Download citation
Download citation
link to html
In the mixed-metal complex catena-poly[bis[diaqua­silver(I)] [bis­[aqua­copper(II)]-μ3-pyridine-2,5-dicarboxyl­ato-2′:1:1′κ5N,O2:O5:O5,O5′-μ-pyridine-2,5-dicarboxyl­ato-2:1κ4N,O2:O5,O5′-di­silver(I)-μ3-pyridine-2,5-dicarboxyl­ato-1:1′:2′′κ5O5,O5′:O5:N,O2-μ-pyridine-2,5-dicarboxyl­ato-1′:2′′′κ4O5,O5′:N,O2] hexa­hy­drate], {[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2O}n, a square-pyramidal CuII center is coordinated by two N atoms and two O atoms from two pyridine-2,5-dicarboxyl­ate (2,5-pydc) ligands and a water mol­ecule, forming a [Cu(2,5-pydc)2(H2O)]2− metalloligand. One AgI center is coordinated by five O atoms from three 2,5-pydc ligands and, as a result, the [Cu(2,5-pydc)2(H2O)]2− metalloligands act as linkers in a unique μ3-mode connecting AgI centers into a one-dimensional anionic double chain along the [101] direction. The other AgI center is coordinated by two water mol­ecules, forming an [Ag(H2O)2]+ cation. Four adjacent AgI centers are associated by Ag...Ag inter­actions [3.126 (1) and 3.118 (1) Å], producing a Z-shaped Ag4 unit along the [010] direction and connecting the anionic chains into a two-dimensional layer structure. This study offers information for engineering mixed-metal complexes based on copper(II)–pyridine­dicarboxyl­ate metallo­ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010902890X/fn3027sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010902890X/fn3027Isup2.hkl
Contains datablock I

CCDC reference: 697102

Comment top

Coordination polymers constructed from metal ions and bridging ligands have been of great interest owing not only to their structural diversity but also to their many properties, such as host–guest chemistry, porosity, and magnetic, electronic and optical properties (Caneschi et al., 2001; Kitagawa et al., 1999). To date, a large number of monometallic coordination polymers have been prepared by the combination of organic spacers and metal centers (Evans & Lin, 2002; Kitagawa et al., 2004). Compared with monometallic coordination polymers, the design and synthesis of mixed-metal coordination polymers have received less attention (Kahn et al., 1988; Pei et al., 1988). In principle, such heterometallic materials might exhibit interesting physical properties, such as electrical conductivity or magnetic ordering, resulting from interactions between two neighboring metal centers connected by a suitable linker (Dong et al., 2000).

There are basically two approaches to the synthesis of mixed-metal coordination polymers. The one-step approach utilizes multidentate organic ligands to bind two different metal ions in a one-pot reaction. This method has been applied in the syntheses of some 3d–4f heterometallic compounds (Cheng et al., 2008; Liang et al., 2000; Luo et al., 2007). In the two-step approach, a metalloligand, which acts as a framework linker and a source of one metal, is synthesized first and then the metalloligand is reacted with another metal ion, usually by diffusion or hydrothermally so that the two types of metal centers coexist in the framework (Chapman et al., 2002; Ciurtin et al., 2002; Noro et al., 2005). Using this approach, Noro et al. (2002a,b) have prepared mixed-metal coordination polymers from a metalloligand, [Cu(2,4-pydc)2]2- (2,4-H2pydc is pyridine-2,4-dicarboxylic acid), which were usually obtained as Et3NH salts. We have developed a simplified two-step method to assemble mixed-metal frameworks by using 2,5-pydc ligands as organic spacers. In our approach, the metalloligand was not isolated in the first step and ammonia was added during the second step to assist in the formation of the mixed-metal complex. We report here the synthesis and structure of a mixed-metal coordination polymer formulated as [Ag(H2O)2][AgCu(C7H3NO4)2(H2O)].3H2O, (I), which exhibits a one-dimensional anionic chain structure.

The asymmetric unit of (I) contains one CuII atom, two AgI atoms, two 2,5-pydc ligands, three coordinated water molecules and three uncoordinated water molecules (Fig. 1). The absence of IR absorption bands around 1700 cm-1, attributed to a protonated carboxylate group, indicates the full deprotonation of the 2,5-pydc ligands. Atom Cu1 is coordinated by two pyridyl N atoms, two 2-carboxylate O atoms from two 2,5-pydc ligands and one water molecule in a distorted square-pyramidal geometry forming the [Cu(2,5-pydc)2(H2O)]2- metalloligand. Cu1 deviates from the basal plane formed by N1, N2, O1 and O5 toward the apical O1W atom by 0.1264 (19)Å. The bond angles at Cu1 between O1W and the basal atoms are in the range 91.49 (13)–97.64 (14)°. Atom Ag1 is bonded to three 5-carboxylate O atoms [O7, O3i and O4ii; symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 2, -y + 1, -z + 1] from three 2,5-pydc ligands in a distorted T-shaped geometry, with Ag1—O distances of 2.231 (3), 2.241 (4) and 2.664 (4) Å (Table 1). The other O atoms of the 5-carboxylate groups (O8 and O4i) also weakly coordinate to the Ag1 atom, with longer Ag1—O distances of 2.722 (3) and 2.747 (4) Å. Thus, two [Cu(2,5-pydc)2(H2O)]2- metalloligands bridge two Ag1 atoms, forming a cyclic unit. The ππ interactions between the pyridyl groups in this ring have a centroid–centroid distance of 3.773 (3) Å. The Cu···Cu distance in the ring is 3.965 (1) Å. These cyclic units are further connected along the [101] direction through Ag2O2 four-membered rings into a one-dimensional anionic chain (Fig. 2).

Atom Ag2 and two water molecules form an approximately linear cation (Fig. 1). Atoms Ag1 and Ag2, together with their centrosymmetrically related atoms, form a Z-shaped Ag4 unit through Ag···Ag interactions [3.126 (1) and 3.118 (1) Å]. According to the literature, the Agn units have several geometries, including linear (Hou & Li, 2005), annular (Estienne, 1986), polyhedral (Wei et al., 2004; Zhao et al., 2003) and infinite chain (Hannon et al., 2002; Sang & Xu 2006). An Ag4 unit similar to that in (I) has been found in the other compounds (Chen & Liu, 2003; Lin et al., 2004). Though argentophilic interactions are weaker than aurophilic interactions, it is thought that argentophilic interactions are similar to O—H···O hydrogen bonds in strength (Pyykkö, 1997). Therefore, argentophilic interactions can be used as one of the noncovalent interactions that facilitate the construction of topologically interesting supramolecular systems. In (I), the Ag4 units extending in the [010] direction connect the anionic chains into a two-dimensional layer, as shown in Fig. 3. The layer structure is supported by intralayer hydrogen bonds between the coordinated water molecules and carboxylate O atoms (O2W—H2A···O4ii and O3W—H3B···O7; see Table 2 for details). Interlayer hydrogen bonds involving the coordinated and uncoordinated water molecules and carboxylate O atoms link the layers into a three-dimensional supramolecular structure.

In the [Cu(2,5-pydc)2]2- metalloligand, the 2,5-pydc ligand chelates the Cu atom through the pyridyl N atom and one O atom of the 2-carboxylate group, leaving the other O atom of the 2-carboxylate group and two O atoms of the 5-carboxylate group as donors to the other metal centers. Thus six possible coordination sites are available for this metalloligand, as shown in Fig. 4. A search of the Cambridge Structural Database (Version ?; Allen, 2002) revealed that the [Cu(2,5-pydc)2]2- metalloligand connects metal ions in two types of µ2-modes, µ2-(κ2O2:O5) and µ2-(κ2O1:O5), one µ4-mode, µ4-(κ4O2:O3:O5:O6), and one µ6-mode, µ6-(κ6O1:O2:O3:O4:O5:O6). It is worthy of note that the metalloligand in (I) connects three Ag atoms through the 2, 3, 5 and 6 sites, exhibiting a unique µ3-mode, µ3-(κ5O2:O2,O3:O5,O6) (Fig. 4), which has not been reported previously. Our results indicate that the [Cu(2,5-pydc)2]2- unit can serve as a versatile ligand for the construction of mixed-metal coordination polymers.

In conclusion, we have prepared a mixed-metal complex by using a simplified two-step procedure. The [Cu(2,5-pydc)2(H2O)]2- metalloligand acting as a framework linker bridges the other AgI centers, leading to a one-dimensional polymeric chain. This work suggests a new synthetic approach for the mixed-metal complexes based on a CuII–pyridinedicarboxylate metalloligand and a second metal ion, which can be extended to other bimetallic complexes.

Related literature top

For related literature, see: Caneschi et al. (2001); Chapman et al. (2002); Chen & Liu (2003); Cheng et al. (2008); Ciurtin et al. (2002); Dong et al. (2000); Estienne (1986); Evans & Lin (2002); Hannon et al. (2002); Hou & Li (2005); Kahn et al. (1988); Kitagawa et al. (1999, 2004); Liang et al. (2000); Lin et al. (2004); Luo et al. (2007); Noro et al. (2002a, 2005); Pei et al. (1988); Pyykkö (1997); Sang & Xu (2006); Wei et al. (2004); Zhao et al. (2003).

Experimental top

An aqueous solution (20 ml) of Cu(NO3)2.3H2O (0.125 g, 0.3 mmol) and a suspension of 2,5-H2pydc (0.083 g, 0.3 mmol) in ethanol (10 ml) was refluxed for 24 h until a clear solution was obtained. To this solution, an aqueous solution (5 ml) of AgNO3 (0.085 g, 0.5 mmol) was added. Aqueous NH3 (25%, 0.06 ml) was then added slowly to the reaction mixture. The resulting solution was filtered off. Blue crystals were obtained by allowing the filtrate to stand at room temperature for several days [yield 0.112 g, 52% (based on Cu)].

Refinement top

H atoms on C atoms were positioned geometrically and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. H atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.82 (1) Å and H···H = 1.34 Å and with Uiso(H) values of 1.2Ueq(O). The highest residual electron density was 0.83 Å from atom Ag1 and the deepest hole 0.75 Å from atom Ag1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), together with symmetry-related atoms to complete the Ag1 coordination. Displacement ellipsoids are drawn at the 50% probability level. H atoms and uncoordinated water molecules have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 2, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The one-dimensional anionic chain in (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The two-dimensional layer structure in (I). Dashed lines denote Ag···Ag interactions.
[Figure 4] Fig. 4. Schematic representation of coordination modes of the [Cu(2,5-pydc)2]2- metalloligand. The six possible coordination sites are numbered and the µ3-(κ5O2:O2,O3:O5,O6) mode observed in (I) is shown.
catena-poly[[diaquasilver(I)] [bis[aquacopper(II)]-µ-pyridine-2,5-dicarboxylato- 2:1κ4N,O2:O5,O5'- µ3-pyridine-2,5-dicarboxylato- 2':1:1'κ5N,O2:O5:O5,O5'- disilver(I)-µ3-pyridine-2,5-dicarboxylato- 1:1':2''κ5O5,O5':O5:N,O2- µ-pyridine-2,5-dicarboxylato- 1':2'''κ4O5,O5':N,O2] hexahydrate] top
Crystal data top
[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2OZ = 2
Mr = 717.58F(000) = 702
Triclinic, P1Dx = 2.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4307 (8) ÅCell parameters from 1959 reflections
b = 10.8485 (11) Åθ = 2.8–26.0°
c = 13.5487 (14) ŵ = 2.93 mm1
α = 74.685 (2)°T = 187 K
β = 85.084 (2)°Plate, blue
γ = 88.818 (2)°0.26 × 0.17 × 0.04 mm
V = 1049.52 (19) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3822 independent reflections
Radiation source: sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.513, Tmax = 0.889k = 1313
5691 measured reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7715P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 1.60 e Å3
18 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2Oγ = 88.818 (2)°
Mr = 717.58V = 1049.52 (19) Å3
Triclinic, P1Z = 2
a = 7.4307 (8) ÅMo Kα radiation
b = 10.8485 (11) ŵ = 2.93 mm1
c = 13.5487 (14) ÅT = 187 K
α = 74.685 (2)°0.26 × 0.17 × 0.04 mm
β = 85.084 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3113 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.889Rint = 0.020
5691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03918 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.60 e Å3
3822 reflectionsΔρmin = 0.79 e Å3
334 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84830 (8)0.38580 (5)0.61369 (4)0.01712 (15)
Ag10.41093 (6)0.35394 (4)0.08504 (3)0.03499 (14)
Ag20.57850 (6)0.10229 (4)0.04659 (3)0.03073 (14)
O1W0.5863 (5)0.3471 (3)0.7201 (3)0.0258 (8)
H1A0.551 (6)0.415 (3)0.730 (4)0.031*
H1B0.511 (5)0.319 (4)0.691 (4)0.031*
O2W0.7399 (7)0.2271 (4)0.0749 (4)0.0517 (12)
H2A0.759 (10)0.289 (4)0.052 (5)0.062*
H2B0.690 (9)0.253 (5)0.129 (3)0.062*
O3W0.4234 (7)0.0055 (4)0.1803 (3)0.0491 (11)
H3A0.481 (9)0.069 (4)0.208 (4)0.059*
H3B0.405 (9)0.040 (5)0.220 (4)0.059*
O4W0.3425 (5)0.1942 (4)0.6676 (3)0.0315 (9)
H4A0.237 (3)0.187 (6)0.692 (3)0.038*
H4B0.345 (6)0.206 (6)0.6050 (10)0.038*
O5W0.1807 (7)0.1327 (4)0.9494 (4)0.0522 (12)
H5A0.114 (8)0.112 (5)1.003 (3)0.063*
H5B0.218 (9)0.205 (3)0.942 (5)0.063*
O6W0.0321 (8)0.9543 (4)0.8740 (3)0.0562 (14)
H6A0.078 (9)1.016 (4)0.886 (4)0.067*
H6B0.033 (10)0.966 (6)0.8116 (12)0.067*
O10.7831 (5)0.5530 (3)0.5288 (3)0.0221 (7)
O20.7663 (4)0.7578 (3)0.5295 (3)0.0207 (7)
O31.2602 (5)0.3753 (3)0.9460 (3)0.0306 (9)
O41.2489 (5)0.5685 (3)0.9715 (3)0.0302 (9)
O50.9483 (4)0.2195 (3)0.6835 (3)0.0198 (7)
O60.9620 (5)0.0163 (3)0.6752 (3)0.0253 (8)
O70.4966 (5)0.2265 (3)0.2323 (3)0.0296 (8)
O80.4999 (5)0.4212 (3)0.2545 (3)0.0248 (8)
N10.9509 (5)0.4889 (4)0.6972 (3)0.0164 (8)
N20.7663 (5)0.2895 (4)0.5197 (3)0.0161 (8)
C10.8080 (6)0.6464 (4)0.5675 (4)0.0162 (10)
C20.9016 (6)0.6129 (4)0.6659 (4)0.0168 (10)
C30.9396 (6)0.7004 (4)0.7188 (4)0.0179 (10)
H30.90090.78650.69650.022*
C41.0354 (6)0.6605 (5)0.8052 (4)0.0205 (10)
H41.06120.71890.84350.025*
C51.0930 (6)0.5346 (5)0.8354 (4)0.0185 (10)
C61.0461 (6)0.4515 (5)0.7793 (4)0.0182 (10)
H61.08310.36470.80010.022*
C71.2071 (7)0.4898 (5)0.9252 (4)0.0220 (11)
C80.9155 (6)0.1282 (5)0.6423 (4)0.0192 (10)
C90.8092 (6)0.1648 (4)0.5493 (4)0.0160 (10)
C100.7612 (6)0.0776 (5)0.4982 (4)0.0208 (10)
H100.78980.01050.52190.025*
C110.6698 (6)0.1232 (5)0.4111 (4)0.0218 (11)
H110.63780.06630.37290.026*
C120.6243 (6)0.2517 (4)0.3791 (4)0.0156 (10)
C130.6737 (6)0.3324 (4)0.4368 (4)0.0165 (10)
H130.64090.42010.41690.020*
C140.5326 (6)0.3047 (5)0.2825 (4)0.0192 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0218 (3)0.0152 (3)0.0168 (3)0.0012 (2)0.0090 (2)0.0062 (2)
Ag10.0384 (3)0.0427 (3)0.0247 (3)0.00617 (19)0.01734 (19)0.00617 (19)
Ag20.0368 (2)0.0278 (2)0.0280 (3)0.00359 (17)0.00126 (18)0.00833 (18)
O1W0.0223 (18)0.028 (2)0.031 (2)0.0010 (15)0.0030 (16)0.0127 (17)
O2W0.067 (3)0.052 (3)0.038 (3)0.015 (2)0.003 (2)0.016 (2)
O3W0.064 (3)0.044 (3)0.040 (3)0.001 (2)0.003 (2)0.014 (2)
O4W0.0251 (19)0.038 (2)0.029 (2)0.0034 (17)0.0095 (16)0.0032 (19)
O5W0.078 (4)0.033 (3)0.049 (3)0.016 (2)0.006 (3)0.015 (2)
O6W0.099 (4)0.040 (3)0.030 (3)0.024 (3)0.021 (3)0.002 (2)
O10.0317 (19)0.0165 (17)0.0197 (19)0.0045 (14)0.0129 (15)0.0048 (14)
O20.0254 (18)0.0134 (17)0.0246 (19)0.0027 (13)0.0094 (15)0.0052 (14)
O30.042 (2)0.025 (2)0.028 (2)0.0001 (16)0.0204 (17)0.0064 (16)
O40.040 (2)0.032 (2)0.024 (2)0.0003 (17)0.0165 (17)0.0131 (17)
O50.0232 (17)0.0187 (17)0.0202 (19)0.0068 (13)0.0118 (14)0.0075 (14)
O60.037 (2)0.0149 (18)0.026 (2)0.0070 (15)0.0137 (16)0.0057 (15)
O70.039 (2)0.028 (2)0.027 (2)0.0037 (16)0.0166 (17)0.0123 (17)
O80.0289 (19)0.026 (2)0.022 (2)0.0046 (15)0.0094 (15)0.0070 (15)
N10.0178 (19)0.016 (2)0.017 (2)0.0007 (15)0.0052 (16)0.0061 (16)
N20.0157 (19)0.017 (2)0.016 (2)0.0004 (15)0.0027 (16)0.0059 (16)
C10.012 (2)0.023 (3)0.017 (3)0.0020 (18)0.0001 (18)0.012 (2)
C20.014 (2)0.022 (3)0.015 (2)0.0001 (18)0.0012 (18)0.007 (2)
C30.019 (2)0.014 (2)0.022 (3)0.0002 (18)0.004 (2)0.008 (2)
C40.025 (3)0.023 (3)0.018 (3)0.004 (2)0.001 (2)0.012 (2)
C50.018 (2)0.024 (3)0.015 (2)0.0011 (19)0.0058 (19)0.006 (2)
C60.016 (2)0.020 (2)0.020 (3)0.0008 (18)0.0052 (19)0.006 (2)
C70.025 (3)0.029 (3)0.013 (3)0.007 (2)0.004 (2)0.004 (2)
C80.019 (2)0.024 (3)0.017 (3)0.0019 (19)0.0061 (19)0.008 (2)
C90.014 (2)0.018 (2)0.016 (2)0.0035 (17)0.0029 (18)0.0045 (19)
C100.021 (2)0.022 (3)0.022 (3)0.0008 (19)0.005 (2)0.008 (2)
C110.026 (3)0.020 (3)0.024 (3)0.001 (2)0.006 (2)0.013 (2)
C120.012 (2)0.019 (2)0.016 (2)0.0010 (17)0.0009 (18)0.0046 (19)
C130.015 (2)0.019 (2)0.014 (2)0.0027 (18)0.0024 (18)0.0030 (19)
C140.012 (2)0.029 (3)0.018 (3)0.0029 (19)0.0023 (19)0.008 (2)
Geometric parameters (Å, º) top
Cu1—O11.951 (3)O3—Ag1iv2.231 (3)
Cu1—O51.966 (3)O4—C71.244 (6)
Cu1—N11.991 (4)O5—C81.296 (6)
Cu1—N21.986 (4)O6—C81.231 (6)
Cu1—O1W2.298 (4)O7—C141.265 (6)
Ag1—O3i2.231 (3)O8—C141.244 (6)
Ag1—O4ii2.664 (4)N1—C61.337 (6)
Ag1—O4i2.747 (4)N1—C21.352 (6)
Ag1—O72.241 (4)N2—C131.340 (6)
Ag1—O82.722 (3)N2—C91.345 (6)
Ag1—Ag23.1264 (7)C1—C21.512 (7)
Ag2—O2W2.130 (5)C2—C31.379 (6)
Ag2—O3W2.134 (5)C3—C41.388 (7)
Ag2—Ag2iii3.1177 (8)C3—H30.9500
O1W—H1A0.82 (4)C4—C51.388 (7)
O1W—H1B0.82 (4)C4—H40.9500
O2W—H2A0.83 (5)C5—C61.390 (7)
O2W—H2B0.83 (5)C5—C71.512 (7)
O3W—H3A0.82 (6)C6—H60.9500
O3W—H3B0.82 (6)C8—C91.504 (6)
O4W—H4A0.82 (3)C9—C101.380 (6)
O4W—H4B0.82 (2)C10—C111.383 (7)
O5W—H5A0.83 (5)C10—H100.9500
O5W—H5B0.82 (4)C11—C121.389 (6)
O6W—H6A0.82 (5)C11—H110.9500
O6W—H6B0.82 (2)C12—C131.392 (6)
O1—C11.281 (5)C12—C141.499 (7)
O2—C11.226 (6)C13—H130.9500
O3—C71.261 (6)
O1—Cu1—O5170.80 (14)C6—N1—C2119.0 (4)
O1—Cu1—N294.86 (15)C6—N1—Cu1129.7 (3)
O5—Cu1—N283.39 (14)C2—N1—Cu1111.1 (3)
O1—Cu1—N183.25 (15)C13—N2—C9119.3 (4)
O5—Cu1—N197.60 (15)C13—N2—Cu1128.5 (3)
N2—Cu1—N1174.21 (16)C9—N2—Cu1112.2 (3)
O1—Cu1—O1W97.64 (14)O2—C1—O1125.1 (4)
O5—Cu1—O1W91.49 (13)O2—C1—C2119.5 (4)
N2—Cu1—O1W93.56 (14)O1—C1—C2115.4 (4)
N1—Cu1—O1W92.12 (14)N1—C2—C3121.9 (4)
O3i—Ag1—O7148.04 (13)N1—C2—C1114.3 (4)
O3i—Ag1—O4ii109.65 (13)C3—C2—C1123.8 (4)
O7—Ag1—O4ii90.30 (12)C2—C3—C4118.9 (4)
O3i—Ag1—O8154.06 (12)C2—C3—H3120.6
O7—Ag1—O851.82 (11)C4—C3—H3120.6
O4ii—Ag1—O878.95 (10)C3—C4—C5119.5 (4)
O3i—Ag1—O4i51.49 (12)C3—C4—H4120.3
O7—Ag1—O4i153.11 (12)C5—C4—H4120.3
O4ii—Ag1—O4i96.84 (10)C6—C5—C4118.2 (4)
O8—Ag1—O4i104.12 (10)C6—C5—C7120.9 (4)
O3i—Ag1—Ag288.37 (9)C4—C5—C7120.9 (4)
O7—Ag1—Ag270.04 (9)N1—C6—C5122.5 (4)
O4ii—Ag1—Ag280.52 (8)N1—C6—H6118.8
O8—Ag1—Ag2117.46 (7)C5—C6—H6118.8
O4i—Ag1—Ag2136.68 (7)O4—C7—O3123.9 (5)
O2W—Ag2—O3W172.31 (17)O4—C7—C5118.5 (5)
O2W—Ag2—Ag2iii106.32 (13)O3—C7—C5117.5 (4)
O3W—Ag2—Ag2iii81.33 (12)O6—C8—O5124.5 (4)
O2W—Ag2—Ag184.76 (13)O6—C8—C9119.5 (4)
O3W—Ag2—Ag189.55 (12)O5—C8—C9115.9 (4)
Ag2iii—Ag2—Ag1131.09 (2)N2—C9—C10122.9 (4)
Cu1—O1W—H1A108 (4)N2—C9—C8114.5 (4)
Cu1—O1W—H1B108 (4)C10—C9—C8122.6 (4)
H1A—O1W—H1B109 (5)C9—C10—C11117.4 (4)
Ag2—O2W—H2A104 (5)C9—C10—H10121.3
Ag2—O2W—H2B115 (5)C11—C10—H10121.3
H2A—O2W—H2B109 (6)C10—C11—C12120.6 (4)
Ag2—O3W—H3A109 (5)C10—C11—H11119.7
Ag2—O3W—H3B108 (5)C12—C11—H11119.7
H3A—O3W—H3B109 (5)C11—C12—C13118.2 (4)
H4A—O4W—H4B109 (4)C11—C12—C14121.7 (4)
H5A—O5W—H5B109 (6)C13—C12—C14120.1 (4)
H6A—O6W—H6B109 (6)N2—C13—C12121.6 (4)
C1—O1—Cu1114.7 (3)N2—C13—H13119.2
C7—O3—Ag1iv104.1 (3)C12—C13—H13119.2
C8—O5—Cu1114.0 (3)O8—C14—O7123.6 (4)
C14—O7—Ag1103.1 (3)O8—C14—C12119.7 (4)
C14—O8—Ag181.1 (3)O7—C14—C12116.7 (4)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O8v0.82 (4)1.87 (4)2.684 (5)172 (5)
O1W—H1B···O4W0.82 (4)1.97 (4)2.739 (5)157 (5)
O2W—H2A···O4ii0.83 (5)2.11 (5)2.924 (6)166 (7)
O2W—H2B···O1Wvi0.83 (5)2.22 (5)3.046 (6)172 (6)
O3W—H3A···O4Wvii0.82 (6)2.34 (5)3.115 (6)156 (5)
O3W—H3B···O70.82 (6)2.20 (5)2.861 (6)138 (7)
O4W—H4A···O5viii0.82 (3)2.18 (3)2.931 (5)153 (5)
O4W—H4B···O2v0.82 (2)2.01 (3)2.770 (5)154 (5)
O5W—H5A···O6Wix0.83 (5)1.89 (5)2.708 (7)174 (6)
O5W—H5B···O3viii0.82 (4)1.89 (4)2.697 (5)167 (6)
O6W—H6A···O5Wx0.82 (5)1.91 (5)2.708 (6)165 (6)
O6W—H6B···O6xi0.82 (2)1.90 (3)2.691 (6)162 (8)
Symmetry codes: (ii) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x, y, z1; (vii) x+1, y, z+1; (viii) x1, y, z; (ix) x, y+1, z+2; (x) x, y+1, z; (xi) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2O
Mr717.58
Crystal system, space groupTriclinic, P1
Temperature (K)187
a, b, c (Å)7.4307 (8), 10.8485 (11), 13.5487 (14)
α, β, γ (°)74.685 (2), 85.084 (2), 88.818 (2)
V3)1049.52 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.26 × 0.17 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.513, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
5691, 3822, 3113
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 0.99
No. of reflections3822
No. of parameters334
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.60, 0.79

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.951 (3)Ag1—O4i2.747 (4)
Cu1—O51.966 (3)Ag1—O72.241 (4)
Cu1—N11.991 (4)Ag1—O82.722 (3)
Cu1—N21.986 (4)Ag1—Ag23.1264 (7)
Cu1—O1W2.298 (4)Ag2—O2W2.130 (5)
Ag1—O3i2.231 (3)Ag2—O3W2.134 (5)
Ag1—O4ii2.664 (4)Ag2—Ag2iii3.1177 (8)
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O8iv0.82 (4)1.87 (4)2.684 (5)172 (5)
O1W—H1B···O4W0.82 (4)1.97 (4)2.739 (5)157 (5)
O2W—H2A···O4ii0.83 (5)2.11 (5)2.924 (6)166 (7)
O2W—H2B···O1Wv0.83 (5)2.22 (5)3.046 (6)172 (6)
O3W—H3A···O4Wvi0.82 (6)2.34 (5)3.115 (6)156 (5)
O3W—H3B···O70.82 (6)2.20 (5)2.861 (6)138 (7)
O4W—H4A···O5vii0.82 (3)2.18 (3)2.931 (5)153 (5)
O4W—H4B···O2iv0.82 (2)2.01 (3)2.770 (5)154 (5)
O5W—H5A···O6Wviii0.83 (5)1.89 (5)2.708 (7)174 (6)
O5W—H5B···O3vii0.82 (4)1.89 (4)2.697 (5)167 (6)
O6W—H6A···O5Wix0.82 (5)1.91 (5)2.708 (6)165 (6)
O6W—H6B···O6x0.82 (2)1.90 (3)2.691 (6)162 (8)
Symmetry codes: (ii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y, z1; (vi) x+1, y, z+1; (vii) x1, y, z; (viii) x, y+1, z+2; (ix) x, y+1, z; (x) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds