crystal data top
C11H13N3OZ = 6
Mr = 203.24Mo Kα radiation
Hexagonal, P61µ = 0.09 mm1
a = 7.4519 (1) ÅT = 173 K
c = 31.8705 (7) Å0.45 × 0.18 × 0.15 mm
V = 1532.69 (5) Å3
Data collection top
Bruker D8 Venture Photon CMOS
diffractometer
2455 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2353 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.031
13962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.15 e Å3
2455 reflectionsAbsolute structure: Flack x determined using 1076 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
147 parametersAbsolute structure parameter: 0.2 (10)
1 restraint
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6930 (4)0.2346 (4)0.15103 (7)0.0282 (5)
C20.6318 (4)0.1598 (4)0.19357 (8)0.0305 (5)
C30.4930 (4)0.2136 (4)0.20641 (7)0.0291 (5)
C40.3883 (4)0.1794 (4)0.24802 (8)0.0384 (6)
H4A0.43640.10810.26680.058*
H4B0.23790.09440.24430.058*
H4C0.42180.31330.26020.058*
C50.2424 (4)0.2541 (4)0.16340 (9)0.0355 (5)
H5A0.23870.33980.14050.053*
H5B0.16760.26480.18770.053*
H5C0.17680.10940.15420.053*
C60.6124 (4)0.4585 (4)0.10609 (7)0.0271 (5)
C70.6249 (4)0.6488 (4)0.11171 (9)0.0332 (5)
H70.60650.69030.13880.04*
C80.6649 (4)0.7790 (4)0.07719 (10)0.0403 (6)
H80.67410.910.08080.048*
C90.6909 (4)0.7174 (5)0.03793 (9)0.0437 (7)
H90.71740.80590.01450.052*
C100.6784 (4)0.5272 (5)0.03254 (8)0.0395 (6)
H100.69860.48670.00550.047*
C110.6369 (4)0.3960 (4)0.06634 (7)0.0319 (5)
H110.6250.26410.06250.038*
N10.5751 (3)0.3231 (3)0.14030 (6)0.0280 (4)
N20.4599 (3)0.3271 (4)0.17519 (6)0.0291 (4)
N30.7274 (4)0.0677 (5)0.21505 (9)0.0508 (7)
H3A0.675 (5)0.001 (5)0.2376 (11)0.036 (8)*
H3B0.797 (6)0.040 (5)0.2010 (11)0.042 (9)*
O10.8267 (3)0.2302 (3)0.12882 (6)0.0356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (11)0.0295 (11)0.0257 (10)0.0140 (9)0.0007 (9)0.0023 (9)
C20.0296 (12)0.0312 (11)0.0265 (11)0.0121 (10)0.0026 (9)0.0047 (9)
C30.0280 (10)0.0294 (10)0.0231 (10)0.0093 (9)0.0018 (9)0.0005 (9)
C40.0437 (14)0.0404 (14)0.0260 (12)0.0172 (11)0.0086 (11)0.0020 (11)
C50.0274 (12)0.0381 (13)0.0403 (12)0.0159 (11)0.0031 (10)0.0030 (12)
C60.0222 (10)0.0326 (12)0.0254 (10)0.0130 (9)0.0011 (9)0.0018 (9)
C70.0303 (11)0.0365 (13)0.0354 (12)0.0187 (11)0.0018 (10)0.0009 (10)
C80.0312 (12)0.0366 (13)0.0546 (16)0.0181 (11)0.0011 (12)0.0111 (13)
C90.0352 (13)0.0501 (17)0.0418 (14)0.0184 (13)0.0011 (13)0.0200 (13)
C100.0365 (14)0.0532 (16)0.0260 (11)0.0203 (12)0.0026 (11)0.0054 (12)
C110.0308 (11)0.0364 (12)0.0270 (11)0.0156 (10)0.0032 (10)0.0012 (10)
N10.0305 (10)0.0345 (10)0.0225 (8)0.0189 (8)0.0030 (7)0.0025 (8)
N20.0288 (10)0.0324 (11)0.0249 (9)0.0143 (8)0.0047 (7)0.0010 (8)
N30.0520 (15)0.0734 (19)0.0419 (14)0.0425 (15)0.0166 (13)0.0307 (15)
O10.0382 (10)0.0463 (10)0.0307 (9)0.0274 (8)0.0096 (8)0.0096 (8)
Geometric parameters (Å, º) top
C1—O11.236 (3)C6—C111.393 (3)
C1—N11.380 (3)C6—N11.416 (3)
C1—C21.450 (3)C7—C81.397 (4)
C2—C31.346 (3)C7—H70.95
C2—N31.391 (4)C8—C91.380 (5)
C3—N21.405 (3)C8—H80.95
C3—C41.495 (3)C9—C101.384 (5)
C4—H4A0.98C9—H90.95
C4—H4B0.98C10—C111.382 (4)
C4—H4C0.98C10—H100.95
C5—N21.477 (3)C11—H110.95
C5—H5A0.98N1—N21.414 (3)
C5—H5B0.98N3—H3A0.86 (4)
C5—H5C0.98N3—H3B0.79 (4)
C6—C71.385 (4)
O1—C1—N1125.8 (2)C6—C7—C8119.4 (3)
O1—C1—C2128.9 (2)C6—C7—H7120.3
N1—C1—C2105.22 (19)C8—C7—H7120.3
C3—C2—N3131.0 (2)C9—C8—C7120.0 (3)
C3—C2—C1108.1 (2)C9—C8—H8120
N3—C2—C1120.6 (2)C7—C8—H8120
C2—C3—N2110.87 (19)C8—C9—C10120.3 (2)
C2—C3—C4129.2 (2)C8—C9—H9119.8
N2—C3—C4119.8 (2)C10—C9—H9119.8
C3—C4—H4A109.5C11—C10—C9120.3 (3)
C3—C4—H4B109.5C11—C10—H10119.9
H4A—C4—H4B109.5C9—C10—H10119.9
C3—C4—H4C109.5C10—C11—C6119.5 (2)
H4A—C4—H4C109.5C10—C11—H11120.2
H4B—C4—H4C109.5C6—C11—H11120.2
N2—C5—H5A109.5C1—N1—N2110.69 (18)
N2—C5—H5B109.5C1—N1—C6125.93 (19)
H5A—C5—H5B109.5N2—N1—C6119.71 (19)
N2—C5—H5C109.5C3—N2—N1104.66 (18)
H5A—C5—H5C109.5C3—N2—C5116.7 (2)
H5B—C5—H5C109.5N1—N2—C5110.97 (18)
C7—C6—C11120.5 (2)C2—N3—H3A121 (2)
C7—C6—N1121.2 (2)C2—N3—H3B115 (2)
C11—C6—N1118.3 (2)H3A—N3—H3B119 (3)
O1—C1—C2—C3174.7 (3)O1—C1—N1—N2171.4 (2)
N1—C1—C2—C32.7 (3)C2—C1—N1—N26.1 (3)
O1—C1—C2—N30.1 (4)O1—C1—N1—C613.3 (4)
N1—C1—C2—N3177.5 (2)C2—C1—N1—C6164.3 (2)
N3—C2—C3—N2172.3 (3)C7—C6—N1—C1127.3 (3)
C1—C2—C3—N21.7 (3)C11—C6—N1—C152.5 (3)
N3—C2—C3—C43.7 (5)C7—C6—N1—N229.0 (3)
C1—C2—C3—C4177.8 (3)C11—C6—N1—N2151.1 (2)
C11—C6—C7—C80.8 (4)C2—C3—N2—N15.3 (3)
N1—C6—C7—C8179.1 (2)C4—C3—N2—N1178.2 (2)
C6—C7—C8—C90.2 (4)C2—C3—N2—C5128.4 (2)
C7—C8—C9—C100.3 (4)C4—C3—N2—C555.1 (3)
C8—C9—C10—C110.9 (4)C1—N1—N2—C37.1 (3)
C9—C10—C11—C61.5 (4)C6—N1—N2—C3166.8 (2)
C7—C6—C11—C101.4 (4)C1—N1—N2—C5133.8 (2)
N1—C6—C11—C10178.4 (2)C6—N1—N2—C566.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.86 (4)2.15 (4)2.999 (3)170 (3)
Symmetry code: (i) xy, x1, z+1/6.
(II) (Z)-Methyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]but-2-enoate top
Crystal data top
C16H19N3O3F(000) = 640
Mr = 301.34Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6999 reflections
a = 11.2061 (14) Åθ = 3.3–28.3°
b = 7.4638 (8) ŵ = 0.09 mm1
c = 19.044 (2) ÅT = 173 K
β = 106.655 (4)°Plate, colourless
V = 1526.0 (3) Å30.42 × 0.33 × 0.13 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
3114 reflections with I > 2σ(I)
ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 3.5°
Tmin = 0.96, Tmax = 0.99h = 1414
12126 measured reflectionsk = 98
3670 independent reflectionsl = 2325
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.4578P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.32 e Å3
3670 reflectionsΔρmin = 0.25 e Å3
207 parameters
Crystal data top
C16H19N3O3V = 1526.0 (3) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2061 (14) ŵ = 0.09 mm1
b = 7.4638 (8) ÅT = 173 K
c = 19.044 (2) Å0.42 × 0.33 × 0.13 mm
β = 106.655 (4)°
Data collection top
Bruker D8 Venture Photon
diffractometer
3670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3114 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.018
12126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3670 reflectionsΔρmin = 0.25 e Å3
207 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33084 (10)0.54325 (15)0.48152 (6)0.0223 (2)
C20.27364 (10)0.42379 (15)0.42209 (6)0.0222 (2)
C30.27806 (10)0.25393 (15)0.44904 (6)0.0215 (2)
C40.23794 (12)0.08445 (16)0.40829 (7)0.0300 (3)
H4A0.17940.11140.36040.045*
H4B0.19710.00770.43620.045*
H4C0.31080.02240.40140.045*
C50.40900 (12)0.11438 (15)0.56482 (6)0.0274 (3)
H5A0.37910.00260.54360.041*
H5B0.40790.11760.61610.041*
H5C0.49430.13360.56240.041*
C60.36757 (10)0.49332 (14)0.61445 (6)0.0210 (2)
C70.28437 (11)0.42183 (16)0.64849 (6)0.0258 (2)
H70.23110.32580.62640.031*
C80.27954 (12)0.49164 (18)0.71511 (7)0.0310 (3)
H80.2230.44260.73880.037*
C90.35629 (12)0.63190 (17)0.74739 (7)0.0311 (3)
H90.35140.68070.79260.037*
C100.44014 (12)0.70079 (17)0.71360 (7)0.0320 (3)
H100.49350.79640.7360.038*
C110.44716 (11)0.63159 (16)0.64722 (7)0.0271 (3)
H110.50570.67830.62450.032*
C120.11810 (10)0.58614 (15)0.32668 (6)0.0229 (2)
C130.05629 (12)0.64069 (17)0.38326 (7)0.0295 (3)
H13A0.02340.53430.40140.044*
H13B0.01210.72350.36140.044*
H13C0.11710.70.4240.044*
C140.07240 (11)0.64379 (16)0.25596 (6)0.0255 (2)
H140.00370.7240.24440.031*
C150.12353 (11)0.58856 (16)0.19846 (6)0.0263 (3)
C160.11845 (15)0.6344 (2)0.07489 (7)0.0453 (4)
H16A0.2040.67980.08680.068*
H16B0.06770.69260.03020.068*
H16C0.11850.50460.06710.068*
N10.36827 (9)0.43209 (12)0.54355 (5)0.0218 (2)
N20.32779 (9)0.25576 (12)0.52354 (5)0.0216 (2)
N30.21884 (10)0.47652 (13)0.34857 (5)0.0253 (2)
H30.2528 (14)0.447 (2)0.3147 (9)0.035 (4)*
O10.34267 (8)0.70732 (11)0.48366 (5)0.0302 (2)
O20.20659 (9)0.47876 (12)0.20326 (5)0.0332 (2)
O30.06747 (9)0.67266 (14)0.13427 (5)0.0355 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (5)0.0195 (5)0.0241 (5)0.0012 (4)0.0086 (4)0.0031 (4)
C20.0260 (5)0.0209 (5)0.0202 (5)0.0036 (4)0.0073 (4)0.0026 (4)
C30.0229 (5)0.0204 (5)0.0212 (5)0.0033 (4)0.0063 (4)0.0003 (4)
C40.0391 (7)0.0209 (5)0.0253 (6)0.0030 (5)0.0015 (5)0.0028 (4)
C50.0337 (6)0.0195 (5)0.0260 (6)0.0054 (5)0.0035 (5)0.0041 (4)
C60.0216 (5)0.0188 (5)0.0203 (5)0.0033 (4)0.0026 (4)0.0004 (4)
C70.0251 (5)0.0259 (6)0.0252 (6)0.0028 (4)0.0054 (4)0.0021 (4)
C80.0312 (6)0.0364 (7)0.0273 (6)0.0017 (5)0.0111 (5)0.0001 (5)
C90.0352 (6)0.0337 (6)0.0217 (6)0.0075 (5)0.0036 (5)0.0046 (5)
C100.0334 (6)0.0281 (6)0.0288 (6)0.0026 (5)0.0002 (5)0.0064 (5)
C110.0254 (6)0.0255 (6)0.0289 (6)0.0031 (4)0.0056 (5)0.0014 (5)
C120.0247 (5)0.0184 (5)0.0248 (6)0.0021 (4)0.0056 (4)0.0002 (4)
C130.0282 (6)0.0330 (6)0.0280 (6)0.0030 (5)0.0094 (5)0.0002 (5)
C140.0245 (5)0.0240 (5)0.0256 (6)0.0018 (4)0.0037 (4)0.0035 (4)
C150.0289 (6)0.0250 (6)0.0220 (6)0.0058 (5)0.0026 (4)0.0021 (4)
C160.0520 (9)0.0604 (10)0.0236 (6)0.0095 (7)0.0108 (6)0.0056 (6)
N10.0281 (5)0.0153 (4)0.0215 (5)0.0012 (4)0.0065 (4)0.0003 (3)
N20.0292 (5)0.0146 (4)0.0198 (4)0.0006 (4)0.0048 (4)0.0006 (3)
N30.0329 (5)0.0249 (5)0.0190 (5)0.0084 (4)0.0087 (4)0.0040 (4)
O10.0402 (5)0.0173 (4)0.0325 (5)0.0024 (3)0.0092 (4)0.0034 (3)
O20.0425 (5)0.0301 (5)0.0275 (4)0.0053 (4)0.0111 (4)0.0002 (4)
O30.0349 (5)0.0464 (6)0.0231 (4)0.0012 (4)0.0048 (4)0.0098 (4)
Geometric parameters (Å, º) top
C1—O11.2312 (14)C9—C101.3812 (19)
C1—N11.4057 (14)C9—H90.95
C1—C21.4390 (16)C10—C111.3887 (18)
C2—C31.3633 (15)C10—H100.95
C2—N31.4141 (14)C11—H110.95
C3—N21.3677 (14)C12—N31.3593 (15)
C3—C41.4848 (16)C12—C141.3659 (16)
C4—H4A0.98C12—C131.4948 (16)
C4—H4B0.98C13—H13A0.98
C4—H4C0.98C13—H13B0.98
C5—N21.4662 (14)C13—H13C0.98
C5—H5A0.98C14—C151.4343 (17)
C5—H5B0.98C14—H140.95
C5—H5C0.98C15—O21.2237 (15)
C6—C71.3860 (16)C15—O31.3575 (14)
C6—C111.3895 (16)C16—O31.4343 (17)
C6—N11.4276 (14)C16—H16A0.98
C7—C81.3868 (17)C16—H16B0.98
C7—H70.95C16—H16C0.98
C8—C91.3822 (18)N1—N21.4086 (12)
C8—H80.95N3—H30.865 (15)
O1—C1—N1123.77 (10)C11—C10—H10119.7
O1—C1—C2131.43 (11)C10—C11—C6119.24 (11)
N1—C1—C2104.70 (9)C10—C11—H11120.4
C3—C2—N3126.17 (10)C6—C11—H11120.4
C3—C2—C1108.67 (10)N3—C12—C14122.39 (11)
N3—C2—C1125.13 (10)N3—C12—C13117.29 (10)
C2—C3—N2109.96 (10)C14—C12—C13120.31 (11)
C2—C3—C4128.51 (10)C12—C13—H13A109.5
N2—C3—C4121.53 (10)C12—C13—H13B109.5
C3—C4—H4A109.5H13A—C13—H13B109.5
C3—C4—H4B109.5C12—C13—H13C109.5
H4A—C4—H4B109.5H13A—C13—H13C109.5
C3—C4—H4C109.5H13B—C13—H13C109.5
H4A—C4—H4C109.5C12—C14—C15122.91 (11)
H4B—C4—H4C109.5C12—C14—H14118.5
N2—C5—H5A109.5C15—C14—H14118.5
N2—C5—H5B109.5O2—C15—O3121.51 (11)
H5A—C5—H5B109.5O2—C15—C14126.67 (11)
N2—C5—H5C109.5O3—C15—C14111.82 (11)
H5A—C5—H5C109.5O3—C16—H16A109.5
H5B—C5—H5C109.5O3—C16—H16B109.5
C7—C6—C11120.47 (11)H16A—C16—H16B109.5
C7—C6—N1120.39 (10)O3—C16—H16C109.5
C11—C6—N1119.06 (10)H16A—C16—H16C109.5
C6—C7—C8119.41 (11)H16B—C16—H16C109.5
C6—C7—H7120.3C1—N1—N2109.19 (8)
C8—C7—H7120.3C1—N1—C6121.65 (9)
C9—C8—C7120.59 (12)N2—N1—C6117.80 (9)
C9—C8—H8119.7C3—N2—N1107.09 (8)
C7—C8—H8119.7C3—N2—C5123.70 (9)
C10—C9—C8119.64 (11)N1—N2—C5115.16 (9)
C10—C9—H9120.2C12—N3—C2123.92 (10)
C8—C9—H9120.2C12—N3—H3115.2 (10)
C9—C10—C11120.61 (12)C2—N3—H3120.6 (10)
C9—C10—H10119.7C15—O3—C16115.58 (11)
O1—C1—C2—C3176.21 (12)C2—C1—N1—N23.94 (11)
N1—C1—C2—C30.18 (12)O1—C1—N1—C630.18 (16)
O1—C1—C2—N32.0 (2)C2—C1—N1—C6146.57 (10)
N1—C1—C2—N3178.38 (10)C7—C6—N1—C1112.10 (12)
N3—C2—C3—N2174.40 (10)C11—C6—N1—C164.76 (14)
C1—C2—C3—N23.78 (13)C7—C6—N1—N227.50 (14)
N3—C2—C3—C45.9 (2)C11—C6—N1—N2155.64 (10)
C1—C2—C3—C4175.94 (11)C2—C3—N2—N16.19 (12)
C11—C6—C7—C81.14 (17)C4—C3—N2—N1173.56 (10)
N1—C6—C7—C8175.67 (10)C2—C3—N2—C5143.89 (11)
C6—C7—C8—C90.34 (18)C4—C3—N2—C535.87 (16)
C7—C8—C9—C101.23 (19)C1—N1—N2—C36.29 (12)
C8—C9—C10—C110.63 (19)C6—N1—N2—C3150.55 (9)
C9—C10—C11—C60.83 (19)C1—N1—N2—C5148.07 (10)
C7—C6—C11—C101.73 (17)C6—N1—N2—C567.67 (12)
N1—C6—C11—C10175.13 (11)C14—C12—N3—C2175.65 (11)
N3—C12—C14—C152.42 (18)C13—C12—N3—C25.27 (17)
C13—C12—C14—C15176.63 (11)C3—C2—N3—C12115.01 (14)
C12—C14—C15—O24.5 (2)C1—C2—N3—C1262.89 (16)
C12—C14—C15—O3176.07 (11)O2—C15—O3—C164.56 (17)
O1—C1—N1—N2172.80 (10)C14—C15—O3—C16176.01 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.865 (15)2.048 (16)2.7312 (13)135 (1)
(III) (Z)-Ethyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]but-2-enoate top
Crystal data top
C17H21N3O3F(000) = 672
Mr = 315.37Dx = 1.283 Mg m3
Dm = 0 Mg m3
Dm measured by ?
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9952 reflections
a = 13.427 (2) Åθ = 3.4–28.3°
b = 10.1086 (14) ŵ = 0.09 mm1
c = 12.2801 (18) ÅT = 173 K
β = 101.690 (5)°Block, brown
V = 1632.2 (4) Å30.42 × 0.39 × 0.31 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
3494 reflections with I > 2σ(I)
ω scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 3.4°
Tmin = 0.96, Tmax = 0.97h = 1717
20796 measured reflectionsk = 1313
3921 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.4416P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.30 e Å3
3921 reflectionsΔρmin = 0.26 e Å3
216 parameters
Crystal data top
C17H21N3O3V = 1632.2 (4) Å3
Mr = 315.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.427 (2) ŵ = 0.09 mm1
b = 10.1086 (14) ÅT = 173 K
c = 12.2801 (18) Å0.42 × 0.39 × 0.31 mm
β = 101.690 (5)°
Data collection top
Bruker D8 Venture Photon
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3494 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.97Rint = 0.021
20796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3921 reflectionsΔρmin = 0.26 e Å3
216 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50682 (8)0.24189 (10)0.49565 (8)0.0220 (2)
C20.56615 (8)0.34047 (10)0.45208 (8)0.0224 (2)
C30.50318 (8)0.41389 (10)0.37465 (8)0.0230 (2)
C40.52683 (9)0.52616 (11)0.30537 (10)0.0307 (2)
H4A0.59580.55840.33530.046*
H4B0.47790.59780.30660.046*
H4C0.52230.4960.22870.046*
C50.33522 (9)0.36253 (12)0.25646 (9)0.0298 (2)
H5A0.33170.4490.21970.045*
H5B0.26730.33730.2670.045*
H5C0.36010.29620.21020.045*
C60.31891 (8)0.20442 (10)0.45872 (8)0.0218 (2)
C70.24395 (8)0.28769 (11)0.48285 (9)0.0262 (2)
H70.25160.3810.480.031*
C80.15768 (9)0.23323 (13)0.51115 (10)0.0326 (3)
H80.10570.28930.52730.039*
C90.14749 (9)0.09698 (14)0.51584 (10)0.0357 (3)
H90.08890.05980.53610.043*
C100.22245 (10)0.01499 (12)0.49106 (10)0.0342 (3)
H100.21460.07830.49390.041*
C110.30883 (9)0.06761 (11)0.46209 (9)0.0273 (2)
H110.36020.01130.44490.033*
C120.74722 (8)0.34228 (10)0.44013 (9)0.0248 (2)
C130.72015 (10)0.29611 (16)0.32186 (11)0.0412 (3)
H13A0.67070.22390.31580.062*
H13B0.78150.26460.29840.062*
H13C0.69050.36970.27410.062*
C140.84661 (8)0.36475 (11)0.48936 (9)0.0265 (2)
H140.89710.3530.44610.032*
C150.87833 (8)0.40522 (10)0.60321 (9)0.0235 (2)
C161.02030 (9)0.46559 (14)0.74458 (10)0.0371 (3)
H16A1.09370.44380.76360.044*
H16B0.98570.41420.79470.044*
C171.00661 (11)0.61014 (14)0.76352 (12)0.0419 (3)
H17A1.03760.66150.71140.063*
H17B1.03940.6330.83990.063*
H17C0.93390.63060.75170.063*
N10.40925 (7)0.25677 (9)0.43186 (7)0.0237 (2)
N20.40470 (7)0.37017 (9)0.36466 (7)0.0229 (2)
N30.67072 (7)0.35975 (10)0.49527 (8)0.0250 (2)
H30.6905 (13)0.3796 (17)0.5667 (15)0.049 (4)*
O10.53027 (6)0.16475 (8)0.57443 (6)0.02857 (19)
O20.82303 (6)0.41981 (8)0.67041 (6)0.02946 (19)
O30.97998 (6)0.42703 (9)0.63075 (7)0.0325 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (5)0.0245 (5)0.0215 (4)0.0030 (4)0.0030 (4)0.0016 (4)
C20.0207 (5)0.0253 (5)0.0215 (4)0.0001 (4)0.0048 (4)0.0035 (4)
C30.0244 (5)0.0239 (5)0.0214 (5)0.0012 (4)0.0066 (4)0.0027 (4)
C40.0361 (6)0.0269 (5)0.0300 (5)0.0004 (4)0.0093 (5)0.0033 (4)
C50.0282 (6)0.0387 (6)0.0201 (5)0.0037 (4)0.0009 (4)0.0012 (4)
C60.0187 (5)0.0265 (5)0.0191 (4)0.0003 (4)0.0011 (4)0.0006 (4)
C70.0238 (5)0.0271 (5)0.0267 (5)0.0033 (4)0.0028 (4)0.0004 (4)
C80.0209 (5)0.0469 (7)0.0299 (6)0.0038 (5)0.0049 (4)0.0014 (5)
C90.0252 (6)0.0515 (7)0.0295 (6)0.0124 (5)0.0030 (4)0.0033 (5)
C100.0366 (6)0.0303 (6)0.0326 (6)0.0097 (5)0.0007 (5)0.0026 (5)
C110.0275 (5)0.0261 (5)0.0264 (5)0.0018 (4)0.0011 (4)0.0011 (4)
C120.0247 (5)0.0247 (5)0.0256 (5)0.0008 (4)0.0062 (4)0.0040 (4)
C130.0280 (6)0.0633 (9)0.0321 (6)0.0019 (6)0.0058 (5)0.0218 (6)
C140.0222 (5)0.0315 (5)0.0268 (5)0.0000 (4)0.0074 (4)0.0044 (4)
C150.0217 (5)0.0218 (5)0.0264 (5)0.0001 (4)0.0033 (4)0.0020 (4)
C160.0283 (6)0.0457 (7)0.0326 (6)0.0014 (5)0.0047 (5)0.0058 (5)
C170.0436 (7)0.0443 (7)0.0383 (7)0.0091 (6)0.0095 (6)0.0053 (6)
N10.0194 (4)0.0267 (4)0.0242 (4)0.0026 (3)0.0025 (3)0.0058 (3)
N20.0233 (4)0.0255 (4)0.0194 (4)0.0023 (3)0.0028 (3)0.0034 (3)
N30.0198 (4)0.0335 (5)0.0215 (4)0.0023 (3)0.0035 (3)0.0047 (3)
O10.0248 (4)0.0322 (4)0.0275 (4)0.0056 (3)0.0024 (3)0.0074 (3)
O20.0265 (4)0.0387 (5)0.0237 (4)0.0019 (3)0.0061 (3)0.0003 (3)
O30.0213 (4)0.0433 (5)0.0315 (4)0.0017 (3)0.0018 (3)0.0070 (3)
Geometric parameters (Å, º) top
C1—O11.2328 (13)C10—C111.3864 (17)
C1—N11.3916 (13)C10—H100.95
C1—C21.4446 (14)C11—H110.95
C2—C31.3579 (15)C12—N31.3515 (14)
C2—N31.4102 (14)C12—C141.3679 (16)
C3—N21.3759 (14)C12—C131.4985 (15)
C3—C41.4906 (15)C13—H13A0.98
C4—H4A0.98C13—H13B0.98
C4—H4B0.98C13—H13C0.98
C4—H4C0.98C14—C151.4360 (15)
C5—N21.4627 (13)C14—H140.95
C5—H5A0.98C15—O21.2258 (13)
C5—H5B0.98C15—O31.3559 (13)
C5—H5C0.98C16—O31.4464 (14)
C6—C71.3893 (15)C16—C171.4967 (19)
C6—C111.3910 (15)C16—H16A0.99
C6—N11.4220 (13)C16—H16B0.99
C7—C81.3887 (16)C17—H17A0.98
C7—H70.95C17—H17B0.98
C8—C91.3864 (19)C17—H17C0.98
C8—H80.95N1—N21.4066 (12)
C9—C101.3844 (19)N3—H30.886 (18)
C9—H90.95
O1—C1—N1124.87 (10)C6—C11—H11120.6
O1—C1—C2130.90 (10)N3—C12—C14121.96 (10)
N1—C1—C2104.11 (9)N3—C12—C13117.81 (10)
C3—C2—N3128.24 (10)C14—C12—C13120.22 (10)
C3—C2—C1108.94 (9)C12—C13—H13A109.5
N3—C2—C1122.53 (9)C12—C13—H13B109.5
C2—C3—N2109.74 (9)H13A—C13—H13B109.5
C2—C3—C4129.89 (10)C12—C13—H13C109.5
N2—C3—C4120.37 (9)H13A—C13—H13C109.5
C3—C4—H4A109.5H13B—C13—H13C109.5
C3—C4—H4B109.5C12—C14—C15123.23 (10)
H4A—C4—H4B109.5C12—C14—H14118.4
C3—C4—H4C109.5C15—C14—H14118.4
H4A—C4—H4C109.5O2—C15—O3121.93 (10)
H4B—C4—H4C109.5O2—C15—C14126.09 (10)
N2—C5—H5A109.5O3—C15—C14111.98 (9)
N2—C5—H5B109.5O3—C16—C17112.31 (11)
H5A—C5—H5B109.5O3—C16—H16A109.1
N2—C5—H5C109.5C17—C16—H16A109.1
H5A—C5—H5C109.5O3—C16—H16B109.1
H5B—C5—H5C109.5C17—C16—H16B109.1
C7—C6—C11121.12 (10)H16A—C16—H16B107.9
C7—C6—N1120.86 (10)C16—C17—H17A109.5
C11—C6—N1118.00 (9)C16—C17—H17B109.5
C8—C7—C6119.36 (11)H17A—C17—H17B109.5
C8—C7—H7120.3C16—C17—H17C109.5
C6—C7—H7120.3H17A—C17—H17C109.5
C9—C8—C7119.90 (11)H17B—C17—H17C109.5
C9—C8—H8120C1—N1—N2110.02 (8)
C7—C8—H8120C1—N1—C6125.40 (9)
C10—C9—C8120.22 (11)N2—N1—C6120.11 (8)
C10—C9—H9119.9C3—N2—N1106.42 (8)
C8—C9—H9119.9C3—N2—C5121.50 (9)
C9—C10—C11120.66 (11)N1—N2—C5115.71 (9)
C9—C10—H10119.7C12—N3—C2126.39 (9)
C11—C10—H10119.7C12—N3—H3114.8 (11)
C10—C11—C6118.73 (10)C2—N3—H3118.6 (11)
C10—C11—H11120.6C15—O3—C16116.46 (9)
O1—C1—C2—C3171.19 (11)O1—C1—N1—C611.97 (17)
N1—C1—C2—C34.94 (11)C2—C1—N1—C6164.46 (9)
O1—C1—C2—N33.12 (17)C7—C6—N1—C1114.34 (12)
N1—C1—C2—N3179.25 (9)C11—C6—N1—C164.49 (14)
N3—C2—C3—N2173.49 (9)C7—C6—N1—N239.49 (14)
C1—C2—C3—N20.40 (11)C11—C6—N1—N2141.68 (10)
N3—C2—C3—C46.68 (18)C2—C3—N2—N15.57 (11)
C1—C2—C3—C4179.43 (10)C4—C3—N2—N1174.28 (9)
C11—C6—C7—C80.22 (16)C2—C3—N2—C5140.90 (10)
N1—C6—C7—C8178.58 (9)C4—C3—N2—C538.95 (14)
C6—C7—C8—C90.46 (17)C1—N1—N2—C38.90 (11)
C7—C8—C9—C100.80 (18)C6—N1—N2—C3166.40 (9)
C8—C9—C10—C110.47 (18)C1—N1—N2—C5147.19 (9)
C9—C10—C11—C60.20 (17)C6—N1—N2—C555.31 (12)
C7—C6—C11—C100.54 (16)C14—C12—N3—C2179.44 (10)
N1—C6—C11—C10178.29 (9)C13—C12—N3—C20.92 (17)
N3—C12—C14—C151.55 (18)C3—C2—N3—C1269.82 (16)
C13—C12—C14—C15178.08 (11)C1—C2—N3—C12117.04 (12)
C12—C14—C15—O22.80 (18)O2—C15—O3—C161.37 (16)
C12—C14—C15—O3177.10 (10)C14—C15—O3—C16178.72 (10)
O1—C1—N1—N2168.01 (10)C17—C16—O3—C1581.62 (13)
C2—C1—N1—N28.42 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.886 (18)2.009 (18)2.7192 (12)136 (1)
C11—H11···O1i0.952.353.2829 (14)167
C8—H8···O3ii0.952.73.6206 (15)164
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
(IV) Ethyl 2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohex-1-enecarboxylate top
Crystal data top
C20H25N3O3Z = 2
Mr = 355.43F(000) = 380
Triclinic, P1Dx = 1.274 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3857 (2) ÅCell parameters from 8186 reflections
b = 9.2159 (3) Åθ = 2.2–28.3°
c = 13.7494 (4) ŵ = 0.09 mm1
α = 85.898 (1)°T = 173 K
β = 84.499 (1)°Plate, colourless
γ = 85.210 (1)°0.3 × 0.3 × 0.19 mm
V = 926.40 (5) Å3
Data collection top
Bruker D8 Venture Photon
diffractometer
3628 reflections with I > 2σ(I)
ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 1.5°
Tmin = 0.95, Tmax = 0.96h = 99
20559 measured reflectionsk = 1211
4466 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2134P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.24 e Å3
4466 reflectionsΔρmin = 0.23 e Å3
242 parameters
Crystal data top
C20H25N3O3γ = 85.210 (1)°
Mr = 355.43V = 926.40 (5) Å3
Triclinic, P1Z = 2
a = 7.3857 (2) ÅMo Kα radiation
b = 9.2159 (3) ŵ = 0.09 mm1
c = 13.7494 (4) ÅT = 173 K
α = 85.898 (1)°0.3 × 0.3 × 0.19 mm
β = 84.499 (1)°
Data collection top
Bruker D8 Venture Photon
diffractometer
4466 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3628 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.043
20559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
4466 reflectionsΔρmin = 0.23 e Å3
242 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69149 (16)0.77040 (13)0.44703 (8)0.0257 (2)
C20.56088 (16)0.70172 (13)0.39711 (8)0.0253 (2)
C30.41466 (16)0.67442 (12)0.46160 (8)0.0252 (2)
C40.24182 (17)0.61259 (14)0.44459 (9)0.0325 (3)
H4A0.25020.58070.37770.049*
H4B0.14020.68730.45350.049*
H4C0.22110.5290.49130.049*
C50.29521 (17)0.78324 (14)0.61675 (9)0.0302 (3)
H5A0.26660.88360.59090.045*
H5B0.33220.78430.68330.045*
H5C0.1870.72810.61820.045*
C60.70009 (16)0.81214 (13)0.62319 (8)0.0249 (2)
C70.69056 (18)0.71728 (13)0.70625 (8)0.0292 (3)
H70.62080.63480.7090.035*
C80.78386 (19)0.74410 (14)0.78510 (9)0.0341 (3)
H80.77790.67970.84220.041*
C90.88554 (19)0.86411 (15)0.78110 (9)0.0345 (3)
H90.94940.88180.83530.041*
C100.89427 (17)0.95840 (14)0.69818 (9)0.0320 (3)
H100.96391.0410.69570.038*
C110.80186 (17)0.93284 (13)0.61877 (9)0.0285 (3)
H110.80810.99740.56170.034*
C120.63541 (15)0.74644 (12)0.22002 (8)0.0239 (2)
C130.68815 (15)0.69490 (12)0.12974 (8)0.0236 (2)
C140.73716 (17)0.79641 (13)0.04140 (8)0.0268 (3)
H14A0.63820.80230.00280.032*
H14B0.84990.75510.00530.032*
C150.7664 (2)0.94900 (14)0.06831 (9)0.0339 (3)
H15A0.88410.94810.09740.041*
H15B0.77131.01590.00860.041*
C160.6127 (2)1.00262 (14)0.14074 (9)0.0346 (3)
H16A0.49440.99920.1130.042*
H16B0.62711.1050.15390.042*
C170.61487 (18)0.90701 (13)0.23578 (8)0.0292 (3)
H17A0.71690.93160.27180.035*
H17B0.49990.92910.27710.035*
C180.69463 (16)0.54040 (13)0.11583 (8)0.0253 (2)
C190.74116 (19)0.35824 (13)0.00053 (9)0.0318 (3)
H19A0.61930.32180.01850.038*
H19B0.83070.29880.03880.038*
C200.7937 (2)0.34768 (15)0.10745 (10)0.0365 (3)
H20A0.70420.4070.14460.055*
H20B0.79630.24570.12380.055*
H20C0.91480.38350.12430.055*
N10.60598 (13)0.78805 (11)0.54063 (7)0.0262 (2)
N20.44476 (13)0.71398 (11)0.55359 (7)0.0256 (2)
N30.59282 (14)0.65599 (12)0.30077 (7)0.0273 (2)
H30.608 (2)0.5608 (18)0.2902 (11)0.043 (4)*
O10.84587 (12)0.80604 (10)0.41948 (6)0.0331 (2)
O20.66354 (13)0.44227 (9)0.17906 (6)0.0339 (2)
O30.73861 (12)0.50993 (9)0.02103 (6)0.0285 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (6)0.0280 (6)0.0186 (5)0.0005 (5)0.0004 (4)0.0019 (4)
C20.0295 (6)0.0264 (6)0.0192 (5)0.0004 (5)0.0007 (4)0.0004 (4)
C30.0281 (6)0.0235 (5)0.0235 (5)0.0003 (5)0.0025 (4)0.0013 (4)
C40.0302 (7)0.0350 (7)0.0330 (6)0.0043 (5)0.0030 (5)0.0048 (5)
C50.0310 (6)0.0336 (6)0.0248 (6)0.0015 (5)0.0049 (5)0.0048 (5)
C60.0273 (6)0.0282 (6)0.0191 (5)0.0024 (5)0.0002 (4)0.0031 (4)
C70.0403 (7)0.0270 (6)0.0208 (5)0.0090 (5)0.0002 (5)0.0023 (4)
C80.0487 (8)0.0343 (7)0.0200 (5)0.0080 (6)0.0041 (5)0.0002 (5)
C90.0396 (7)0.0406 (7)0.0255 (6)0.0087 (6)0.0060 (5)0.0064 (5)
C100.0315 (7)0.0335 (7)0.0320 (6)0.0109 (5)0.0017 (5)0.0048 (5)
C110.0306 (6)0.0289 (6)0.0252 (6)0.0048 (5)0.0016 (5)0.0022 (5)
C120.0230 (6)0.0277 (6)0.0207 (5)0.0016 (5)0.0029 (4)0.0010 (4)
C130.0250 (6)0.0259 (6)0.0200 (5)0.0034 (4)0.0022 (4)0.0000 (4)
C140.0329 (6)0.0278 (6)0.0197 (5)0.0048 (5)0.0017 (4)0.0002 (4)
C150.0485 (8)0.0283 (6)0.0249 (6)0.0096 (6)0.0002 (5)0.0010 (5)
C160.0519 (8)0.0255 (6)0.0257 (6)0.0014 (6)0.0043 (5)0.0001 (5)
C170.0378 (7)0.0272 (6)0.0219 (5)0.0015 (5)0.0020 (5)0.0023 (4)
C180.0252 (6)0.0288 (6)0.0218 (5)0.0020 (5)0.0009 (4)0.0015 (4)
C190.0383 (7)0.0245 (6)0.0326 (6)0.0015 (5)0.0018 (5)0.0051 (5)
C200.0421 (8)0.0344 (7)0.0333 (7)0.0002 (6)0.0021 (6)0.0097 (5)
N10.0273 (5)0.0334 (5)0.0181 (4)0.0078 (4)0.0008 (4)0.0008 (4)
N20.0250 (5)0.0302 (5)0.0215 (5)0.0047 (4)0.0020 (4)0.0032 (4)
N30.0367 (6)0.0263 (5)0.0181 (5)0.0020 (4)0.0005 (4)0.0010 (4)
O10.0283 (5)0.0460 (5)0.0241 (4)0.0077 (4)0.0016 (3)0.0034 (4)
O20.0481 (6)0.0267 (4)0.0258 (4)0.0057 (4)0.0022 (4)0.0016 (3)
O30.0378 (5)0.0250 (4)0.0225 (4)0.0034 (4)0.0010 (3)0.0040 (3)
Geometric parameters (Å, º) top
C1—O11.2302 (14)C12—C131.3707 (15)
C1—N11.3924 (14)C12—C171.5040 (16)
C1—C21.4468 (17)C13—C181.4464 (16)
C2—C31.3586 (17)C13—C141.5137 (15)
C2—N31.4110 (14)C14—C151.5171 (17)
C3—N21.3840 (14)C14—H14A0.99
C3—C41.4856 (17)C14—H14B0.99
C4—H4A0.98C15—C161.5115 (19)
C4—H4B0.98C15—H15A0.99
C4—H4C0.98C15—H15B0.99
C5—N21.4694 (15)C16—C171.5235 (16)
C5—H5A0.98C16—H16A0.99
C5—H5B0.98C16—H16B0.99
C5—H5C0.98C17—H17A0.99
C6—C71.3876 (16)C17—H17B0.99
C6—C111.3882 (16)C18—O21.2289 (14)
C6—N11.4261 (14)C18—O31.3562 (13)
C7—C81.3862 (17)C19—O31.4439 (14)
C7—H70.95C19—C201.5061 (18)
C8—C91.3828 (18)C19—H19A0.99
C8—H80.95C19—H19B0.99
C9—C101.3830 (18)C20—H20A0.98
C9—H90.95C20—H20B0.98
C10—C111.3856 (17)C20—H20C0.98
C10—H100.95N1—N21.4118 (13)
C11—H110.95N3—H30.896 (16)
C12—N31.3679 (15)
O1—C1—N1124.35 (11)C15—C14—H14A109
O1—C1—C2131.25 (11)C13—C14—H14B109
N1—C1—C2104.39 (10)C15—C14—H14B109
C3—C2—N3126.34 (11)H14A—C14—H14B107.8
C3—C2—C1108.72 (10)C16—C15—C14110.09 (11)
N3—C2—C1124.54 (10)C16—C15—H15A109.6
C2—C3—N2109.92 (10)C14—C15—H15A109.6
C2—C3—C4129.23 (11)C16—C15—H15B109.6
N2—C3—C4120.85 (10)C14—C15—H15B109.6
C3—C4—H4A109.5H15A—C15—H15B108.2
C3—C4—H4B109.5C15—C16—C17109.66 (11)
H4A—C4—H4B109.5C15—C16—H16A109.7
C3—C4—H4C109.5C17—C16—H16A109.7
H4A—C4—H4C109.5C15—C16—H16B109.7
H4B—C4—H4C109.5C17—C16—H16B109.7
N2—C5—H5A109.5H16A—C16—H16B108.2
N2—C5—H5B109.5C12—C17—C16113.24 (10)
H5A—C5—H5B109.5C12—C17—H17A108.9
N2—C5—H5C109.5C16—C17—H17A108.9
H5A—C5—H5C109.5C12—C17—H17B108.9
H5B—C5—H5C109.5C16—C17—H17B108.9
C7—C6—C11120.54 (11)H17A—C17—H17B107.7
C7—C6—N1120.92 (10)O2—C18—O3120.68 (10)
C11—C6—N1118.55 (10)O2—C18—C13126.86 (10)
C8—C7—C6119.34 (11)O3—C18—C13112.46 (9)
C8—C7—H7120.3O3—C19—C20107.49 (10)
C6—C7—H7120.3O3—C19—H19A110.2
C9—C8—C7120.38 (11)C20—C19—H19A110.2
C9—C8—H8119.8O3—C19—H19B110.2
C7—C8—H8119.8C20—C19—H19B110.2
C8—C9—C10120.01 (11)H19A—C19—H19B108.5
C8—C9—H9120C19—C20—H20A109.5
C10—C9—H9120C19—C20—H20B109.5
C9—C10—C11120.22 (11)H20A—C20—H20B109.5
C9—C10—H10119.9C19—C20—H20C109.5
C11—C10—H10119.9H20A—C20—H20C109.5
C10—C11—C6119.51 (11)H20B—C20—H20C109.5
C10—C11—H11120.2C1—N1—N2109.98 (9)
C6—C11—H11120.2C1—N1—C6123.86 (10)
N3—C12—C13122.39 (10)N2—N1—C6120.08 (9)
N3—C12—C17115.68 (10)C3—N2—N1105.89 (9)
C13—C12—C17121.90 (10)C3—N2—C5120.39 (10)
C12—C13—C18120.43 (10)N1—N2—C5115.15 (9)
C12—C13—C14121.70 (10)C12—N3—C2124.33 (10)
C18—C13—C14117.85 (10)C12—N3—H3114.4 (10)
C13—C14—C15112.91 (9)C2—N3—H3120.3 (10)
C13—C14—H14A109C18—O3—C19115.81 (9)
O1—C1—C2—C3175.21 (12)C12—C13—C18—O23.08 (19)
N1—C1—C2—C33.53 (13)C14—C13—C18—O2178.25 (11)
O1—C1—C2—N32.1 (2)C12—C13—C18—O3176.17 (10)
N1—C1—C2—N3176.63 (10)C14—C13—C18—O32.50 (15)
N3—C2—C3—N2169.71 (11)O1—C1—N1—N2169.93 (11)
C1—C2—C3—N23.24 (13)C2—C1—N1—N28.92 (12)
N3—C2—C3—C410.5 (2)O1—C1—N1—C617.55 (18)
C1—C2—C3—C4176.55 (12)C2—C1—N1—C6161.30 (10)
C11—C6—C7—C80.00 (19)C7—C6—N1—C1121.50 (13)
N1—C6—C7—C8179.98 (11)C11—C6—N1—C158.49 (16)
C6—C7—C8—C90.0 (2)C7—C6—N1—N228.28 (16)
C7—C8—C9—C100.1 (2)C11—C6—N1—N2151.74 (11)
C8—C9—C10—C110.2 (2)C2—C3—N2—N18.61 (13)
C9—C10—C11—C60.18 (19)C4—C3—N2—N1171.21 (10)
C7—C6—C11—C100.07 (19)C2—C3—N2—C5141.38 (11)
N1—C6—C11—C10179.95 (11)C4—C3—N2—C538.44 (16)
N3—C12—C13—C182.18 (17)C1—N1—N2—C311.00 (12)
C17—C12—C13—C18175.80 (11)C6—N1—N2—C3164.59 (10)
N3—C12—C13—C14179.20 (10)C1—N1—N2—C5146.61 (10)
C17—C12—C13—C142.82 (17)C6—N1—N2—C559.80 (14)
C12—C13—C14—C1514.10 (16)C13—C12—N3—C2171.45 (11)
C18—C13—C14—C15167.24 (11)C17—C12—N3—C210.46 (16)
C13—C14—C15—C1647.09 (14)C3—C2—N3—C12129.14 (13)
C14—C15—C16—C1763.96 (14)C1—C2—N3—C1258.97 (17)
N3—C12—C17—C16164.18 (11)O2—C18—O3—C191.53 (16)
C13—C12—C17—C1613.92 (17)C13—C18—O3—C19177.77 (10)
C15—C16—C17—C1246.68 (15)C20—C19—O3—C18179.63 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.896 (16)1.934 (16)2.6618 (13)137 (1)
(V) (Z)-Ethyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]-3-phenylacrylate top
Crystal data top
C22H23N3O3F(000) = 800
Mr = 377.43Dx = 1.32 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9961 reflections
a = 8.4851 (7) Åθ = 3.2–28.2°
b = 12.4253 (10) ŵ = 0.09 mm1
c = 18.0314 (18) ÅT = 173 K
β = 92.282 (3)°Plate, yellow
V = 1899.5 (3) Å30.44 × 0.34 × 0.11 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
3838 reflections with I > 2σ(I)
ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 3.3°
Tmin = 0.95, Tmax = 0.96h = 1011
28673 measured reflectionsk = 1616
4570 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.6436P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.28 e Å3
4570 reflectionsΔρmin = 0.19 e Å3
260 parameters
Crystal data top
C22H23N3O3V = 1899.5 (3) Å3
Mr = 377.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4851 (7) ŵ = 0.09 mm1
b = 12.4253 (10) ÅT = 173 K
c = 18.0314 (18) Å0.44 × 0.34 × 0.11 mm
β = 92.282 (3)°
Data collection top
Bruker D8 Venture Photon
diffractometer
4570 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3838 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.025
28673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
4570 reflectionsΔρmin = 0.19 e Å3
260 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73101 (12)0.24095 (9)0.38575 (6)0.0235 (2)
C20.68561 (12)0.34800 (9)0.36110 (6)0.0228 (2)
C30.79944 (12)0.38855 (9)0.31873 (6)0.0220 (2)
C40.80437 (14)0.49224 (9)0.27788 (7)0.0277 (2)
H4A0.78250.47930.22480.042*
H4B0.90910.52470.28520.042*
H4C0.72470.54120.29670.042*
C50.98523 (15)0.29227 (10)0.24187 (6)0.0289 (3)
H5A0.90370.25550.21130.043*
H5B1.07820.24580.24780.043*
H5C1.01470.35950.21760.043*
C60.99274 (12)0.14792 (9)0.37750 (6)0.0210 (2)
C71.15038 (13)0.17856 (9)0.38681 (6)0.0238 (2)
H71.18190.24970.37510.029*
C81.26092 (13)0.10407 (10)0.41337 (6)0.0285 (2)
H81.36870.12420.41940.034*
C91.21484 (15)0.00056 (10)0.43107 (6)0.0305 (3)
H91.29020.04960.45050.037*
C101.05869 (15)0.02949 (9)0.42031 (6)0.0289 (3)
H101.02750.10080.43190.035*
C110.94718 (13)0.04313 (9)0.39279 (6)0.0250 (2)
H110.84060.02150.38440.03*
C120.42177 (12)0.41268 (8)0.32552 (6)0.0226 (2)
C130.43943 (12)0.36614 (9)0.25002 (6)0.0235 (2)
C140.46922 (13)0.25684 (10)0.23929 (7)0.0287 (2)
H140.480.210.28080.034*
C150.48312 (14)0.21660 (10)0.16805 (8)0.0343 (3)
H150.50390.14220.16120.041*
C160.46709 (14)0.28360 (11)0.10689 (7)0.0356 (3)
H160.47840.25560.05840.043*
C170.43452 (14)0.39154 (11)0.11684 (7)0.0323 (3)
H170.4210.43760.0750.039*
C180.42150 (13)0.43263 (10)0.18807 (7)0.0275 (2)
H180.40010.5070.19460.033*
C190.28782 (13)0.46926 (9)0.33825 (6)0.0256 (2)
H190.20960.47280.29910.031*
C200.25582 (12)0.52413 (9)0.40659 (6)0.0249 (2)
C210.06614 (15)0.63645 (11)0.46383 (7)0.0336 (3)
H21A0.13380.7010.46980.04*
H21B0.07470.59370.51020.04*
C220.10227 (15)0.66841 (12)0.44690 (7)0.0376 (3)
H22A0.10970.70660.39930.056*
H22B0.13840.71560.48630.056*
H22C0.16850.60380.4440.056*
N10.87573 (10)0.22321 (7)0.35321 (5)0.0233 (2)
N20.92385 (10)0.31639 (7)0.31523 (5)0.02214 (19)
N30.54052 (11)0.39661 (8)0.37760 (6)0.0269 (2)
H30.5283 (17)0.4200 (12)0.4223 (9)0.036 (4)*
O10.66500 (9)0.17733 (7)0.42638 (5)0.0320 (2)
O20.34206 (10)0.52933 (8)0.46196 (5)0.0347 (2)
O30.11324 (10)0.57275 (7)0.40133 (5)0.0329 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (5)0.0287 (6)0.0236 (5)0.0013 (4)0.0002 (4)0.0024 (4)
C20.0199 (5)0.0268 (5)0.0215 (5)0.0039 (4)0.0006 (4)0.0012 (4)
C30.0213 (5)0.0244 (5)0.0199 (5)0.0033 (4)0.0027 (4)0.0004 (4)
C40.0283 (6)0.0258 (6)0.0292 (6)0.0036 (5)0.0016 (4)0.0055 (5)
C50.0313 (6)0.0319 (6)0.0240 (6)0.0048 (5)0.0058 (4)0.0021 (5)
C60.0208 (5)0.0234 (5)0.0188 (5)0.0044 (4)0.0009 (4)0.0001 (4)
C70.0224 (5)0.0250 (5)0.0239 (5)0.0017 (4)0.0014 (4)0.0008 (4)
C80.0213 (5)0.0389 (6)0.0252 (5)0.0063 (5)0.0000 (4)0.0011 (5)
C90.0328 (6)0.0344 (6)0.0245 (5)0.0153 (5)0.0026 (5)0.0029 (5)
C100.0396 (6)0.0223 (5)0.0251 (5)0.0055 (5)0.0057 (5)0.0025 (4)
C110.0266 (5)0.0249 (5)0.0236 (5)0.0003 (4)0.0020 (4)0.0001 (4)
C120.0192 (5)0.0197 (5)0.0290 (6)0.0008 (4)0.0012 (4)0.0028 (4)
C130.0155 (5)0.0251 (5)0.0296 (6)0.0002 (4)0.0004 (4)0.0016 (4)
C140.0235 (5)0.0247 (6)0.0378 (6)0.0002 (4)0.0012 (5)0.0006 (5)
C150.0272 (6)0.0277 (6)0.0482 (8)0.0001 (5)0.0039 (5)0.0099 (5)
C160.0265 (6)0.0462 (8)0.0341 (7)0.0036 (5)0.0026 (5)0.0121 (6)
C170.0257 (6)0.0413 (7)0.0296 (6)0.0025 (5)0.0026 (5)0.0020 (5)
C180.0220 (5)0.0264 (6)0.0337 (6)0.0008 (4)0.0027 (4)0.0002 (5)
C190.0194 (5)0.0260 (5)0.0310 (6)0.0020 (4)0.0027 (4)0.0022 (4)
C200.0190 (5)0.0249 (5)0.0307 (6)0.0019 (4)0.0000 (4)0.0025 (4)
C210.0328 (6)0.0391 (7)0.0286 (6)0.0108 (5)0.0015 (5)0.0093 (5)
C220.0329 (7)0.0473 (8)0.0328 (7)0.0130 (6)0.0033 (5)0.0082 (6)
N10.0193 (4)0.0233 (5)0.0275 (5)0.0018 (4)0.0025 (3)0.0065 (4)
N20.0212 (4)0.0226 (4)0.0228 (4)0.0023 (4)0.0028 (3)0.0048 (3)
N30.0224 (5)0.0351 (5)0.0231 (5)0.0094 (4)0.0017 (4)0.0018 (4)
O10.0240 (4)0.0344 (5)0.0380 (5)0.0014 (3)0.0071 (3)0.0121 (4)
O20.0266 (4)0.0490 (5)0.0282 (4)0.0089 (4)0.0028 (3)0.0001 (4)
O30.0251 (4)0.0415 (5)0.0317 (4)0.0127 (4)0.0039 (3)0.0110 (4)
Geometric parameters (Å, º) top
C1—O11.2280 (14)C12—N31.3645 (14)
C1—N11.3994 (14)C12—C131.4920 (16)
C1—C21.4497 (15)C13—C181.3929 (16)
C2—C31.3526 (15)C13—C141.3963 (16)
C2—N31.4135 (14)C14—C151.3878 (18)
C3—N21.3884 (14)C14—H140.95
C3—C41.4855 (15)C15—C161.384 (2)
C4—H4A0.98C15—H150.95
C4—H4B0.98C16—C171.3825 (19)
C4—H4C0.98C16—H160.95
C5—N21.4716 (14)C17—C181.3905 (17)
C5—H5A0.98C17—H170.95
C5—H5B0.98C18—H180.95
C5—H5C0.98C19—C201.4435 (16)
C6—C111.3890 (15)C19—H190.95
C6—C71.3945 (15)C20—O21.2159 (14)
C6—N11.4206 (13)C20—O31.3522 (13)
C7—C81.3892 (16)C21—O31.4465 (14)
C7—H70.95C21—C221.5027 (17)
C8—C91.3852 (18)C21—H21A0.99
C8—H80.95C21—H21B0.99
C9—C101.3828 (18)C22—H22A0.98
C9—H90.95C22—H22B0.98
C10—C111.3850 (16)C22—H22C0.98
C10—H100.95N1—N21.4136 (12)
C11—H110.95N3—H30.867 (16)
C12—C191.3637 (15)
O1—C1—N1125.27 (10)C14—C13—C12121.92 (10)
O1—C1—C2130.66 (10)C15—C14—C13120.08 (12)
N1—C1—C2104.05 (9)C15—C14—H14120
C3—C2—N3127.39 (10)C13—C14—H14120
C3—C2—C1109.14 (9)C16—C15—C14120.76 (12)
N3—C2—C1123.41 (10)C16—C15—H15119.6
C2—C3—N2110.27 (10)C14—C15—H15119.6
C2—C3—C4129.64 (10)C17—C16—C15119.60 (12)
N2—C3—C4120.08 (10)C17—C16—H16120.2
C3—C4—H4A109.5C15—C16—H16120.2
C3—C4—H4B109.5C16—C17—C18119.98 (12)
H4A—C4—H4B109.5C16—C17—H17120
C3—C4—H4C109.5C18—C17—H17120
H4A—C4—H4C109.5C17—C18—C13120.86 (11)
H4B—C4—H4C109.5C17—C18—H18119.6
N2—C5—H5A109.5C13—C18—H18119.6
N2—C5—H5B109.5C12—C19—C20125.00 (10)
H5A—C5—H5B109.5C12—C19—H19117.5
N2—C5—H5C109.5C20—C19—H19117.5
H5A—C5—H5C109.5O2—C20—O3122.78 (11)
H5B—C5—H5C109.5O2—C20—C19126.77 (10)
C11—C6—C7120.35 (10)O3—C20—C19110.44 (9)
C11—C6—N1118.81 (10)O3—C21—C22106.03 (10)
C7—C6—N1120.84 (10)O3—C21—H21A110.5
C8—C7—C6119.40 (11)C22—C21—H21A110.5
C8—C7—H7120.3O3—C21—H21B110.5
C6—C7—H7120.3C22—C21—H21B110.5
C9—C8—C7120.34 (11)H21A—C21—H21B108.7
C9—C8—H8119.8C21—C22—H22A109.5
C7—C8—H8119.8C21—C22—H22B109.5
C10—C9—C8119.74 (11)H22A—C22—H22B109.5
C10—C9—H9120.1C21—C22—H22C109.5
C8—C9—H9120.1H22A—C22—H22C109.5
C9—C10—C11120.76 (11)H22B—C22—H22C109.5
C9—C10—H10119.6C1—N1—N2110.45 (8)
C11—C10—H10119.6C1—N1—C6126.06 (9)
C10—C11—C6119.36 (11)N2—N1—C6118.48 (8)
C10—C11—H11120.3C3—N2—N1105.79 (8)
C6—C11—H11120.3C3—N2—C5117.99 (9)
C19—C12—N3123.86 (11)N1—N2—C5112.84 (9)
C19—C12—C13117.91 (10)C12—N3—C2122.90 (10)
N3—C12—C13118.23 (9)C12—N3—H3118.6 (10)
C18—C13—C14118.70 (11)C2—N3—H3118.4 (10)
C18—C13—C12119.35 (10)C20—O3—C21117.64 (9)
O1—C1—C2—C3177.76 (12)N3—C12—C19—C203.14 (18)
N1—C1—C2—C31.23 (12)C13—C12—C19—C20176.56 (10)
O1—C1—C2—N34.83 (19)C12—C19—C20—O20.8 (2)
N1—C1—C2—N3176.18 (10)C12—C19—C20—O3179.86 (11)
N3—C2—C3—N2179.52 (10)O1—C1—N1—N2174.85 (11)
C1—C2—C3—N22.24 (13)C2—C1—N1—N24.21 (11)
N3—C2—C3—C40.6 (2)O1—C1—N1—C620.54 (18)
C1—C2—C3—C4176.65 (11)C2—C1—N1—C6158.52 (10)
C11—C6—C7—C81.65 (16)C11—C6—N1—C147.88 (15)
N1—C6—C7—C8177.53 (10)C7—C6—N1—C1131.33 (12)
C6—C7—C8—C90.57 (17)C11—C6—N1—N2159.65 (10)
C7—C8—C9—C101.77 (17)C7—C6—N1—N221.15 (15)
C8—C9—C10—C110.75 (17)C2—C3—N2—N14.75 (12)
C9—C10—C11—C61.46 (17)C4—C3—N2—N1174.26 (9)
C7—C6—C11—C102.66 (16)C2—C3—N2—C5132.13 (10)
N1—C6—C11—C10176.55 (10)C4—C3—N2—C546.89 (14)
C19—C12—C13—C1852.83 (14)C1—N1—N2—C35.60 (11)
N3—C12—C13—C18126.89 (11)C6—N1—N2—C3162.10 (9)
C19—C12—C13—C14125.36 (12)C1—N1—N2—C5136.01 (9)
N3—C12—C13—C1454.92 (15)C6—N1—N2—C567.49 (12)
C18—C13—C14—C151.09 (16)C19—C12—N3—C2172.86 (11)
C12—C13—C14—C15179.29 (10)C13—C12—N3—C26.85 (16)
C13—C14—C15—C160.29 (18)C3—C2—N3—C1268.10 (17)
C14—C15—C16—C170.97 (18)C1—C2—N3—C12108.82 (13)
C15—C16—C17—C181.41 (18)O2—C20—O3—C212.31 (17)
C16—C17—C18—C130.60 (17)C19—C20—O3—C21176.77 (10)
C14—C13—C18—C170.65 (16)C22—C21—O3—C20173.01 (11)
C12—C13—C18—C17178.90 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.867 (16)2.224 (15)2.8413 (13)128 (1)
N3—H3···O2i0.867 (16)2.404 (16)3.1590 (14)146 (1)
C8—H8···O1ii0.952.63.5462 (15)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
(VI) 2-Cyano-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide top
Crystal data top
C14H14N4O2F(000) = 568
Mr = 270.29Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9915 reflections
a = 6.9996 (8) Åθ = 3.1–28.3°
b = 12.3350 (16) ŵ = 0.09 mm1
c = 15.8345 (19) ÅT = 173 K
β = 99.666 (4)°Needle, colourless
V = 1347.7 (3) Å30.67 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
2737 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 3.4°
Tmin = 0.98, Tmax = 0.99h = 98
19472 measured reflectionsk = 1616
3252 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3708P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
3252 reflectionsΔρmin = 0.18 e Å3
187 parameters
Crystal data top
C14H14N4O2V = 1347.7 (3) Å3
Mr = 270.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9996 (8) ŵ = 0.09 mm1
b = 12.3350 (16) ÅT = 173 K
c = 15.8345 (19) Å0.67 × 0.16 × 0.11 mm
β = 99.666 (4)°
Data collection top
Bruker D8 Venture Photon
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2737 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.023
19472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
3252 reflectionsΔρmin = 0.18 e Å3
187 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34738 (14)0.45507 (8)0.10778 (6)0.0226 (2)
C20.23701 (14)0.55169 (8)0.08681 (7)0.0231 (2)
C30.05925 (15)0.53893 (8)0.11050 (7)0.0246 (2)
C40.10439 (16)0.61652 (10)0.10627 (8)0.0327 (3)
H4A0.10010.65110.16230.049*
H4B0.22730.57760.09070.049*
H4C0.09370.67210.06310.049*
C50.05781 (17)0.41025 (11)0.21283 (8)0.0349 (3)
H5A0.0120.43990.26670.052*
H5B0.0680.33130.21780.052*
H5C0.1880.44190.20070.052*
C60.25170 (15)0.27381 (9)0.15402 (7)0.0251 (2)
C70.11104 (18)0.20547 (10)0.11078 (8)0.0346 (3)
H70.00410.23440.07830.041*
C80.1407 (2)0.09414 (11)0.11558 (9)0.0438 (3)
H80.0440.04650.08730.053*
C90.3095 (2)0.05252 (10)0.16110 (9)0.0436 (3)
H90.33030.02360.16310.052*
C100.4488 (2)0.12139 (11)0.20388 (9)0.0408 (3)
H100.56530.09230.23510.049*
C110.42005 (17)0.23284 (10)0.20169 (7)0.0311 (2)
H110.51420.28010.23240.037*
C120.32054 (15)0.74122 (9)0.06778 (7)0.0258 (2)
C130.41768 (18)0.81538 (9)0.00944 (8)0.0327 (3)
H13A0.46430.77110.03510.039*
H13B0.32120.86770.01970.039*
C140.58016 (17)0.87440 (10)0.05817 (8)0.0339 (3)
N10.22982 (12)0.38856 (7)0.14719 (6)0.0247 (2)
N20.04759 (12)0.43659 (7)0.14307 (6)0.0255 (2)
N30.30922 (13)0.63698 (7)0.04169 (6)0.0252 (2)
H30.375 (2)0.6174 (12)0.0003 (9)0.036 (4)*
N40.70659 (18)0.92148 (12)0.09499 (9)0.0551 (3)
O10.51052 (10)0.42821 (6)0.09377 (5)0.02694 (18)
O20.25709 (13)0.77685 (7)0.12907 (5)0.0345 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0215 (5)0.0229 (5)0.0232 (5)0.0034 (4)0.0033 (4)0.0020 (4)
C20.0218 (5)0.0207 (5)0.0265 (5)0.0024 (4)0.0037 (4)0.0016 (4)
C30.0224 (5)0.0242 (5)0.0267 (5)0.0022 (4)0.0024 (4)0.0028 (4)
C40.0240 (5)0.0304 (6)0.0441 (7)0.0030 (4)0.0075 (5)0.0004 (5)
C50.0271 (5)0.0451 (7)0.0349 (6)0.0021 (5)0.0127 (5)0.0062 (5)
C60.0273 (5)0.0230 (5)0.0262 (5)0.0017 (4)0.0080 (4)0.0028 (4)
C70.0336 (6)0.0318 (6)0.0374 (6)0.0078 (5)0.0034 (5)0.0018 (5)
C80.0554 (8)0.0291 (6)0.0493 (8)0.0148 (6)0.0162 (6)0.0043 (5)
C90.0616 (9)0.0229 (5)0.0538 (8)0.0021 (6)0.0315 (7)0.0066 (5)
C100.0448 (7)0.0367 (7)0.0438 (7)0.0114 (5)0.0159 (6)0.0160 (6)
C110.0307 (5)0.0324 (6)0.0299 (6)0.0007 (5)0.0048 (4)0.0054 (5)
C120.0241 (5)0.0230 (5)0.0288 (5)0.0017 (4)0.0000 (4)0.0009 (4)
C130.0382 (6)0.0260 (5)0.0332 (6)0.0068 (5)0.0039 (5)0.0036 (5)
C140.0301 (6)0.0305 (6)0.0424 (7)0.0026 (5)0.0104 (5)0.0031 (5)
N10.0193 (4)0.0234 (4)0.0321 (5)0.0004 (3)0.0065 (3)0.0018 (4)
N20.0189 (4)0.0263 (4)0.0323 (5)0.0001 (3)0.0069 (3)0.0017 (4)
N30.0258 (4)0.0214 (4)0.0295 (5)0.0026 (3)0.0078 (4)0.0001 (4)
N40.0384 (6)0.0614 (8)0.0645 (8)0.0176 (6)0.0056 (6)0.0012 (7)
O10.0205 (3)0.0281 (4)0.0333 (4)0.0005 (3)0.0078 (3)0.0015 (3)
O20.0416 (5)0.0268 (4)0.0365 (4)0.0031 (3)0.0109 (4)0.0052 (3)
Geometric parameters (Å, º) top
C1—O11.2442 (12)C7—H70.95
C1—N11.3828 (13)C8—C91.376 (2)
C1—C21.4288 (15)C8—H80.95
C2—C31.3676 (14)C9—C101.382 (2)
C2—N31.4120 (13)C9—H90.95
C3—N21.3713 (14)C10—C111.3889 (18)
C3—C41.4855 (15)C10—H100.95
C4—H4A0.98C11—H110.95
C4—H4B0.98C12—O21.2153 (14)
C4—H4C0.98C12—N31.3489 (14)
C5—N21.4641 (14)C12—C131.5373 (15)
C5—H5A0.98C13—C141.4575 (17)
C5—H5B0.98C13—H13A0.99
C5—H5C0.98C13—H13B0.99
C6—C111.3839 (16)C14—N41.1345 (17)
C6—C71.3865 (16)N1—N21.3980 (12)
C6—N11.4258 (14)N3—H30.903 (15)
C7—C81.3890 (18)
O1—C1—N1123.78 (9)C7—C8—H8119.8
O1—C1—C2131.09 (10)C8—C9—C10120.05 (12)
N1—C1—C2105.09 (8)C8—C9—H9120
C3—C2—N3130.09 (10)C10—C9—H9120
C3—C2—C1108.75 (9)C9—C10—C11120.57 (12)
N3—C2—C1120.90 (9)C9—C10—H10119.7
C2—C3—N2108.87 (9)C11—C10—H10119.7
C2—C3—C4130.06 (10)C6—C11—C10118.80 (12)
N2—C3—C4121.06 (9)C6—C11—H11120.6
C3—C4—H4A109.5C10—C11—H11120.6
C3—C4—H4B109.5O2—C12—N3125.37 (10)
H4A—C4—H4B109.5O2—C12—C13121.50 (10)
C3—C4—H4C109.5N3—C12—C13113.10 (10)
H4A—C4—H4C109.5C14—C13—C12111.32 (10)
H4B—C4—H4C109.5C14—C13—H13A109.4
N2—C5—H5A109.5C12—C13—H13A109.4
N2—C5—H5B109.5C14—C13—H13B109.4
H5A—C5—H5B109.5C12—C13—H13B109.4
N2—C5—H5C109.5H13A—C13—H13B108
H5A—C5—H5C109.5N4—C14—C13178.86 (14)
H5B—C5—H5C109.5C1—N1—N2109.57 (8)
C11—C6—C7121.09 (11)C1—N1—C6123.96 (9)
C11—C6—N1118.34 (10)N2—N1—C6120.65 (8)
C7—C6—N1120.52 (10)C3—N2—N1107.23 (8)
C6—C7—C8119.13 (12)C3—N2—C5123.88 (9)
C6—C7—H7120.4N1—N2—C5116.24 (9)
C8—C7—H7120.4C12—N3—C2124.25 (9)
C9—C8—C7120.33 (13)C12—N3—H3118.1 (9)
C9—C8—H8119.8C2—N3—H3116.3 (9)
O1—C1—C2—C3175.50 (11)C2—C1—N1—N25.83 (11)
N1—C1—C2—C32.28 (11)O1—C1—N1—C619.06 (16)
O1—C1—C2—N30.73 (17)C2—C1—N1—C6158.93 (9)
N1—C1—C2—N3177.05 (9)C11—C6—N1—C164.08 (14)
N3—C2—C3—N2171.96 (10)C7—C6—N1—C1113.18 (12)
C1—C2—C3—N22.17 (12)C11—C6—N1—N2145.63 (10)
N3—C2—C3—C48.91 (19)C7—C6—N1—N237.12 (15)
C1—C2—C3—C4176.96 (11)C2—C3—N2—N15.73 (11)
C11—C6—C7—C80.10 (18)C4—C3—N2—N1173.49 (10)
N1—C6—C7—C8177.09 (11)C2—C3—N2—C5145.71 (10)
C6—C7—C8—C91.4 (2)C4—C3—N2—C533.51 (15)
C7—C8—C9—C101.4 (2)C1—N1—N2—C37.30 (11)
C8—C9—C10—C110.21 (19)C6—N1—N2—C3161.43 (9)
C7—C6—C11—C101.66 (17)C1—N1—N2—C5150.77 (10)
N1—C6—C11—C10175.58 (10)C6—N1—N2—C555.10 (13)
C9—C10—C11—C61.72 (18)O2—C12—N3—C26.09 (17)
O2—C12—C13—C1456.70 (15)C13—C12—N3—C2176.09 (9)
N3—C12—C13—C14125.39 (11)C3—C2—N3—C1258.82 (16)
O1—C1—N1—N2172.16 (9)C1—C2—N3—C12127.66 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.903 (15)1.884 (15)2.7835 (12)174 (1)
C9—H9···O2ii0.952.553.4485 (16)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
(VII) Methyl 4-{[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]methyl}benzoate top
Crystal data top
C20H19N3O3F(000) = 1472
Mr = 349.38Dx = 1.298 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8137 reflections
a = 32.7563 (10) Åθ = 2.6–28.0°
b = 6.9258 (2) ŵ = 0.09 mm1
c = 16.4002 (5) ÅT = 173 K
β = 106.032 (1)°Plate, yellow
V = 3575.90 (19) Å30.68 × 0.24 × 0.09 mm
Z = 8
Data collection top
Bruker D8 Venture Photon
diffractometer
3539 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 2.6°
Tmin = 0.95, Tmax = 0.99h = 4143
31732 measured reflectionsk = 98
4312 independent reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0539P)2 + 2.065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.24 e Å3
4312 reflectionsΔρmin = 0.30 e Å3
238 parameters
Crystal data top
C20H19N3O3V = 3575.90 (19) Å3
Mr = 349.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.7563 (10) ŵ = 0.09 mm1
b = 6.9258 (2) ÅT = 173 K
c = 16.4002 (5) Å0.68 × 0.24 × 0.09 mm
β = 106.032 (1)°
Data collection top
Bruker D8 Venture Photon
diffractometer
4312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3539 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.99Rint = 0.040
31732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
4312 reflectionsΔρmin = 0.30 e Å3
238 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31423 (4)0.32838 (17)0.65668 (7)0.0249 (2)
C20.27746 (4)0.20497 (17)0.64224 (7)0.0241 (2)
C30.28930 (4)0.03859 (17)0.68905 (7)0.0249 (2)
C40.26341 (4)0.13591 (19)0.69093 (8)0.0347 (3)
H4A0.27420.24370.66420.052*
H4B0.23380.11040.65990.052*
H4C0.26520.1690.74990.052*
C50.35913 (4)0.11026 (18)0.76603 (8)0.0323 (3)
H5A0.34250.22720.76770.048*
H5B0.37710.08140.82320.048*
H5C0.37710.13070.72790.048*
C60.38177 (4)0.31383 (17)0.77103 (7)0.0256 (2)
C70.38420 (4)0.31516 (19)0.85699 (8)0.0315 (3)
H70.36310.25210.87710.038*
C80.41769 (5)0.4094 (2)0.91302 (8)0.0371 (3)
H80.41980.40950.9720.045*
C90.44812 (4)0.5036 (2)0.88369 (9)0.0390 (3)
H90.4710.56790.92240.047*
C100.44513 (4)0.5039 (2)0.79796 (9)0.0368 (3)
H100.46580.57010.77790.044*
C110.41205 (4)0.40798 (18)0.74104 (8)0.0307 (3)
H110.41020.40690.68220.037*
C120.22522 (4)0.39995 (18)0.55655 (7)0.0265 (2)
H120.24670.48830.55220.032*
C130.18049 (4)0.44398 (18)0.51512 (7)0.0256 (2)
C140.16980 (4)0.62384 (18)0.47654 (7)0.0277 (3)
H140.19150.71450.47640.033*
C150.12782 (4)0.67091 (18)0.43851 (7)0.0278 (3)
H150.12080.79380.41270.033*
C160.09584 (4)0.53855 (18)0.43809 (7)0.0264 (2)
C170.10635 (4)0.35766 (18)0.47584 (8)0.0293 (3)
H170.08460.26640.47530.035*
C180.14830 (4)0.31137 (18)0.51399 (7)0.0294 (3)
H180.15530.18830.53960.035*
C190.05106 (4)0.59546 (19)0.39791 (8)0.0309 (3)
C200.02046 (5)0.4949 (3)0.35914 (14)0.0618 (5)
H20A0.03020.5810.39740.093*
H20B0.0370.37530.35120.093*
H20C0.02430.55870.30420.093*
N10.34734 (3)0.22117 (14)0.71114 (6)0.0262 (2)
N20.33035 (3)0.05151 (14)0.73522 (6)0.0269 (2)
N30.23550 (3)0.24258 (15)0.59866 (6)0.0261 (2)
O10.31896 (3)0.49344 (13)0.63305 (6)0.0333 (2)
O20.03997 (3)0.75497 (15)0.37135 (7)0.0445 (3)
O30.02396 (3)0.45057 (14)0.39547 (8)0.0489 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (6)0.0246 (6)0.0258 (5)0.0030 (5)0.0063 (4)0.0011 (4)
C20.0237 (5)0.0249 (6)0.0247 (5)0.0010 (5)0.0084 (4)0.0007 (4)
C30.0268 (6)0.0254 (6)0.0241 (5)0.0001 (5)0.0093 (4)0.0010 (4)
C40.0355 (7)0.0312 (7)0.0373 (6)0.0060 (6)0.0100 (5)0.0037 (5)
C50.0374 (7)0.0244 (6)0.0314 (6)0.0058 (5)0.0033 (5)0.0048 (5)
C60.0231 (6)0.0208 (6)0.0312 (6)0.0034 (4)0.0044 (4)0.0020 (4)
C70.0334 (6)0.0282 (6)0.0336 (6)0.0021 (5)0.0102 (5)0.0001 (5)
C80.0457 (8)0.0318 (7)0.0307 (6)0.0027 (6)0.0051 (5)0.0016 (5)
C90.0376 (7)0.0289 (7)0.0427 (7)0.0064 (6)0.0019 (6)0.0001 (5)
C100.0303 (6)0.0319 (7)0.0465 (7)0.0051 (6)0.0080 (5)0.0058 (6)
C110.0296 (6)0.0291 (6)0.0331 (6)0.0010 (5)0.0080 (5)0.0044 (5)
C120.0244 (6)0.0292 (6)0.0266 (5)0.0008 (5)0.0081 (4)0.0007 (4)
C130.0245 (6)0.0297 (6)0.0232 (5)0.0029 (5)0.0073 (4)0.0007 (4)
C140.0262 (6)0.0294 (6)0.0287 (5)0.0010 (5)0.0095 (4)0.0021 (5)
C150.0288 (6)0.0269 (6)0.0277 (5)0.0026 (5)0.0080 (5)0.0036 (4)
C160.0255 (6)0.0285 (6)0.0246 (5)0.0025 (5)0.0062 (4)0.0003 (4)
C170.0264 (6)0.0269 (6)0.0339 (6)0.0015 (5)0.0075 (5)0.0022 (5)
C180.0285 (6)0.0272 (6)0.0319 (6)0.0024 (5)0.0076 (5)0.0042 (5)
C190.0270 (6)0.0308 (7)0.0323 (6)0.0001 (5)0.0040 (5)0.0010 (5)
C200.0250 (7)0.0426 (9)0.1037 (14)0.0035 (7)0.0057 (8)0.0077 (9)
N10.0250 (5)0.0212 (5)0.0305 (5)0.0009 (4)0.0046 (4)0.0045 (4)
N20.0279 (5)0.0199 (5)0.0312 (5)0.0002 (4)0.0055 (4)0.0041 (4)
N30.0231 (5)0.0304 (5)0.0248 (4)0.0028 (4)0.0066 (4)0.0009 (4)
O10.0306 (5)0.0244 (5)0.0417 (5)0.0001 (4)0.0044 (4)0.0087 (4)
O20.0296 (5)0.0381 (6)0.0599 (6)0.0034 (4)0.0024 (4)0.0176 (5)
O30.0251 (5)0.0311 (6)0.0800 (8)0.0017 (4)0.0030 (5)0.0054 (5)
Geometric parameters (Å, º) top
C1—O11.2305 (14)C10—H100.95
C1—N11.4109 (14)C11—H110.95
C1—C21.4421 (16)C12—N31.2844 (16)
C2—C31.3795 (16)C12—C131.4670 (16)
C2—N31.3875 (14)C12—H120.95
C3—N21.3518 (15)C13—C181.3946 (17)
C3—C41.4815 (17)C13—C141.3972 (17)
C4—H4A0.98C14—C151.3831 (16)
C4—H4B0.98C14—H140.95
C4—H4C0.98C15—C161.3904 (17)
C5—N21.4614 (15)C15—H150.95
C5—H5A0.98C16—C171.3977 (17)
C5—H5B0.98C16—C191.4857 (16)
C5—H5C0.98C17—C181.3810 (17)
C6—C111.3859 (17)C17—H170.95
C6—C71.3898 (17)C18—H180.95
C6—N11.4271 (15)C19—O21.2062 (16)
C7—C81.3846 (19)C19—O31.3330 (16)
C7—H70.95C20—O31.4449 (17)
C8—C91.384 (2)C20—H20A0.98
C8—H80.95C20—H20B0.98
C9—C101.382 (2)C20—H20C0.98
C9—H90.95N1—N21.4028 (14)
C10—C111.3884 (18)
O1—C1—N1123.13 (11)N3—C12—C13120.35 (11)
O1—C1—C2132.14 (11)N3—C12—H12119.8
N1—C1—C2104.67 (10)C13—C12—H12119.8
C3—C2—N3121.99 (11)C18—C13—C14119.15 (11)
C3—C2—C1108.06 (10)C18—C13—C12121.61 (11)
N3—C2—C1129.56 (11)C14—C13—C12119.23 (11)
N2—C3—C2109.86 (10)C15—C14—C13120.52 (11)
N2—C3—C4121.93 (11)C15—C14—H14119.7
C2—C3—C4128.20 (11)C13—C14—H14119.7
C3—C4—H4A109.5C14—C15—C16120.04 (11)
C3—C4—H4B109.5C14—C15—H15120
H4A—C4—H4B109.5C16—C15—H15120
C3—C4—H4C109.5C15—C16—C17119.72 (11)
H4A—C4—H4C109.5C15—C16—C19118.51 (11)
H4B—C4—H4C109.5C17—C16—C19121.77 (11)
N2—C5—H5A109.5C18—C17—C16120.08 (11)
N2—C5—H5B109.5C18—C17—H17120
H5A—C5—H5B109.5C16—C17—H17120
N2—C5—H5C109.5C17—C18—C13120.47 (12)
H5A—C5—H5C109.5C17—C18—H18119.8
H5B—C5—H5C109.5C13—C18—H18119.8
C11—C6—C7120.72 (11)O2—C19—O3123.15 (11)
C11—C6—N1118.31 (10)O2—C19—C16124.43 (12)
C7—C6—N1120.94 (11)O3—C19—C16112.42 (11)
C8—C7—C6119.29 (12)O3—C20—H20A109.5
C8—C7—H7120.4O3—C20—H20B109.5
C6—C7—H7120.4H20A—C20—H20B109.5
C9—C8—C7120.40 (12)O3—C20—H20C109.5
C9—C8—H8119.8H20A—C20—H20C109.5
C7—C8—H8119.8H20B—C20—H20C109.5
C10—C9—C8119.92 (12)N2—N1—C1108.88 (9)
C10—C9—H9120N2—N1—C6118.85 (9)
C8—C9—H9120C1—N1—C6121.49 (10)
C9—C10—C11120.42 (12)C3—N2—N1107.96 (9)
C9—C10—H10119.8C3—N2—C5126.14 (10)
C11—C10—H10119.8N1—N2—C5118.12 (9)
C6—C11—C10119.24 (12)C12—N3—C2120.76 (10)
C6—C11—H11120.4C19—O3—C20116.02 (11)
C10—C11—H11120.4
O1—C1—C2—C3175.46 (12)C12—C13—C18—C17178.86 (11)
N1—C1—C2—C31.93 (12)C15—C16—C19—O26.30 (19)
O1—C1—C2—N32.7 (2)C17—C16—C19—O2173.01 (13)
N1—C1—C2—N3174.70 (11)C15—C16—C19—O3174.72 (11)
N3—C2—C3—N2170.52 (10)C17—C16—C19—O35.97 (17)
C1—C2—C3—N22.91 (13)O1—C1—N1—N2171.78 (11)
N3—C2—C3—C410.72 (18)C2—C1—N1—N25.91 (12)
C1—C2—C3—C4175.85 (11)O1—C1—N1—C627.94 (16)
C11—C6—C7—C80.97 (19)C2—C1—N1—C6149.75 (10)
N1—C6—C7—C8178.87 (12)C11—C6—N1—N2146.60 (11)
C6—C7—C8—C90.9 (2)C7—C6—N1—N235.45 (16)
C7—C8—C9—C100.1 (2)C11—C6—N1—C172.99 (14)
C8—C9—C10—C110.9 (2)C7—C6—N1—C1104.96 (13)
C7—C6—C11—C100.17 (19)C2—C3—N2—N16.64 (12)
N1—C6—C11—C10178.13 (11)C4—C3—N2—N1172.21 (10)
C9—C10—C11—C60.8 (2)C2—C3—N2—C5154.88 (11)
N3—C12—C13—C185.38 (17)C4—C3—N2—C523.98 (17)
N3—C12—C13—C14174.01 (10)C1—N1—N2—C37.89 (12)
C18—C13—C14—C150.73 (17)C6—N1—N2—C3152.83 (10)
C12—C13—C14—C15178.67 (10)C1—N1—N2—C5159.07 (10)
C13—C14—C15—C160.31 (17)C6—N1—N2—C555.98 (14)
C14—C15—C16—C170.33 (17)C13—C12—N3—C2176.14 (10)
C14—C15—C16—C19178.99 (11)C3—C2—N3—C12178.95 (11)
C15—C16—C17—C180.54 (18)C1—C2—N3—C127.07 (18)
C19—C16—C17—C18178.76 (11)O2—C19—O3—C200.4 (2)
C16—C17—C18—C130.10 (18)C16—C19—O3—C20178.58 (13)
C14—C13—C18—C170.53 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.373.0486 (17)128

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC11H13N3OC16H19N3O3C17H21N3O3C20H25N3O3
Mr203.24301.34315.37355.43
Crystal system, space groupHexagonal, P61Monoclinic, P21/cMonoclinic, P21/cTriclinic, P1
Temperature (K)173173173173
a, b, c (Å)7.4519 (1), 7.4519 (1), 31.8705 (7)11.2061 (14), 7.4638 (8), 19.044 (2)13.427 (2), 10.1086 (14), 12.2801 (18)7.3857 (2), 9.2159 (3), 13.7494 (4)
α, β, γ (°)90, 90, 12090, 106.655 (4), 9090, 101.690 (5), 9085.898 (1), 84.499 (1), 85.210 (1)
V3)1532.69 (5)1526.0 (3)1632.2 (4)926.40 (5)
Z6442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.090.090.09
Crystal size (mm)0.45 × 0.18 × 0.150.42 × 0.33 × 0.130.42 × 0.39 × 0.310.3 × 0.3 × 0.19
Data collection
DiffractometerBruker D8 Venture Photon CMOS
diffractometer
Bruker D8 Venture Photon
diffractometer
Bruker D8 Venture Photon
diffractometer
Bruker D8 Venture Photon
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.95, 0.960.96, 0.990.96, 0.970.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
13962, 2455, 2353 12126, 3670, 3114 20796, 3921, 3494 20559, 4466, 3628
Rint0.0310.0180.0210.043
(sin θ/λ)max1)0.6600.6600.6610.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.07 0.039, 0.108, 1.04 0.040, 0.115, 1.04 0.039, 0.107, 1.04
No. of reflections2455367039214466
No. of parameters147207216242
No. of restraints1000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.150.32, 0.250.30, 0.260.24, 0.23
Absolute structureFlack x determined using 1076 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).???
Absolute structure parameter0.2 (10)???


(V)(VI)(VII)
Crystal data
Chemical formulaC22H23N3O3C14H14N4O2C20H19N3O3
Mr377.43270.29349.38
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)173173173
a, b, c (Å)8.4851 (7), 12.4253 (10), 18.0314 (18)6.9996 (8), 12.3350 (16), 15.8345 (19)32.7563 (10), 6.9258 (2), 16.4002 (5)
α, β, γ (°)90, 92.282 (3), 9090, 99.666 (4), 9090, 106.032 (1), 90
V3)1899.5 (3)1347.7 (3)3575.90 (19)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.090.09
Crystal size (mm)0.44 × 0.34 × 0.110.67 × 0.16 × 0.110.68 × 0.24 × 0.09
Data collection
DiffractometerBruker D8 Venture Photon
diffractometer
Bruker D8 Venture Photon
diffractometer
Bruker D8 Venture Photon
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.95, 0.960.98, 0.990.95, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
28673, 4570, 3838 19472, 3252, 2737 31732, 4312, 3539
Rint0.0250.0230.040
(sin θ/λ)max1)0.6600.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04 0.036, 0.097, 1.03 0.040, 0.110, 1.03
No. of reflections457032524312
No. of parameters260187238
No. of restraints000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.190.27, 0.180.24, 0.30
Absolute structure???
Absolute structure parameter???

Computer programs: APEX3 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.86 (4)2.15 (4)2.999 (3)170 (3)
Symmetry code: (i) xy, x1, z+1/6.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.865 (15)2.048 (16)2.7312 (13)135 (1)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.886 (18)2.009 (18)2.7192 (12)136 (1)
C11—H11···O1i0.952.353.2829 (14)167
C8—H8···O3ii0.952.73.6206 (15)164
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.896 (16)1.934 (16)2.6618 (13)137 (1)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.867 (16)2.224 (15)2.8413 (13)128 (1)
N3—H3···O2i0.867 (16)2.404 (16)3.1590 (14)146 (1)
C8—H8···O1ii0.952.63.5462 (15)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.903 (15)1.884 (15)2.7835 (12)174 (1)
C9—H9···O2ii0.952.553.4485 (16)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (VII) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.373.0486 (17)128
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds