Download citation
Download citation
link to html
The structure of scandium dirubidium penta­deca­molybdenum nona­deca­sulfide, Sc0.43 (2)Rb2Mo15S19, constitutes a partially Sc-filled variant of Rb2Mo15S19 [Picard, Saillard, Gougeon, Noel & Potel (2000), J. Solid State Chem. 155, 417-426]. In the two compounds, which both crystallize in the R\overline{3}c space group, the structural motif is characterized by a mixture of Mo6Si8Sa6 and Mo9Si11Sa6 cluster units (`i' is inner and `a' is apical) in a 1:1 ratio. The two components are inter­connected through inter­unit Mo-S bonds. The cluster units are centred at Wyckoff positions 6b and 6a (point-group symmetries \overline{3}. and 32, respectively). The Rb+ cations occupy large voids between the different cluster units. The Rb and the two inner S atoms lie on sites with 3. symmetry (Wyckoff site 12c), and the Mo and S atoms of the median plane of the Mo9S11S6 cluster unit lie on sites with .2 symmetry (Wyckoff site 18e). A unique feature of the structure is a partially filled octa­hedral Sc site with \overline{1} symmetry. Extended Hückel tight-binding calculations provide an understanding of the variation in the Mo-Mo distances within the Mo clusters induced by the increase in the cationic charge transfer due to the insertion of Sc.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112016605/fn3104sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112016605/fn3104Isup2.hkl
Contains datablock I

Comment top

In2Mo15Se19 (Potel et al., 1981) and In3Mo15Se19 (Grüttner et al., 1979), which crystallize in the R3c and P63/m space groups, respectively, were the first compounds containing a molybdenum cluster with a nuclearity greater than 6. Indeed, their crystal structures contain an equal mixture of octahedral Mo6 and bioctahedral Mo9 clusters. Subsequently, compounds isotopic with In2Mo15Se19, such as Alc2Mo15S19 (Alc = K, Rb or Cs; Picard et al., 2002, 2000, 2004) or Ba2Mo15Se19 (Gougeon et al., 1989), as well as compounds isotopic with In3Mo15Se19, such as In1.6Rb2Mo15S19 and ScTl2Mo15S19 (Salloum et al., 2004), have been obtained. Among the latter compounds, Rb2Mo15S19 appears to be the first member of the series of compounds Rb2nMo9S11Mo6nS6n+2 (n = 1, 2, 3 and 4; Picard et al., 2000). In addition to their interesting crystal structures, the Rb2nMo9S11Mo6nS6n+2 compounds become superconducting at low temperature. In an attempt to replace Tl with Rb in ScTl2Mo15S19 (In3Mo15Se19-type), we obtained the title new quaternary compound Sc0.4Rb2Mo15S19 belonging to the In2Mo15Se19 structure type and constituting a partially Sc-filled variant of Rb2Mo15S19.

The Sc insertion in Rb2Mo15S19 is evident from the variations in the unit-cell parameters. Indeed, the a axis increases by ca 0.08 Å while the c axis decreases by about 0.27 Å. A view of the crystal structure of Sc0.43Rb2Mo15S19 is shown in Fig. 1. The Mo—S framework is similar to that of Rb2Mo15S19 and is based on an equal mixture of Mo6Si8Sa6 and Mo9Si11Sa6 cluster units interconnected through Mo—S bonds (Fig. 2) [for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)]. The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Si (six S3 and two S5) and six apical Sa (S1) ligands. The Mo9 core of the second unit results from the face-sharing of two octahedral Mo6 clusters. The Mo9 cluster is surrounded by 11 Si atoms (six S1, three S2 and two S4) capping the faces of the bioctahedron and six apical Sa ligands (S3) above the outer Mo atoms. The Mo6Si8Sa6 and Mo9Si11Sa6 units are centred at 6b and 6a positions and have point-group symmetries 3. and 32, respectively.

The Mo—Mo distances within the Mo6 clusters are 2.6783 (6) Å for the intratriangle distances (distances within the Mo3 triangles formed by atoms Mo3 related through the threefold axis) and 2.7393 (6) Å for the intertriangle distances. In Rb2Mo15S19, the latter two values are 2.676 (2) and 2.767 (2) Å, respectively. These variations reflect the different cationic charge transfer towards the Mo6 clusters in the two parent compounds.

The Mo—Mo distances within the Mo9 clusters are 2.6658 (5) and 2.6910 (8) Å for the distances in the triangles formed by atoms Mo1 and Mo2, respectively. In Rb2Mo15S19, the corresponding distances are 2.680 (2) and 2.688 (3) Å. The distances between the triangles formed by atoms Mo1 and Mo2 are 2.6958 (4) and 2.7663 (4) Å, respectively, in Sc0.4Rb2Mo15S19 compared with 2.719 (1) and 2.785 (2) Å, respectively, in Rb2Mo15S19.

Although the structural response of the Mo9 cluster with respect to the increase in charge transfer is more complex, we observe that the Mo1—Mo1 and two Mo1—Mo2 intertriangle distances are shorter in the Sc-filled compound. On the other hand, a slight increase in the Mo2—Mo2 bonds occurs in the median Mo3 triangle [2.688 (3) Å in Rb2Mo15S19]. In order to explain these variations, we performed extended Hückel tight-binding (EHTB) calculations on Rb2Mo15S19 using the program YaEHMOP (Landrum, 1997). The Mo and S extended Hückel parameters used by Picard et al. (2000) were considered. Total Mo6- and Mo9-projected DOS (density of states) and COOP (crystal orbital overlap population) curves for the different bonds discussed above and obtained from 36 k points [define k?] are sketched in Figs. 3 and 4, respectively.

Assuming an ionic interaction between the inserted Sc atoms and the host material, the three electrons of the 3d transition metal should be transferred to the clusters. Assuming a rigid-band model, the Fermi level corresponding to the electron count of the title compound is slightly higher in energy (ca 0.02 eV) than that for Rb2Mo15S19. The DOS at the Fermi level is mainly centred on Mo atoms belonging to both Mo6 and Mo9 clusters (Fig. 3). Therefore, both clusters should be affected by an increase in the anionic charge of the Mo–S network. As shown by the COOP curves of the Mo3—Mo3 intratriangle (solid line) and Mo3—Mo3 intertriangle (dotted line) bonds within the Mo6 cluster, the increase in the metal electron count due to the insertion of Sc foresees a weak lengthening and a shortening of the Mo3—Mo3 bonds within the Mo3 triangles and between the triangles, respectively. Such an evolution is in fact observed in Sc0.4Rb2Mo15S19, as mentioned above.

Regarding the Mo9 cluster (Fig. 4), the lengthening of the Mo2—Mo2 bonds and the shortening of the Mo1—Mo1 and Mo1—Mo2 bonds can be envisioned theoretically when extra electrons are added, and this is what is observed experimentally in Sc0.43Rb2Mo15S19. The Mo—S distances are almost unaffected by the cationic charge, and range between 2.4207 (12) and 2.475 (1) Å within the Mo6Si8Sa6 unit and between 2.4110 (9) and 2.6069 (7) Å within the Mo9Si11Sa6 unit, as usual.

Finally, the three-dimensional packing arises from the interconnection of the Mo6Si8Sa6 and Mo9Si11Sa6 cluster units through Mo—S bonds. Indeed, each Mo6Si8Sa6 unit is interconnected to six Mo9Si11Sa6 units (and vice versa) via Mo3—S1 and Mo1—S3 bonds, respectively, to form the three-dimensional Mo–Se framework, the connective formula of which is Mo9Si5Si-a6/2Sa-i6/2, Mo6Si2Si-a6/2Sa-i6/2. The result of this arrangement is that the shortest intercluster Mo1—Mo3 distance between the Mo6 and Mo9 clusters is 3.2995 (4) Å, compared with 3.246 (2) Å in Rb2Mo15S19, indicating only weak metal–metal interaction. This variation is consistent with the Mo–Mo intercluster antibonding nature of the bands that lie in the vicinity of the Fermi level.

The Sc atoms occupy highly flattened octahedral sites [2.172 (1) (× 2), 2.7983 (3) (× 2) and 2.920 (1) Å (× 2)] located near the Rb1 sites around the threefold axes. The alkali metal cation occupies a pentacapped trigonal prismatic site of S atoms, similar to that observed in Rb2Mo15S19 (Fig. 5). The Rb—S distances are spread over the wide range 3.2512 (10)–3.7554 (11) Å, while in Rb2Mo15S19 they are in the range 3.222 (3)–3.730 (3) Å. Thus, the insertion of Sc only leads to a slight decrease (ca 0.020 Å) of the Rb1—S4 and Rb1—S5 distances along the threefold axis, while the other distances are slightly decreased [increased?] (ca 0.027 Å).

Related literature top

For related literature, see: Gougeon et al. (1989); Grüttner et al. (1979); Landrum (1997); Liang et al. (2009); Picard et al. (2000, 2002, 2004); Potel et al. (1981); Salloum et al. (2004); Schäfer & von Schnering (1964); Solodovnikova & Solodovnikov (2006); Zhao et al. (2011).

Experimental top

Single crystals of Sc0.43Rb2Mo15S19 were prepared from a mixture of Sc2S3, Rb2MoS4, MoS2 and Mo with the nominal composition ScRb2Mo15S19. Rubidium thiomolybdate was obtained by sulfuration of Rb2MoO4 at 723 K for 2 d under CS2 gas carried by flowing argon. The molybdate Rb2MoO4 was synthesized by heating an equimolar ratio of Rb2CO3 and MoO3 in an alumina vessel at 1073 K in air over a period of 2 d. Sc2S3 was prepared from the elements heated in a sealed evacuated silica tube at 1073 K for 2 d. All handling of materials was carried out in an argon-filled glove-box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of 300 K h-1 to 1773 K and the temperature held for 48 h. The charge was then cooled at a rate of 100 K h-1 to 1373 K before finally being furnace cooled.

Refinement top

The site-occupancy factor of the Sc1 atom was refined freely. Because the Ueq parameter of atom Rb1 was larger than that of the other atoms, the site-occupancy factor of Rb1 was also refined. It converged to 1.011 (5) and was consequently fixed to unity in the final refinement. It is interesting to note that Rb atoms often present large Ueq (see, for example, Picard et al., 2000; Solodovnikova & Solodovnikov, 2006; Liang et al., 2009; Zhao et al., 2011).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of Sc0.43Rb2Mo15S19 along [110].
[Figure 2] Fig. 2. A plot showing the atom-numbering scheme and the inter-unit linkage of the Mo9S11S6 and Mo6S8S6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 3] Fig. 3. EHTB calculations for Rb2Mo15S19. (a) Total (solid line) and Mo6-projected (dotted line) DOS. (b) Total (solid line) and Mo9-projected (dotted line) DOS.
[Figure 4] Fig. 4. EHTB calculations for Rb2Mo15S19. (a) Mo3—Mo3 COOPs for interatomic distances within the Mo3 triangle (solid line) and between triangles (dotted line) of the Mo6 cluster. (b) COOPs for the intratriangle Mo1—Mo1 (solid line) and Mo2—Mo2 (dotted line) bonds in the Mo9 cluster. (c) COOPs for the intertriangle Mo1—Mo2 bonds of 2.719 (solid line) and 2.785 Å (dotted line).
[Figure 5] Fig. 5. A view of the environment of the Rb+ and Sc3+ cations. Displacement ellipsoids are drawn at the 97% probability level. [Two S4 atoms present - one should have a symmetry code]
scandium dirubidium pentadecamolybdenum nonadecasulfide top
Crystal data top
Sc0.43(2)Rb2Mo15S19Dx = 5.076 Mg m3
Mr = 2238.37Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3cCell parameters from 22338 reflections
a = 9.5173 (1) Åθ = 2.2–39.8°
c = 56.0061 (9) ŵ = 10.92 mm1
V = 4393.33 (10) Å3T = 293 K
Z = 6Multi-faceted, black
F(000) = 61020.13 × 0.12 × 0.09 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1431 independent reflections
Radiation source: fine-focus sealed tube1383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ scans (κ = 0) + additional ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 1313
Tmin = 0.298, Tmax = 0.463k = 1313
13057 measured reflectionsl = 7778
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.P)2 + 69.769P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.25Δρmax = 1.09 e Å3
1431 reflectionsΔρmin = 0.88 e Å3
64 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000087 (11)
Crystal data top
Sc0.43(2)Rb2Mo15S19Z = 6
Mr = 2238.37Mo Kα radiation
Trigonal, R3cµ = 10.92 mm1
a = 9.5173 (1) ÅT = 293 K
c = 56.0061 (9) Å0.13 × 0.12 × 0.09 mm
V = 4393.33 (10) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
1431 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1383 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.463Rint = 0.069
13057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.P)2 + 69.769P]
where P = (Fo2 + 2Fc2)/3
S = 1.25Δρmax = 1.09 e Å3
1431 reflectionsΔρmin = 0.88 e Å3
64 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.00000.00000.112814 (16)0.0309 (2)
Sc10.16670.16670.16670.025 (3)0.142 (6)
Mo10.34200 (4)0.16746 (4)0.123521 (6)0.01226 (10)
Mo20.17009 (5)0.33330.08330.01165 (11)
Mo30.49608 (4)0.18041 (4)0.186855 (6)0.01349 (10)
S10.04693 (12)0.31317 (12)0.119858 (19)0.01637 (19)
S20.33330.03388 (14)0.08330.0154 (3)
S30.35297 (12)0.05314 (12)0.149673 (19)0.0169 (2)
S40.33330.33330.15718 (3)0.0179 (3)
S50.66670.33330.22009 (3)0.0184 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0310 (3)0.0310 (3)0.0306 (4)0.01549 (13)0.0000.000
Sc10.025 (4)0.027 (4)0.027 (5)0.015 (4)0.010 (3)0.011 (4)
Mo10.01478 (16)0.01464 (16)0.00824 (16)0.00800 (12)0.00071 (11)0.00080 (11)
Mo20.01339 (16)0.0131 (2)0.0083 (2)0.00656 (10)0.00095 (8)0.00189 (15)
Mo30.01728 (17)0.01515 (16)0.00806 (17)0.00813 (13)0.00061 (11)0.00071 (11)
S10.0167 (4)0.0174 (4)0.0148 (4)0.0084 (3)0.0030 (3)0.0039 (3)
S20.0195 (6)0.0149 (4)0.0134 (6)0.0098 (3)0.0033 (5)0.0017 (2)
S30.0161 (4)0.0184 (4)0.0155 (4)0.0080 (4)0.0020 (3)0.0059 (4)
S40.0229 (5)0.0229 (5)0.0079 (7)0.0115 (2)0.0000.000
S50.0241 (5)0.0241 (5)0.0069 (7)0.0121 (2)0.0000.000
Geometric parameters (Å, º) top
Rb1—S1i3.2512 (10)Mo2—Mo2v2.6910 (8)
Rb1—S1ii3.2512 (10)Mo2—Mo2vi2.6910 (8)
Rb1—S13.2512 (10)Mo2—Mo1vi2.6958 (4)
Rb1—S5iii3.3263 (19)Mo2—Mo1viii2.6960 (4)
Rb1—S4iv3.5475 (19)Mo2—Mo1vii2.7664 (4)
Rb1—S2i3.7306 (8)Mo3—S52.4198 (13)
Rb1—S23.7306 (8)Mo3—S32.4513 (10)
Rb1—S2ii3.7306 (8)Mo3—S1iv2.4577 (10)
Rb1—S3ii3.7554 (11)Mo3—S3ix2.4641 (10)
Rb1—S33.7554 (11)Mo3—S3x2.4736 (10)
Rb1—S3i3.7554 (11)Mo3—Mo3xi2.6783 (6)
Sc1—S32.1718 (10)Mo3—Mo3xii2.6783 (6)
Sc1—S3iv2.1719 (11)Mo3—Mo3x2.7393 (6)
Sc1—S4iv2.7983 (3)Mo3—Mo3ix2.7394 (6)
Sc1—S42.7983 (3)S1—Mo3iv2.4577 (10)
Sc1—S12.9200 (11)S1—Mo1vi2.4786 (10)
Sc1—S1iv2.9201 (11)S2—Mo2v2.4715 (11)
Mo1—S42.4336 (14)S2—Mo1viii2.6066 (7)
Mo1—S12.4408 (10)S2—Rb1xiii3.7307 (8)
Mo1—S1v2.4786 (10)S3—Mo3x2.4641 (10)
Mo1—S32.5189 (10)S3—Mo3ix2.4737 (10)
Mo1—S22.6065 (7)S4—Mo1vi2.4336 (14)
Mo1—Mo1vi2.6658 (5)S4—Mo1v2.4336 (14)
Mo1—Mo1v2.6658 (5)S4—Sc1vi2.7983 (3)
Mo1—Mo2v2.6958 (4)S4—Sc1v2.7983 (3)
Mo1—Mo22.7663 (4)S4—Rb1iv3.5475 (19)
Mo2—S12.4125 (10)S5—Mo3xii2.4198 (13)
Mo2—S1vii2.4126 (10)S5—Mo3xi2.4198 (13)
Mo2—S22.4715 (11)S5—Rb1xiv3.3263 (19)
Mo2—S2vi2.4715 (11)
S1i—Rb1—S1ii118.549 (10)S2vi—Mo2—Mo2vi57.017 (19)
S1i—Rb1—S1118.549 (10)Mo2v—Mo2—Mo2vi60.0
S1ii—Rb1—S1118.549 (10)S1—Mo2—Mo1vi57.73 (2)
S1i—Rb1—S5iii96.97 (2)S1vii—Mo2—Mo1vi144.67 (3)
S1ii—Rb1—S5iii96.97 (2)S2—Mo2—Mo1vi117.777 (10)
S1—Rb1—S5iii96.97 (2)S2vi—Mo2—Mo1vi60.400 (8)
S1i—Rb1—S4iv83.03 (2)Mo2v—Mo2—Mo1vi90.461 (10)
S1ii—Rb1—S4iv83.03 (2)Mo2vi—Mo2—Mo1vi61.798 (10)
S1—Rb1—S4iv83.03 (2)S1—Mo2—Mo1viii144.67 (3)
S5iii—Rb1—S4iv180.0S1vii—Mo2—Mo1viii57.73 (2)
S1i—Rb1—S2i57.45 (2)S2—Mo2—Mo1viii60.401 (8)
S1ii—Rb1—S2i76.93 (2)S2vi—Mo2—Mo1viii117.776 (10)
S1—Rb1—S2i157.73 (3)Mo2v—Mo2—Mo1viii61.800 (10)
S5iii—Rb1—S2i63.732 (13)Mo2vi—Mo2—Mo1viii90.462 (10)
S4iv—Rb1—S2i116.269 (13)Mo1vi—Mo2—Mo1viii148.89 (2)
S1i—Rb1—S276.93 (2)S1—Mo2—Mo155.73 (3)
S1ii—Rb1—S2157.73 (3)S1vii—Mo2—Mo1152.23 (3)
S1—Rb1—S257.45 (2)S2—Mo2—Mo159.370 (9)
S5iii—Rb1—S263.731 (13)S2vi—Mo2—Mo1118.531 (11)
S4iv—Rb1—S2116.268 (13)Mo2v—Mo2—Mo159.188 (10)
S2i—Rb1—S2101.899 (16)Mo2vi—Mo2—Mo188.969 (10)
S1i—Rb1—S2ii157.73 (3)Mo1vi—Mo2—Mo158.408 (13)
S1ii—Rb1—S2ii57.45 (2)Mo1viii—Mo2—Mo1111.081 (13)
S1—Rb1—S2ii76.93 (2)S1—Mo2—Mo1vii152.23 (3)
S5iii—Rb1—S2ii63.731 (13)S1vii—Mo2—Mo1vii55.73 (3)
S4iv—Rb1—S2ii116.269 (13)S2—Mo2—Mo1vii118.530 (11)
S2i—Rb1—S2ii101.899 (16)S2vi—Mo2—Mo1vii59.371 (9)
S2—Rb1—S2ii101.899 (16)Mo2v—Mo2—Mo1vii88.970 (10)
S1i—Rb1—S3ii139.67 (4)Mo2vi—Mo2—Mo1vii59.190 (10)
S1ii—Rb1—S3ii62.17 (2)Mo1vi—Mo2—Mo1vii111.082 (13)
S1—Rb1—S3ii60.30 (2)Mo1viii—Mo2—Mo1vii58.405 (13)
S5iii—Rb1—S3ii123.35 (2)Mo1—Mo2—Mo1vii144.35 (2)
S4iv—Rb1—S3ii56.65 (2)S5—Mo3—S3172.12 (4)
S2i—Rb1—S3ii138.80 (2)S5—Mo3—S1iv92.32 (4)
S2—Rb1—S3ii117.69 (2)S3—Mo3—S1iv95.56 (4)
S2ii—Rb1—S3ii60.846 (16)S5—Mo3—S3ix91.43 (3)
S1i—Rb1—S360.30 (2)S3—Mo3—S3ix88.13 (3)
S1ii—Rb1—S3139.67 (4)S1iv—Mo3—S3ix92.18 (3)
S1—Rb1—S362.17 (2)S5—Mo3—S3x91.20 (3)
S5iii—Rb1—S3123.35 (2)S3—Mo3—S3x87.92 (3)
S4iv—Rb1—S356.65 (2)S1iv—Mo3—S3x97.54 (3)
S2i—Rb1—S3117.69 (2)S3ix—Mo3—S3x169.82 (4)
S2—Rb1—S360.846 (16)S5—Mo3—Mo3xi56.40 (2)
S2ii—Rb1—S3138.80 (2)S3—Mo3—Mo3xi117.07 (3)
S3ii—Rb1—S392.68 (3)S1iv—Mo3—Mo3xi135.20 (3)
S1i—Rb1—S3i62.17 (2)S3ix—Mo3—Mo3xi117.15 (3)
S1ii—Rb1—S3i60.30 (2)S3x—Mo3—Mo3xi56.98 (3)
S1—Rb1—S3i139.67 (4)S5—Mo3—Mo3xii56.40 (2)
S5iii—Rb1—S3i123.35 (2)S3—Mo3—Mo3xii117.30 (3)
S4iv—Rb1—S3i56.65 (2)S1iv—Mo3—Mo3xii131.69 (3)
S2i—Rb1—S3i60.846 (16)S3ix—Mo3—Mo3xii57.32 (3)
S2—Rb1—S3i138.80 (2)S3x—Mo3—Mo3xii116.81 (3)
S2ii—Rb1—S3i117.69 (2)Mo3xi—Mo3—Mo3xii60.0
S3ii—Rb1—S3i92.68 (3)S5—Mo3—Mo3x117.03 (2)
S3—Rb1—S3i92.68 (3)S3—Mo3—Mo3x56.35 (3)
S3—Sc1—S3iv180.0S1iv—Mo3—Mo3x138.29 (3)
S3—Sc1—S4iv87.61 (3)S3ix—Mo3—Mo3x114.42 (3)
S3iv—Sc1—S4iv92.39 (3)S3x—Mo3—Mo3x55.82 (3)
S3—Sc1—S492.39 (3)Mo3xi—Mo3—Mo3x60.734 (8)
S3iv—Sc1—S487.61 (3)Mo3xii—Mo3—Mo3x90.0
S4iv—Sc1—S4180.0S5—Mo3—Mo3ix117.03 (2)
S3—Sc1—S190.13 (3)S3—Mo3—Mo3ix56.60 (3)
S3iv—Sc1—S189.87 (3)S1iv—Mo3—Mo3ix134.68 (3)
S4iv—Sc1—S1104.16 (4)S3ix—Mo3—Mo3ix55.91 (3)
S4—Sc1—S175.84 (4)S3x—Mo3—Mo3ix114.32 (3)
S3—Sc1—S1iv89.87 (3)Mo3xi—Mo3—Mo3ix90.0
S3iv—Sc1—S1iv90.12 (3)Mo3xii—Mo3—Mo3ix60.734 (8)
S4iv—Sc1—S1iv75.84 (4)Mo3x—Mo3—Mo3ix58.532 (15)
S4—Sc1—S1iv104.16 (4)Mo2—S1—Mo169.50 (3)
S1—Sc1—S1iv180.0Mo2—S1—Mo3iv133.69 (4)
S4—Mo1—S192.31 (3)Mo1—S1—Mo3iv130.32 (5)
S4—Mo1—S1v91.39 (3)Mo2—S1—Mo1vi66.88 (3)
S1—Mo1—S1v168.77 (5)Mo1—S1—Mo1vi65.62 (3)
S4—Mo1—S393.68 (4)Mo3iv—S1—Mo1vi83.88 (3)
S1—Mo1—S394.52 (3)Mo2—S2—Mo2v65.97 (4)
S1v—Mo1—S395.81 (3)Mo2—S2—Mo165.95 (3)
S4—Mo1—S2170.48 (4)Mo2v—S2—Mo164.07 (3)
S1—Mo1—S284.06 (3)Mo2—S2—Mo1viii64.07 (3)
S1v—Mo1—S290.61 (3)Mo2v—S2—Mo1viii65.95 (3)
S3—Mo1—S295.38 (4)Mo1—S2—Mo1viii119.53 (5)
S4—Mo1—Mo1vi56.79 (2)Mo2v—S2—Rb1146.11 (3)
S1—Mo1—Mo1vi57.87 (3)Mo1—S2—Rb184.011 (14)
S1v—Mo1—Mo1vi116.28 (3)Mo1viii—S2—Rb1128.288 (13)
S3—Mo1—Mo1vi134.72 (3)Mo2—S2—Rb1xiii146.11 (3)
S2—Mo1—Mo1vi114.15 (2)Mo1—S2—Rb1xiii128.291 (13)
S4—Mo1—Mo1v56.79 (2)Mo1viii—S2—Rb1xiii84.008 (14)
S1—Mo1—Mo1v117.64 (3)Rb1—S2—Rb1xiii118.46 (4)
S1v—Mo1—Mo1v56.51 (3)Sc1—S3—Mo3x151.43 (5)
S3—Mo1—Mo1v134.87 (3)Mo3—S3—Mo3x67.74 (3)
S2—Mo1—Mo1v117.38 (2)Sc1—S3—Mo3ix130.32 (5)
Mo1vi—Mo1—Mo1v60.0Mo3—S3—Mo3ix67.59 (3)
S4—Mo1—Mo2v118.84 (2)Mo3x—S3—Mo3ix65.70 (3)
S1—Mo1—Mo2v113.75 (3)Sc1—S3—Mo177.19 (3)
S1v—Mo1—Mo2v55.39 (3)Mo3—S3—Mo1133.40 (4)
S3—Mo1—Mo2v134.25 (3)Mo3x—S3—Mo1131.28 (5)
S2—Mo1—Mo2v55.53 (2)Mo3ix—S3—Mo182.72 (3)
Mo1vi—Mo1—Mo2v91.004 (10)Sc1—S3—Rb182.34 (3)
Mo1v—Mo1—Mo2v62.117 (9)Mo3—S3—Rb1140.54 (4)
S4—Mo1—Mo2116.20 (2)Mo3x—S3—Rb196.56 (3)
S1—Mo1—Mo254.77 (3)Mo3ix—S3—Rb1140.41 (4)
S1v—Mo1—Mo2114.21 (3)Mo1—S3—Rb184.64 (3)
S3—Mo1—Mo2135.64 (3)Mo1—S4—Mo1vi66.42 (4)
S2—Mo1—Mo254.68 (2)Mo1—S4—Mo1v66.42 (4)
Mo1vi—Mo1—Mo259.475 (9)Mo1vi—S4—Mo1v66.42 (4)
Mo1v—Mo1—Mo289.484 (10)Mo1v—S4—Sc1134.32 (5)
Mo2v—Mo1—Mo259.014 (17)Mo1—S4—Sc1vi134.32 (5)
S1—Mo2—S1vii116.58 (5)Sc1—S4—Sc1vi116.48 (2)
S1—Mo2—S287.63 (3)Sc1—S4—Sc1v116.48 (2)
S1vii—Mo2—S295.52 (3)Sc1vi—S4—Sc1v116.48 (2)
S1—Mo2—S2vi95.52 (3)Mo1—S4—Rb1iv140.77 (3)
S1vii—Mo2—S2vi87.63 (3)Mo1vi—S4—Rb1iv140.77 (3)
S2—Mo2—S2vi174.03 (4)Mo1v—S4—Rb1iv140.77 (3)
S1—Mo2—Mo2v114.88 (3)Mo3xii—S5—Mo367.21 (4)
S1vii—Mo2—Mo2v119.32 (2)Mo3xii—S5—Mo3xi67.21 (4)
S2—Mo2—Mo2v57.017 (19)Mo3—S5—Mo3xi67.21 (4)
S2vi—Mo2—Mo2v117.017 (19)Mo3xii—S5—Rb1xiv140.28 (3)
S1—Mo2—Mo2vi119.32 (2)Mo3—S5—Rb1xiv140.28 (3)
S1vii—Mo2—Mo2vi114.88 (3)Mo3xi—S5—Rb1xiv140.28 (3)
S2—Mo2—Mo2vi117.017 (19)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x+y1/3, y+1/3, z1/6; (iv) x1/3, y+1/3, z+1/3; (v) x+y1, x, z; (vi) y, xy+1, z; (vii) xy+1/3, y+2/3, z+1/6; (viii) x2/3, x+y1/3, z+1/6; (ix) xy1/3, x+1/3, z+1/3; (x) y1/3, x+y2/3, z+1/3; (xi) x+y1, x1, z; (xii) y1, xy, z; (xiii) xy2/3, y1/3, z+1/6; (xiv) x+y2/3, y1/3, z+1/6.

Experimental details

Crystal data
Chemical formulaSc0.43(2)Rb2Mo15S19
Mr2238.37
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)9.5173 (1), 56.0061 (9)
V3)4393.33 (10)
Z6
Radiation typeMo Kα
µ (mm1)10.92
Crystal size (mm)0.13 × 0.12 × 0.09
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.298, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
13057, 1431, 1383
Rint0.069
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.062, 1.25
No. of reflections1431
No. of parameters64
w = 1/[σ2(Fo2) + (0.P)2 + 69.769P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.09, 0.88

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1996).

Selected bond lengths (Å) top
Rb1—S13.2512 (10)Mo1—Mo2iii2.6958 (4)
Rb1—S5i3.3263 (19)Mo1—Mo22.7663 (4)
Rb1—S4ii3.5475 (19)Mo2—S12.4125 (10)
Rb1—S23.7306 (8)Mo2—S1v2.4126 (10)
Rb1—S33.7554 (11)Mo2—S22.4715 (11)
Sc1—S32.1718 (10)Mo2—S2iv2.4715 (11)
Sc1—S42.7983 (3)Mo2—Mo2iii2.6910 (8)
Sc1—S12.9200 (11)Mo3—S52.4198 (13)
Mo1—S42.4336 (14)Mo3—S32.4513 (10)
Mo1—S12.4408 (10)Mo3—S1ii2.4577 (10)
Mo1—S1iii2.4786 (10)Mo3—S3vi2.4641 (10)
Mo1—S32.5189 (10)Mo3—S3vii2.4736 (10)
Mo1—S22.6065 (7)Mo3—Mo3viii2.6783 (6)
Mo1—Mo1iv2.6658 (5)Mo3—Mo3vii2.7393 (6)
Symmetry codes: (i) x+y1/3, y+1/3, z1/6; (ii) x1/3, y+1/3, z+1/3; (iii) x+y1, x, z; (iv) y, xy+1, z; (v) xy+1/3, y+2/3, z+1/6; (vi) xy1/3, x+1/3, z+1/3; (vii) y1/3, x+y2/3, z+1/3; (viii) x+y1, x1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds