Download citation
Download citation
link to html
The crystal structure of the title compound, [Zn{CO(NH2)2}6](NO3)2, has been determined at 110 and 250 K. The structure is stabilized by 12 individual hydrogen bonds, both intra- and inter­molecular. Analysis of the thermal expansion tensor, based on unit cells determined over a temperature range of 180 K, shows uniaxial compression in the direction of the b axis during warming. The hydrogen bonds form layers perpendicular to this axis and these layers are connected by coordinative bonds parallel to the axis. As expected, the inter­molecular hydrogen bonds expand during warming. Surprisingly, the coordinative bonds contract, accompanied by changes in the O—Zn—O angles. Overall, this behaviour can be described as an accordion-like effect.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111000023/fn3074sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111000023/fn3074Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111000023/fn3074Ibsup3.hkl
Contains datablock Ib

html

Hyper-Text Markup Language (HTML) file https://doi.org/10.1107/S0108270111000023/fn3074sup4.html
Interactive figure

CCDC references: 817037; 817038

Comment top

In complex chemistry, urea is a well studied model compound for the coordination of biologically relevant ligands to transition metals via the CO and/or NH2 groups. According to Mak & Zhou (1992), urea usually acts in metal complexes as a monodentate O-bonded ligand, although sometimes the bidentate N,O-coordination mode is found. Additionally, the Cambridge Structural Database (CSD, August 2010 update; Allen, 2002) contains ten urea complexes showing µ-O bridging coordination. In total, the CSD contains 143 urea–transition metal complexes, in 35 of which the metal cation is surrounded by urea as the only ligand.

The structure of hexakis(urea-κO)zinc(II) dinitrate, (I), was determined at room temperature by van de Giesen & Stam (1972). The compound crystallizes in space group C2/c, with the ZnII atom on a twofold axis. Zhongyuan et al. (1986) described the crystal structure of hexakis(urea-κO)zinc sulfate with cocrystallized solvent water. Prior & Kift (2009) reported the structure of diaqua-tetrakis(urea-κO)zinc dinitrate, measured at 150 K. We redetermined the structure of (I) at 110 K, (Ia), and 250 K, (Ib), in order to obtain more accurate geometries and to determine the thermal expansion behaviour. Unit-cell determinations were performed during cooling from 290 to 110 K and warming from 110 to 250 K, in 20 K intervals.

The overall shape of the cation in (I) is approximately spherical, with a nearly isotropic tensor of inertia. The ZnII atom is surrounded by six urea ligands coordinated by their O atoms (Fig. 1). This is in contrast with urea cadmium nitrate (Catesby, 1961), where the central Cd atom is surrounded by four O-coordinated urea ligands. In (I), the ZnO6 polyhedron has an exact C2 symmetry and an approximate Oh environment, with r.m.s. deviations of 0.1787 and 0.1307 Å2, respectively, as calculated using the MOLSYM routine (Pilati & Forni, 1998). The Zn—O1 bond is oriented in the direction of the a axis and the Zn—O2 and Zn—O3 bonds are perpendicular to it. The Zn—O1 bond of 2.1366 (6) Å at 110 K is significantly longer than the Zn—O2 and Zn—O3 bonds of 2.0668 (5) and 2.0909 (6) Å, respectively (Tables 1 and 3). The most likely explanation is that atom O1 is an acceptor of two hydrogen bonds, while atoms O2 and O3 accept only one hydrogen bond each. The Zn—O3 bond is slightly longer than Zn—O2, which can be explained by a slightly stronger hydrogen bond with an H···O distance of 2.049 (17) Å, versus 2.116 (17) Å at 110 K (Tables 2 and 4). The Zn—O distances are similar to those found in the diaqua complex (Prior & Kift, 2009). There, each urea ligand accepts a single hydrogen bond, resulting in Zn—Ourea bonds of 2.0893 (15) and 2.0753 (14) Å.

The Zn—O3 bond fails the Hirshfeld rigid-bond test (Hirshfeld, 1976) by 8.50σ at 110 K and 5.50σ at 250 K. The absolute values for the differences are 0.0017 and 0.0022 Å2 at 110 and 250 K, respectively, which is only slightly larger than the value of 0.0010 Å2 suggested by Hirshfeld for a rigid bond. We therefore still consider the anisotropic displacement parameters (ADPs) as reliably determined.

The urea ligands are essentially planar, with a maximum deviation of 0.0150 Å from the least-squares planes through their non-H atoms. The planarity at the N atoms has been assessed by evaluating their angle sums. All but one of the N atoms are planar, with angle sums between 355 (2) and 359 (2)° at 110 K. Atom N22 has an angle sum of 350.0 (19)°, indicating a slight pyramidalization. This is probably due to a close intermolecular contact with atom H12B(-x, y, -z + 3/2), with an N···H distance of 2.358 (15) Å at 110 K. In the publication of van de Giesen & Stam (1972), this interaction was described as a hydrogen bond. In our opinion, the sp2-hybridized N atom of urea is not capable of accepting hydrogen bonds, but we still consider this interaction responsible for the slight pyrimidalization.

During warming from 110 to 250 K, the O3—Zn—O3i angle [symmetry code: (i) -x, y, -z + 1/2] decreases from 97.11 (3) to 96.55 (5)°. This equates to a movement of atom O3 towards the b axis. At the same time, the O2—Zn—O2i angle increases from 83.84 (3) to 84.32 (4)°. The O2—Zn—O3 angle stays constant within experimental error [89.58 (2) and 89.62 (3)°].

The crystal packing is stablized by a hydrogen-bond network, consisting of a total of 12 independent hydrogen bonds: three intramolecular N—H···O bonds within the cation (involving atoms H12A, H22A and H32A), and nine intermolecular N—H···O bonds (Tables 2 and 4). The nitrate anion accepts eight of the nine intermolecular hydrogen bonds. Atom H32B is involved in a bifurcated hydrogen bond, with atoms O2N and O1N of the nitrate anion as acceptors. All other H atoms are involved in single hydrogen bonds. Atom H12B has a short intermolecular contact with atom N22, but we do not consider this as a hydrogen bond (see above). The intermolecular hydrogen bonding results in the formation of layers in the crystallographic ac plane (Fig. 2). These layers are interconnected by coordinative bonds from the urea O atoms to the ZnII atoms, and by the intramolecular hydrogen bonds.

To investigate the intermolecular interactions further, temperature-dependent unit-cell determinations were performed by cooling the crystal from 290 to 110 K and then warming from 110 to 250 K, in 20 K intervals. To minimize diffractometer errors in the cell determinations, the PHI/PHI-CHI routine was used (Duisenberg et al., 2000) and the position of the detector was kept fixed. The cell axes change linearly with temperature (Fig. 3). The magnitude of the thermal expansion and contraction was assessed by calculation of the expansion tensors using the STRAINANAL routine in PLATON (Spek, 2009), which uses the algorithm of Ohashi & Burnham (1973). The thermal expansion tensor is a symmetric second-rank tensor usually expressed in a Cartesian coordinate system (Lovett, 1999). Due to the monoclinic symmetry, two off-diagonal components of the tensor are equal to 0 (Table 5) and one of the eigenvectors (α3) is parallel to the b axis/twofold rotation axis (Table 6). The largest eigenvalues are found for the α1 direction, which is nearly collinear with the c axis. The eigenvalues for the α2 and α3 directions have approximately the same magnitude. Interestingly, the eigenvalues for the α3 direction are negative, as a consequence of a uniaxial compression along the b axis during warming (Fig. 4).

Analysis of the thermal expansion tensor can give insight into the strengths of intermolecular interactions (Salud et al., 1998; Küppers, 2003). The largest expansion is expected in the direction of the weakest intermolecular interactions. In (I), the intermolecular hydrogen bonds manifest as two-dimensional layers in the crystallographic ac plane. Eigenvalues α1 and α2 of the expansion tensor are indeed located in this plane. As expected, the lengths of the intermolecular hydrogen bonds increase during warming. Eigenvalue α3 is perpendicular to this plane and mainly reflects the interlinkage of the planes via coordinative bonds to the Zn. This eigenvalue is negative, corresponding to a contraction during warming. Overall, while the layer of hydrogen bonds expands, the distance between the layers shortens, leading to an accordion-like movement. Parallel to the layers, the Zn···Zn(1/2 - x, 1/2 - y, -z) distance increases from 10.6659 (4) Å at 110 K to 10.7358 (4) Å at 250 K. Perpendicular to the layers, the Zn···Zn (x, 1 - y, z + 1/2) distance is shortened from 12.1505 (5) Å at 110 K to 12.1336 (5) Å at 250 K. The combination of the negative eigenvalue of the thermal expansion tensor with the two positive values results in an overall expansion of the unit-cell volume during warming.

Negative thermal expansion is not uncommon in crystals of inorganic compounds. A famous example is the family of cyanide-bridged nanoporous frameworks (Phillips et al., 2008), where transverse vibrations of the cyanide bridges shorten the metal···metal distances. Other framework materials such as ZrW2O8, ZrV2O7 and Sc2(WO4)3 also show strong negative thermal expansion (Evans, 1999), and a framework-based model has also been used to explain the negative thermal expansion observed in the cuprites Cu2O and Ag2O (Artioli et al., 2006). In organic compounds, negative thermal expansion is seldom observed. The rigid aromatic molecule pentacene has a very anisotropic molecular shape with an anisotropic tensor of inertia. This can be related to the anisotropy of the libration tensor and the uniaxial negative thermal expansion (Haas et al., 2007). In the monohydrate of the dipeptide tryptophylglycine, the uniaxial negative thermal expansion could be explained by the increased ordering of the solvent water molecule (Birkedal et al., 2002).

Rigid-body analyses were performed on the anisotropic displacement parameters of the cations of (Ia) and (Ib) using the program THMA11 (Schomaker & Trueblood, 1998). In total, 12 rigid-body parameters were refined against 78 independent observations. The weighted R values of the resulting TLS model are 0.198 at 110 K and 0.173 at 250 K (R = {[Σ(wΔU)2]/[Σ(wUobs)2]}1/2, with w = σ/σ). Such high R values indicate significant non-ridigity of the complex. This non-rigidity can also be detected by a comparison of the equivalent isotropic displacement parameters [Ueq = 1/3Σi,j(Uija*ia*jaiaj)]. The Ueq values of the N atoms are much larger than those of the other atoms. PEANUT plots (Hummel et al., 1990) of the difference between the observed Uij and the Uij from the TLS model indicate movement in the out-of-plane directions for the urea ligands (Fig. 5). The largest differences are observed for urea molecule 1 (atoms O1, C1, N11 and N12) and the smallest on urea molecule 3 (atoms O3, C3, N31 and N32).

The non-rigidity of the cation in (I) can be treated with a segmented rigid-body model, allowing rotations about the O—C bonds. Here, three additional parameters are refined together with the 12 rigid-body parameters. The weighted R values for the TLS models improve significantly to 0.138 and 0.126 for (Ia) at 110 K and (Ib) at 250 K, respectively. It remains unclear whether this improvement is due to a better model or is just a consequence of more degrees of freedom. Measurements over more temperatures, together with a normal coordinate analysis (Bürgi & Capelli, 2000), will be necessary for a final judgement on this question.

To analyse further the non-rigidity of the molecule, we looked at the difference between the ADPs of (Ia) at 110 K and (Ib) at 250 K. In the first step, the atomic coordinates of (Ia) were fitted to those of (Ib) using a quaternion fit (Mackay, 1984). The ADPs of (Ia) were then transformed accordingly and the difference was visualized using PEANUT (Fig. 6). The plot shows the differences in mean-square displacements (U250 K - U110 K) as a consequence of the temperature increase. It is clearly visible that the non-rigidity of the urea ligands mostly originates from libration around the O—C bond. The largest eigenvectors of the difference ADPs are as good as perpendicular to the urea ligand planes. These directions are different from the THMA result (Ucalc - Uobs), which is shown in Fig. 5.

The C, N and O atoms in (I) have rather large anisotropicities, as calculated by the ratio between the highest and lowest eigenvalues (λ3/λ1) of the ADPs. They are in the ranges 1.23–4.80 at 110 K and 1.27–5.48 at 250 K. These ratios are larger than in the diaqua compound (Prior & Kift, 2009), which has quite isotropic C, N and O atoms with a maximum (λ3/λ1) of 2.85 at 150 K. Restraints on the displacement parameters of two atoms had been used in the refinement of this structure. A redetermination of the structure of the diaqua compound in our laboratory at 150 K gave essentially the same result as that obtained by Prior & Kift (2009), but refinement without restraints on the displacement parameters led to a (λ3/λ1) range between 1.40 and 4.07 (Lutz, 2011).

Related literature top

For related literature, see: Allen (2002); Artioli et al. (2006); Bürgi & Capelli (2000); Birkedal et al. (2002); Catesby (1961); Duisenberg et al. (2000); Evans (1999); Giesen & Stam (1972); Haas et al. (2007); Hirshfeld (1976); Hummel et al. (1990); Küppers (2003); Lovett (1999); Lutz (2011); Mackay (1984); Mak & Zhou (1992); Ohashi & Burnham (1973); Phillips et al. (2008); Pilati & Forni (1998); Prior & Kift (2009); Salud et al. (1998); Schomaker & Trueblood (1998); Spek (2009); Zhongyuan et al. (1986).

Experimental top

Zinc nitrate hexahydrate was mixed with six equivalents of urea in water. Evaporation at room temperature resulted in a highly viscous liquid, from which crystals of (I) were obtained after several weeks.

Refinement top

As a starting model for the refinement, the coordinates of van de Giesen & Stam (1972) were used, but it was decided to perform a unit-cell reduction with PLATON (Spek, 2009). Further refinements were performed in the conventional unit-cell setting.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2008); data reduction: EVAL15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2008a); program(s) used to solve structure: coordinates from literature (van de Giesen & Stam, 1972); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009) and Jmol (Jmol, 2010); software used to prepare material for publication: manual editing of SHELXL97 cif file.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot and labelling scheme for (Ia) at 110 K and (Ib) at 250 K, drawn at the 50% probability level. The labelling scheme is consistent for both figures. H atoms have been omitted for clarity. [Symmetry code: (i) -x, y, -z + 1/2.]
[Figure 2] Fig. 2. A schematic representation of the hydrogen bonding in (Ia). Dashed lines indicate intermolecular hydrogen bonds. Each colour represents a different set of symmetry operations, i.e. darkest grey (red in the electronic version of the paper): (x, y, z) and (-x, y, -z + 1/2); second-darkest grey (green): (-x + 1/2, -y + 1/2, -z) and (x + 1/2, -y + 1/2, z - 1/2); second-lightest grey (orange): (x + 1/2, y + 1/2, z) and (-x + 1/2, y + 1/2, -z + 1/2); lightest grey (pink): (-x, -y, -z) and (x, -y, z - 1/2). Nitrates are shown in blue. The view is along the crystallographic c axis. A dynamic version of this figure can be found in the Supplementary Materials.
[Figure 3] Fig. 3. The temperature evolution of the cell parameters (Å) of (I) during cooling from 290 to 110 K (dark-grey lines; blue in the electronic version of the paper) and warming from 110 to 250 K (light-grey lines; red). The scale for the crystallographic a and c [a and b?] axes is shown on the left, and that for the b [c?] axis is shown on the right.
[Figure 4] Fig. 4. The temperature evolution of the eigenvalues of the unit strain tensor of thermal expansion (10 -6 K-1) of (I) during cooling from 290 to 110 K (dark-grey lines; blue in the electronic version of the paper) and warming from 110 to 250 K (light-grey lines; red). Top line: α1; middle line: α2; bottom line: α3.
[Figure 5] Fig. 5. PEANUT plots (Hummel et al., 1990) of the cations of (Ia) and (Ib). The plots show the difference between the observed anisotropic displacement parameters (ADPs) and those calculated from a TLS model using THMA11 (Schomaker & Trueblood, 1998). The scale factor is 4.62. Light-grey lines indicate positive differences (red [Purple?] in the electronic version of the paper) and dark-grey lines negative differences (blue).
[Figure 6] Fig. 6. PEANUT plot (Hummel et al., 1990) of the differences between the anisotropic displacement parameters (ADPs)of the cations of (Ia) and (Ib), showing r.m.s. surfaces. The atomic coordinates of (Ia) and its ADPs were transformed to match those of (Ib) using a quaternion transformation (Mackay, 1984). The scale is 2.31.
(Ia) Hexakis(urea-κO)zinc(II) dinitrate top
Crystal data top
[Zn(CH4N2O)6](NO3)2F(000) = 1136
Mr = 549.76Dx = 1.719 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 35466 reflections
a = 17.0337 (6) Åθ = 1.7–35.0°
b = 18.0092 (5) ŵ = 1.24 mm1
c = 7.3550 (2) ÅT = 110 K
β = 109.651 (2)°Plate, colourless
V = 2124.84 (11) Å30.36 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4678 independent reflections
Radiation source: rotating anode4266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2727
Tmin = 0.618, Tmax = 0.747k = 2929
40566 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.059All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.8657P]
where P = (Fo2 + 2Fc2)/3
4678 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(CH4N2O)6](NO3)2V = 2124.84 (11) Å3
Mr = 549.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.0337 (6) ŵ = 1.24 mm1
b = 18.0092 (5) ÅT = 110 K
c = 7.3550 (2) Å0.36 × 0.20 × 0.12 mm
β = 109.651 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4266 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.747Rint = 0.027
40566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.059All H-atom parameters refined
S = 1.07Δρmax = 0.46 e Å3
4678 reflectionsΔρmin = 0.27 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.178482 (6)0.25000.00913 (3)
O10.12486 (4)0.18499 (3)0.25260 (8)0.01319 (10)
O20.03229 (3)0.09309 (3)0.44918 (8)0.01242 (10)
O30.03092 (4)0.25533 (3)0.47623 (8)0.01304 (10)
N110.23117 (5)0.15549 (6)0.35631 (13)0.02612 (17)
H11A0.2539 (12)0.1333 (10)0.254 (3)0.048 (5)*
H11B0.2511 (10)0.1491 (9)0.447 (2)0.029 (4)*
N120.10996 (5)0.20428 (5)0.56689 (10)0.01953 (14)
H12A0.0595 (10)0.2213 (9)0.584 (2)0.035 (4)*
H12B0.1281 (9)0.1953 (8)0.662 (2)0.024 (3)*
N210.10433 (5)0.01587 (4)0.68823 (11)0.01961 (14)
H21A0.0640 (10)0.0140 (9)0.660 (2)0.033 (4)*
H21B0.1493 (10)0.0043 (9)0.763 (2)0.029 (4)*
N220.16810 (4)0.12007 (4)0.62171 (10)0.01352 (11)
H22A0.1683 (8)0.1484 (8)0.532 (2)0.019 (3)*
H22B0.2138 (9)0.1034 (8)0.690 (2)0.022 (3)*
N310.02754 (5)0.37612 (4)0.55510 (12)0.01949 (14)
H31A0.0174 (10)0.3702 (9)0.572 (2)0.030 (4)*
H31B0.0428 (10)0.4195 (9)0.544 (2)0.034 (4)*
N320.11823 (5)0.33650 (4)0.40451 (12)0.01756 (13)
H32A0.1325 (10)0.3013 (9)0.347 (2)0.029 (4)*
H32B0.1263 (9)0.3827 (8)0.382 (2)0.026 (3)*
C10.15381 (5)0.18085 (4)0.39026 (11)0.01272 (12)
C20.09943 (5)0.07617 (4)0.58032 (10)0.01129 (11)
C30.05724 (5)0.32095 (4)0.47597 (10)0.01116 (11)
O1N0.09406 (4)0.50492 (4)0.39746 (10)0.02076 (12)
O2N0.21997 (4)0.48409 (4)0.58623 (13)0.03066 (17)
O3N0.16659 (4)0.59439 (3)0.57256 (9)0.01808 (11)
N10.16009 (4)0.52762 (4)0.51828 (10)0.01451 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01002 (5)0.00805 (5)0.00952 (5)0.0000.00353 (4)0.000
O10.0122 (2)0.0178 (3)0.0113 (2)0.00135 (19)0.00615 (18)0.00085 (18)
O20.0120 (2)0.0112 (2)0.0119 (2)0.00008 (17)0.00110 (18)0.00239 (17)
O30.0166 (2)0.0103 (2)0.0139 (2)0.00319 (18)0.00730 (19)0.00175 (17)
N110.0183 (3)0.0433 (5)0.0205 (3)0.0125 (3)0.0114 (3)0.0066 (3)
N120.0212 (3)0.0273 (4)0.0127 (3)0.0071 (3)0.0091 (2)0.0030 (3)
N210.0160 (3)0.0166 (3)0.0205 (3)0.0029 (2)0.0014 (3)0.0091 (2)
N220.0110 (3)0.0151 (3)0.0132 (3)0.0012 (2)0.0025 (2)0.0027 (2)
N310.0195 (3)0.0133 (3)0.0288 (4)0.0012 (2)0.0124 (3)0.0066 (3)
N320.0201 (3)0.0129 (3)0.0243 (3)0.0040 (2)0.0134 (3)0.0027 (2)
C10.0144 (3)0.0120 (3)0.0137 (3)0.0005 (2)0.0073 (2)0.0001 (2)
C20.0124 (3)0.0110 (3)0.0104 (3)0.0005 (2)0.0036 (2)0.0001 (2)
C30.0113 (3)0.0108 (3)0.0106 (3)0.0005 (2)0.0026 (2)0.0013 (2)
O1N0.0157 (3)0.0167 (3)0.0230 (3)0.0035 (2)0.0027 (2)0.0006 (2)
O2N0.0158 (3)0.0203 (3)0.0458 (4)0.0029 (2)0.0029 (3)0.0019 (3)
O3N0.0195 (3)0.0143 (3)0.0227 (3)0.0048 (2)0.0101 (2)0.0055 (2)
N10.0129 (3)0.0140 (3)0.0163 (3)0.0023 (2)0.0044 (2)0.0001 (2)
Geometric parameters (Å, º) top
Zn1—O12.1366 (6)N21—C21.3310 (10)
Zn1—O22.0668 (5)N21—H21A0.842 (16)
Zn1—O32.0909 (6)N21—H21B0.806 (16)
Zn1—O2i2.0668 (5)N22—C21.3589 (10)
Zn1—O3i2.0909 (6)N22—H22A0.833 (14)
Zn1—O1i2.1366 (6)N22—H22B0.828 (14)
O1—C11.2688 (9)N31—C31.3341 (10)
O2—C21.2606 (9)N31—H31A0.823 (16)
O3—C31.2642 (9)N31—H31B0.835 (16)
N11—C11.3363 (11)N32—C31.3420 (10)
N11—H11A0.822 (19)N32—H32A0.843 (16)
N11—H11B0.851 (16)N32—H32B0.868 (15)
N12—C11.3308 (11)O1N—N11.2448 (9)
N12—H12A0.881 (16)O2N—N11.2497 (10)
N12—H12B0.871 (15)O3N—N11.2601 (9)
O1—Zn1—O1i173.71 (3)C2—N21—H21A119.5 (11)
O2—Zn1—O2i83.84 (3)C2—N21—H21B118.1 (11)
O3—Zn1—O3i97.11 (3)H21A—N21—H21B120.9 (16)
O1—Zn1—O293.61 (2)C2—N22—H22A114.3 (10)
O1—Zn1—O386.66 (2)C2—N22—H22B119.2 (10)
O2—Zn1—O389.58 (2)H22A—N22—H22B116.5 (13)
O2—Zn1—O3i172.90 (2)C3—N31—H31A118.6 (11)
O2i—Zn1—O3i89.58 (2)C3—N31—H31B118.6 (11)
O2i—Zn1—O3172.89 (2)H31A—N31—H31B118.2 (15)
O2—Zn1—O1i91.07 (2)C3—N32—H32A115.5 (11)
O2i—Zn1—O1i93.61 (2)C3—N32—H32B117.7 (10)
O3i—Zn1—O1i86.66 (2)H32A—N32—H32B122.5 (14)
O3—Zn1—O1i89.18 (2)O1—C1—N12121.27 (7)
O2i—Zn1—O191.07 (2)O1—C1—N11119.63 (8)
O3i—Zn1—O189.18 (2)N12—C1—N11119.03 (7)
C1—O1—Zn1131.24 (5)O2—C2—N21120.82 (7)
C2—O2—Zn1132.76 (5)O2—C2—N22121.46 (7)
C3—O3—Zn1127.74 (5)N21—C2—N22117.67 (7)
C1—N11—H11A117.9 (13)O3—C3—N31120.58 (7)
C1—N11—H11B121.8 (11)O3—C3—N32121.16 (7)
H11A—N11—H11B117.3 (16)N31—C3—N32118.19 (7)
C1—N12—H12A116.7 (10)O1N—N1—O2N119.97 (7)
C1—N12—H12B119.5 (10)O1N—N1—O3N120.10 (7)
H12A—N12—H12B122.9 (14)O2N—N1—O3N119.93 (7)
O2—Zn1—O1—C140.74 (7)O3i—Zn1—O3—C326.68 (5)
O2i—Zn1—O1—C1124.64 (7)O1i—Zn1—O3—C359.85 (6)
O3i—Zn1—O1—C1145.80 (7)O1—Zn1—O3—C3115.43 (7)
O3—Zn1—O1—C148.63 (7)Zn1—O1—C1—N1231.21 (11)
O2i—Zn1—O2—C2122.48 (8)Zn1—O1—C1—N11151.71 (7)
O3—Zn1—O2—C260.21 (7)Zn1—O2—C2—N21178.34 (6)
O1i—Zn1—O2—C228.96 (7)Zn1—O2—C2—N224.31 (11)
O1—Zn1—O2—C2146.83 (7)Zn1—O3—C3—N31136.97 (7)
O2—Zn1—O3—C3150.93 (6)Zn1—O3—C3—N3246.11 (10)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2Nii0.822 (19)2.415 (19)3.1377 (13)147.3 (17)
N11—H11B···O3Niii0.851 (16)2.159 (16)2.9389 (10)152.1 (14)
N12—H12A···O30.881 (16)2.048 (16)2.8504 (9)150.9 (14)
N12—H12B···N22iv0.871 (15)2.357 (15)3.1705 (10)155.6 (13)
N21—H21A···O2v0.842 (16)2.116 (17)2.9505 (10)171.0 (15)
N21—H21B···O2Nvi0.806 (16)2.158 (16)2.9491 (11)167.1 (15)
N22—H22A···O1i0.833 (14)2.081 (14)2.8504 (9)153.4 (13)
N22—H22B···O3Nvi0.828 (14)2.200 (14)2.9901 (9)159.9 (13)
N31—H31A···O3Nvii0.823 (16)2.487 (15)3.1638 (11)140.3 (14)
N31—H31B···O1N0.835 (16)2.220 (16)2.9820 (11)151.7 (14)
N32—H32A···O1i0.843 (16)2.208 (16)2.9802 (10)152.4 (14)
N32—H32B···O1N0.868 (15)2.280 (15)3.0590 (10)149.4 (13)
N32—H32B···O2N0.868 (15)2.553 (15)3.2089 (11)133.0 (12)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z; (iv) x, y, z+3/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+1.
(Ib) Hexakis(urea-κO)zinc(II) dinitrate top
Crystal data top
[Zn(CH4N2O)6](NO3)2F(000) = 1136
Mr = 549.76Dx = 1.692 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 33077 reflections
a = 17.1082 (6) Åθ = 1.7–35.0°
b = 17.9456 (7) ŵ = 1.23 mm1
c = 7.46654 (16) ÅT = 250 K
β = 109.701 (2)°Plate, colourless
V = 2158.18 (12) Å30.36 × 0.20 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4747 independent reflections
Radiation source: rotating anode4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2727
Tmin = 0.668, Tmax = 0.747k = 2828
41204 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.075All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.8626P]
where P = (Fo2 + 2Fc2)/3
4747 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn(CH4N2O)6](NO3)2V = 2158.18 (12) Å3
Mr = 549.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.1082 (6) ŵ = 1.23 mm1
b = 17.9456 (7) ÅT = 250 K
c = 7.46654 (16) Å0.36 × 0.20 × 0.12 mm
β = 109.701 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4747 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4013 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.747Rint = 0.030
41204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.03Δρmax = 0.31 e Å3
4747 reflectionsΔρmin = 0.44 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.178335 (9)0.25000.02057 (5)
O10.12432 (5)0.18478 (5)0.25497 (11)0.02926 (16)
O20.03312 (5)0.09291 (4)0.44724 (11)0.02645 (14)
O30.03126 (5)0.25578 (4)0.47169 (12)0.02915 (16)
N110.23087 (9)0.15887 (11)0.3556 (2)0.0599 (4)
H11A0.2527 (17)0.1382 (15)0.257 (4)0.083 (8)*
H11B0.2520 (14)0.1518 (12)0.441 (3)0.061 (6)*
N120.10885 (8)0.20246 (8)0.56398 (16)0.0437 (3)
H12A0.0579 (14)0.2191 (12)0.580 (3)0.063 (6)*
H12B0.1270 (11)0.1934 (10)0.656 (3)0.043 (5)*
N210.10473 (8)0.01632 (7)0.68312 (18)0.0427 (3)
H21A0.0651 (12)0.0134 (11)0.657 (3)0.046 (5)*
H21B0.1506 (12)0.0044 (11)0.761 (3)0.048 (5)*
N220.16754 (6)0.12051 (6)0.61859 (15)0.03044 (19)
H22A0.1677 (10)0.1479 (10)0.532 (2)0.035 (4)*
H22B0.2129 (11)0.1045 (9)0.688 (2)0.036 (4)*
N310.02890 (9)0.37577 (7)0.5549 (2)0.0449 (3)
H31A0.0142 (13)0.3686 (11)0.570 (3)0.049 (5)*
H31B0.0432 (13)0.4168 (12)0.547 (3)0.055 (5)*
N320.11980 (8)0.33707 (7)0.40947 (19)0.0391 (2)
H32A0.1328 (11)0.3030 (11)0.346 (3)0.044 (5)*
H32B0.1271 (12)0.3822 (11)0.390 (3)0.048 (5)*
C10.15310 (7)0.18119 (6)0.38989 (16)0.02787 (19)
C20.09971 (6)0.07648 (6)0.57690 (14)0.02376 (17)
C30.05820 (6)0.32118 (6)0.47556 (15)0.02454 (17)
O1N0.09580 (6)0.50736 (6)0.40249 (16)0.0474 (2)
O2N0.22007 (7)0.48642 (7)0.5856 (2)0.0655 (4)
O3N0.16831 (6)0.59699 (5)0.57163 (15)0.0413 (2)
N10.16133 (6)0.53019 (6)0.51959 (15)0.03199 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02267 (8)0.01753 (7)0.02228 (7)0.0000.00856 (5)0.000
O10.0262 (3)0.0392 (4)0.0261 (3)0.0030 (3)0.0136 (3)0.0021 (3)
O20.0263 (3)0.0227 (3)0.0266 (3)0.0018 (3)0.0040 (3)0.0046 (3)
O30.0372 (4)0.0228 (3)0.0322 (4)0.0074 (3)0.0179 (3)0.0056 (3)
N110.0405 (7)0.1006 (13)0.0488 (7)0.0278 (8)0.0282 (6)0.0148 (8)
N120.0468 (6)0.0615 (8)0.0294 (5)0.0129 (6)0.0217 (5)0.0048 (5)
N210.0351 (5)0.0358 (6)0.0445 (6)0.0065 (4)0.0033 (5)0.0195 (5)
N220.0248 (4)0.0340 (5)0.0298 (4)0.0028 (4)0.0056 (3)0.0069 (4)
N310.0468 (7)0.0281 (5)0.0680 (8)0.0038 (5)0.0302 (6)0.0160 (5)
N320.0442 (6)0.0273 (5)0.0559 (7)0.0104 (4)0.0300 (6)0.0073 (5)
C10.0309 (5)0.0265 (5)0.0315 (5)0.0014 (4)0.0176 (4)0.0008 (4)
C20.0263 (4)0.0220 (4)0.0224 (4)0.0007 (3)0.0075 (3)0.0010 (3)
C30.0249 (4)0.0219 (4)0.0257 (4)0.0010 (3)0.0071 (3)0.0029 (3)
O1N0.0365 (5)0.0354 (5)0.0546 (6)0.0067 (4)0.0053 (4)0.0014 (4)
O2N0.0363 (6)0.0463 (6)0.0927 (10)0.0054 (5)0.0061 (6)0.0003 (6)
O3N0.0439 (5)0.0333 (5)0.0520 (5)0.0107 (4)0.0230 (4)0.0121 (4)
N10.0286 (4)0.0305 (5)0.0364 (5)0.0051 (4)0.0104 (4)0.0012 (4)
Geometric parameters (Å, º) top
Zn1—O12.1428 (8)N21—C21.3251 (14)
Zn1—O22.0682 (7)N21—H21A0.83 (2)
Zn1—O32.0882 (8)N21—H21B0.83 (2)
Zn1—O2i2.0682 (7)N22—C21.3507 (14)
Zn1—O3i2.0882 (8)N22—H22A0.815 (18)
Zn1—O1i2.1428 (8)N22—H22B0.826 (17)
O1—C11.2633 (12)N31—C31.3275 (15)
O2—C21.2563 (12)N31—H31A0.79 (2)
O3—C31.2578 (12)N31—H31B0.79 (2)
N11—C11.3291 (17)N32—C31.3364 (15)
N11—H11A0.80 (3)N32—H32A0.849 (19)
N11—H11B0.84 (2)N32—H32B0.84 (2)
N12—C11.3210 (17)O1N—N11.2362 (14)
N12—H12A0.89 (2)O2N—N11.2393 (15)
N12—H12B0.860 (19)O3N—N11.2535 (13)
O1—Zn1—O1i173.81 (5)C2—N21—H21A119.8 (13)
O2—Zn1—O2i84.32 (4)C2—N21—H21B118.9 (13)
O3—Zn1—O3i96.55 (5)H21A—N21—H21B120.1 (19)
O1—Zn1—O293.61 (3)C2—N22—H22A113.7 (12)
O1—Zn1—O386.61 (3)C2—N22—H22B119.5 (12)
O2—Zn1—O389.62 (3)H22A—N22—H22B117.1 (16)
O2—Zn1—O3i173.33 (3)C3—N31—H31A116.9 (14)
O2i—Zn1—O3173.33 (3)C3—N31—H31B118.8 (14)
O2i—Zn1—O3i89.62 (3)H31A—N31—H31B120 (2)
O2i—Zn1—O1i93.61 (3)C3—N32—H32A116.2 (13)
O2—Zn1—O1i90.98 (3)C3—N32—H32B116.7 (13)
O3i—Zn1—O1i86.61 (3)H32A—N32—H32B121.1 (18)
O3—Zn1—O1i89.28 (3)O1—C1—N12121.46 (11)
O2i—Zn1—O190.98 (3)O1—C1—N11119.72 (12)
O3i—Zn1—O189.28 (3)N12—C1—N11118.75 (12)
C1—O1—Zn1131.84 (8)O2—C2—N21120.76 (10)
C2—O2—Zn1133.02 (7)O2—C2—N22121.72 (9)
C3—O3—Zn1129.29 (7)N21—C2—N22117.47 (10)
C1—N11—H11A116.3 (19)O3—C3—N31120.54 (11)
C1—N11—H11B123.8 (15)O3—C3—N32121.28 (10)
H11A—N11—H11B117 (2)N31—C3—N32118.09 (11)
C1—N12—H12A116.2 (14)O1N—N1—O2N119.46 (12)
C1—N12—H12B119.4 (13)O1N—N1—O3N120.34 (11)
H12A—N12—H12B123.6 (19)O2N—N1—O3N120.20 (11)
O2i—Zn1—O1—C1125.43 (10)O3i—Zn1—O3—C327.64 (8)
O2—Zn1—O1—C141.05 (10)O1i—Zn1—O3—C358.86 (10)
O3i—Zn1—O1—C1144.96 (10)O1—Zn1—O3—C3116.52 (10)
O3—Zn1—O1—C148.35 (10)Zn1—O1—C1—N1228.53 (17)
O2i—Zn1—O2—C2123.52 (11)Zn1—O1—C1—N11154.65 (13)
O3—Zn1—O2—C259.28 (10)Zn1—O2—C2—N21178.59 (9)
O1i—Zn1—O2—C229.99 (10)Zn1—O2—C2—N224.09 (16)
O1—Zn1—O2—C2145.85 (10)Zn1—O3—C3—N31137.16 (11)
O2—Zn1—O3—C3149.84 (9)Zn1—O3—C3—N3246.38 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2Nii0.80 (3)2.54 (3)3.229 (2)145 (2)
N11—H11B···O3Niii0.84 (2)2.16 (2)2.9471 (16)155 (2)
N12—H12A···O30.89 (2)2.06 (2)2.8722 (14)150.9 (19)
N12—H12B···N22iv0.860 (19)2.41 (2)3.2239 (16)157.9 (16)
N21—H21A···O2v0.83 (2)2.14 (2)2.9671 (14)171.9 (17)
N21—H21B···O2Nvi0.83 (2)2.14 (2)2.9605 (17)166.4 (18)
N22—H22A···O1i0.815 (18)2.120 (18)2.8751 (13)153.9 (16)
N22—H22B···O3Nvi0.826 (17)2.215 (18)3.0058 (14)160.1 (15)
N31—H31A···O3Nvii0.79 (2)2.56 (2)3.2196 (18)141.2 (18)
N31—H31B···O1N0.79 (2)2.29 (2)3.0101 (18)152.0 (19)
N32—H32A···O1i0.849 (19)2.239 (19)3.0078 (15)150.5 (17)
N32—H32B···O1N0.84 (2)2.32 (2)3.0815 (16)151.5 (17)
N32—H32B···O2N0.84 (2)2.57 (2)3.2147 (17)134.8 (16)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z; (iv) x, y, z+3/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+1.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formula[Zn(CH4N2O)6](NO3)2[Zn(CH4N2O)6](NO3)2
Mr549.76549.76
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)110250
a, b, c (Å)17.0337 (6), 18.0092 (5), 7.3550 (2)17.1082 (6), 17.9456 (7), 7.46654 (16)
β (°) 109.651 (2) 109.701 (2)
V3)2124.84 (11)2158.18 (12)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.241.23
Crystal size (mm)0.36 × 0.20 × 0.120.36 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.618, 0.7470.668, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
40566, 4678, 4266 41204, 4747, 4013
Rint0.0270.030
(sin θ/λ)max1)0.8070.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.07 0.029, 0.075, 1.03
No. of reflections46784747
No. of parameters198198
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.46, 0.270.31, 0.44

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2008), EVAL15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2008a), coordinates from literature (van de Giesen & Stam, 1972), SHELXL97 (Sheldrick, 2008b), PLATON (Spek, 2009) and Jmol (Jmol, 2010), manual editing of SHELXL97 cif file.

Selected geometric parameters (Å, º) for (Ia) top
Zn1—O12.1366 (6)O1—C11.2688 (9)
Zn1—O22.0668 (5)O2—C21.2606 (9)
Zn1—O32.0909 (6)O3—C31.2642 (9)
O1—Zn1—O1i173.71 (3)O2—Zn1—O389.58 (2)
O2—Zn1—O2i83.84 (3)O2—Zn1—O3i172.90 (2)
O3—Zn1—O3i97.11 (3)C1—O1—Zn1131.24 (5)
O1—Zn1—O293.61 (2)C2—O2—Zn1132.76 (5)
O1—Zn1—O386.66 (2)C3—O3—Zn1127.74 (5)
Zn1—O1—C1—N1231.21 (11)Zn1—O2—C2—N224.31 (11)
Zn1—O1—C1—N11151.71 (7)Zn1—O3—C3—N31136.97 (7)
Zn1—O2—C2—N21178.34 (6)Zn1—O3—C3—N3246.11 (10)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2Nii0.822 (19)2.415 (19)3.1377 (13)147.3 (17)
N11—H11B···O3Niii0.851 (16)2.159 (16)2.9389 (10)152.1 (14)
N12—H12A···O30.881 (16)2.048 (16)2.8504 (9)150.9 (14)
N12—H12B···N22iv0.871 (15)2.357 (15)3.1705 (10)155.6 (13)
N21—H21A···O2v0.842 (16)2.116 (17)2.9505 (10)171.0 (15)
N21—H21B···O2Nvi0.806 (16)2.158 (16)2.9491 (11)167.1 (15)
N22—H22A···O1i0.833 (14)2.081 (14)2.8504 (9)153.4 (13)
N22—H22B···O3Nvi0.828 (14)2.200 (14)2.9901 (9)159.9 (13)
N31—H31A···O3Nvii0.823 (16)2.487 (15)3.1638 (11)140.3 (14)
N31—H31B···O1N0.835 (16)2.220 (16)2.9820 (11)151.7 (14)
N32—H32A···O1i0.843 (16)2.208 (16)2.9802 (10)152.4 (14)
N32—H32B···O1N0.868 (15)2.280 (15)3.0590 (10)149.4 (13)
N32—H32B···O2N0.868 (15)2.553 (15)3.2089 (11)133.0 (12)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z; (iv) x, y, z+3/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (Ib) top
Zn1—O12.1428 (8)O1—C11.2633 (12)
Zn1—O22.0682 (7)O2—C21.2563 (12)
Zn1—O32.0882 (8)O3—C31.2578 (12)
O1—Zn1—O1i173.81 (5)O2—Zn1—O389.62 (3)
O2—Zn1—O2i84.32 (4)O2—Zn1—O3i173.33 (3)
O3—Zn1—O3i96.55 (5)C1—O1—Zn1131.84 (8)
O1—Zn1—O293.61 (3)C2—O2—Zn1133.02 (7)
O1—Zn1—O386.61 (3)C3—O3—Zn1129.29 (7)
Zn1—O1—C1—N1228.53 (17)Zn1—O2—C2—N224.09 (16)
Zn1—O1—C1—N11154.65 (13)Zn1—O3—C3—N31137.16 (11)
Zn1—O2—C2—N21178.59 (9)Zn1—O3—C3—N3246.38 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O2Nii0.80 (3)2.54 (3)3.229 (2)145 (2)
N11—H11B···O3Niii0.84 (2)2.16 (2)2.9471 (16)155 (2)
N12—H12A···O30.89 (2)2.06 (2)2.8722 (14)150.9 (19)
N12—H12B···N22iv0.860 (19)2.41 (2)3.2239 (16)157.9 (16)
N21—H21A···O2v0.83 (2)2.14 (2)2.9671 (14)171.9 (17)
N21—H21B···O2Nvi0.83 (2)2.14 (2)2.9605 (17)166.4 (18)
N22—H22A···O1i0.815 (18)2.120 (18)2.8751 (13)153.9 (16)
N22—H22B···O3Nvi0.826 (17)2.215 (18)3.0058 (14)160.1 (15)
N31—H31A···O3Nvii0.79 (2)2.56 (2)3.2196 (18)141.2 (18)
N31—H31B···O1N0.79 (2)2.29 (2)3.0101 (18)152.0 (19)
N32—H32A···O1i0.849 (19)2.239 (19)3.0078 (15)150.5 (17)
N32—H32B···O1N0.84 (2)2.32 (2)3.0815 (16)151.5 (17)
N32—H32B···O2N0.84 (2)2.57 (2)3.2147 (17)134.8 (16)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z; (iv) x, y, z+3/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+1.
Tensor components (10 -6 K-1) of the unit strain tensor of thermal expansion for warming from 110 to 250 K. Tensors are in a Cartesian coordinate system. α12 = α23 = 0, due to symmetry. Orthogonalization matrix: x//a, z//c*, z//yx (Dunitz, 1995). top
T (K)α11α22α33α13
110–13025.15-21.7679.08-12.08
130–15033.84-19.4986.59-13.35
150–17033.11-22.1691.61-14.87
170–19027.78-28.89100.08-19.81
190–21032.89-28.73110.79-16.38
210–23027.96-24.56128.82-20.99
230–25032.03-32.78129.35-20.36
Eigenvalues of the unit strain tensor of the thermal expansion (10 -6 K-1) and corresponding angles with the unit-cell axes (°) for warming from 110 to 250 K. Orthogonalization matrix: x//a, z//c*, z//yx (Dunitz, 1995). top
T (K)Principal axisEigenvalueAngle with aAngle with bAngle with c
110–130α182 (2)102.1 (13)907.6 (13)
130–150α190 (2)103.4 (13)906.2 (13)
150–170α195.2 (19)103.5 (12)906.2 (12)
170–190α1105.1 (18)104.4 (9)905.3 (9)
190–210α1114 (2)101.4 (6)908.3 (6)
230–250α1133 (2)101.3 (7)908.3 (7)
110–130α223 (2)12.1 (13)9097.6 (13)
130–150α231 (2)13.4 (13)9096.2 (13)
150–170α230 (2)13.5 (12)9096.2 (12)
170–190α223 (2)14.4 (9)9095.3 (9)
190–210α230 (2)11.4 (6)9098.3 (6)
210–230α224 (2)11.3 (4)9098.4 (4)
230–250α228 (2)11.3 (7)9098.3 (7)
110–130α3-22 (2)90090
130–150α3-19 (3)90090
150–170α3-22.2 (19)90090
170–190α3-29 (2)90090
190–210α3-28.7 (18)90090
210–230α3-25 (2)90090
230–250α3-33 (2)90090
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds