Download citation
Download citation
link to html
In 2,4,6,8-tetra­kis(4-chloro­phen­yl)-2,4,6,8-tetra­aza­bicyclo­[3.3.0]­octane, C28H22Cl4N4, the imidazolidine rings adopt envelope conformations, which are favoured by two equal endo anomeric effects. The mol­ecule lies on a crystallographic twofold axis and mol­ecules are linked into a three-dimensional framework via two C—H...Cl hydrogen bonds. In 2,4,6,8-tetra­kis(4-methoxy­phen­yl)-2,4,6,8-tetra­azabicyclo­[3.3.0]octane, C32H34N4O4, one of the methyl groups is disordered over two sets of sites and the same methyl group participates in an inter­molecular C—H...O hydrogen bond, which in turn causes a considerable deviation from the preferred conformation. There are two unequal inter-ring anomeric effects in the N—C—N groups. Mol­ecules are linked into corrugated sheets by one C—H...π hydrogen bond and two independent C—H...O hydrogen bonds involving meth­oxy groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109003242/fn3008sup1.cif
Contains datablocks II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109003242/fn3008IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109003242/fn3008IIIsup3.hkl
Contains datablock III

CCDC references: 730097; 730098

Comment top

Derivatives of tetrabicyclo[3.3.0]octane have been studied extensively. They have been synthesized either via hydride reduction of glycoluril derivatives or by a condensation of amine with glyoxal and formaldehyde (Koppes et al., 1987; Farnia & Kakanejadifard, 1992; Farnia et al., 1993; Nielsen et al., 1992). In addition, the anomeric effect in the N—C—N systems in 2,4,6,8-tetraphenyl-2,4,6,8-tetraazabicyclo[3.3.0]octane, (I), has also been investigated by X-ray analysis, showing that there are two interactions in the molecule; first, aromatic conjugation with ring N atoms and second two equal nN σ*C—N anomeric effects, best described as `negative hyperconjugation' (Kakanejadifard & Farnia, 1997). In this article, we further investigate the effect of substituents at para-positions of the phenyl rings on the anomeric effect in the N—C—N systems and on the molecular and supramolecular structures of two such compounds, namely 2,4,6,8-tetrakis(4-chlorophenyl)- 2,4,6,8-tetraazabicyclo[3.3.0]octane, (II), and 2,4,6,8- tetrakis(4-methoxyphenyl)-2,4,6,8-tetraazabicyclo[3.3.0]octane, (III) (Figs. 1 and 2, respectively),

The molecule of (II) lies on a twofold screw axis. The methine H atoms at the ring juncture are in cis configurations. Each of the two fused imidazolidine rings adopts an envelope conformation; atoms N2 are the flap atoms, displaced by 0.547 (3) Å from the planes of the other four atoms. Interestingly, the two 4-chlorophenyl groups at atoms N2 occupy axial positions and each of the N1—C2 bonds adopts an antiperiplanar orientation relative to the lone pair on N2. The characteristics of the conformation of (II) are not incidentally caused by the crystal packing, but suggest the possible existence of the anomeric effects in the N—C—N fragments. This can be further confirmed by some correlative geometric parameters (Table 1). The N1—C2 bonds are much longer than the C2—N2 bonds, which are slightly shorter than the accepted value for an N—Csp3 bond (1.444–1.448 Å; Li et al., 2005; Chandrasekhar et al., 2007). The observed conformation, the remarkable lengthening of the N1—C2 bonds and the slightly shortening of the C2—N2 bonds all suggest that there are two equal endo anomeric effects in the N1—C2—N2 units that are best rationalized in terms of nN1 σ*C2—N2 stabilizing interactions. The interactions require that the phenyl groups at atoms N1 occupy axial positions with respect to the corresponding imidazolidine rings and the N2—C2 bonds take antiperiplanar orientations relative to the N2 lone pairs.

As compared with (II), compound (III) presents some interesting structural features. As expected, the configurations for the methine H atoms at the ring juncture are still of the cis-form, and the two fused five-membered rings adopt envelope conformations; the flap atoms are N1 and N3, displaced by 0.465 (2) and 0.467 (3) Å, respectively, from the C1–C3/N2 and C1/C2/N4/C4 plane. The dihedral angle between the C1–C3/N2 and C1/C2/N4/C4 planes is 80.9 (2)°, and the corresponding value in (II) is 83.08 (2)°. This indicates that the two envelope planes take a nearly perpendicular orientation (Figs. 1 and 2). These features in conformation and configuration are similar to those found in (I) (Kakanejadifard & Farnia, 1997). The methyl group on atom O3, where the methyl group is disordered over two sets of sites with refined occupancies of 0.653 (5) and 0.347 (5) (Fig. 1), exhibits a notable conformational deviation from its usually preferred conformation, with the methyl C—O bond almost eclipsed by the adjacent aryl C—C bond. The situation is different from those of the other three methoxy groups and the deviation in conformation is mainly due to the fact that the O3–methyl group takes part in two intermolecular C—H···O hydrogen bonds to a neighbouring methoxy group (Table 4), thus overcoming the van der Waals repulsion between the O3–methyl unit and its bonded phenyl group. Interestingly, the bond distances for (III) indicate that there are two progressive inter-ring anomeric effects in the N1—C2—N4 and N2—C1—N3 fragments, but not in the equivalent structural units (i.e. N1—C3—N2 and N3—C4—N4) as in (II), as evidenced by the shortening of the C1—N2 and C2—N4 bonds and lengthening of the C1—N3 and C2—N1 bonds (Table 3). However, both of the unequal anomeric effects are best rationalized in terms of the `negative hyperconjugation' of the p-electron pair on atom N2 or N4 with the adjacent antibonding orbital of C1—N3 or C2—N1.

In (II), there are no Cl···Cl interaction or aromatic ππ stacking interactions; instead, the molecules are linked into a complex three-dimensional framework by a combination of only two independent C—H···Cl hydrogen bonds (Table 2). Despite this comlexity the formation of the structure can be easily analysed in terms of three one-dimensional substructures. In the first substructure, atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to 4-chlorophenyl atom Cl2 in the molecule at (x, 1 - y, 1/2 + z), so forming by inversion a centrosymmetric R22(24) (Bernstein et al., 1995) ring centred at (1/2, 1/2, 1/2). Propagation by inversion of the hydrogen-bond motif then generates a chain of rings running parallel to the [001] direction, with R22(24) rings centred at (1/2, 1/2, n/2) (n = zero or integer) (Fig. 3). In the second one-dimensional substructure, phenyl atom C14 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (1/2 - x, 1/2 + y, 1/2 - z), thereby forming by translation a C22(11)(Bernstein et al., 1995) chain running parallel to the [110] direction. In the same way, the third substructure is also constructed by way of a C—H···Cl hydrogen bond: atom C14 in the molecule at (1 - x, y, 1/2 - z) acts as a hydrogen-bond donor to atom Cl1 in the molecule at (1/2 + x, 1/2 + y, z), so forming by translation a C22(11) chain running along [110] (Fig. 4). The combination of these three chain motifs links molecules of (II) into a three-dimensional framework.

The supramolecular structure of (III), by contrast, takes the different form of a sheet by a combination of one C—H···π and two independent intermolecular C—H···O hydrogen bonds involving methoxy groups (Table 4). However, the structure can be easily analyzed in terms of two distinct low-dimensional substructures. In the first substructure, methoxy atom C32 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H32B, to atom O1 in the molecule at (1 - x, -y, 1 - z), so generating by inversion an R22(30) ring centred at (1/2, 0, 1/2) (Fig. 5), and methoxy atom C25 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H25B, to the O—CH3 atom O3 in the molecule at (1 - x, 2 - y, 1 - z), thus generating by inversion a second centrosymmetric ring, this time of R22(6) type and centred at (1/2, 1, 1/2) (Fig. 5). The combination of these two motifs generates a chain of edge-fused rings running parallel to the [010] direction, with R22 (30) rings centred at (1/2, 2n, 1/2) (n = zero or integer) alternating with R22(6) rings centred at (1/2, 2n + 1, 1/2) (n = zero or integer) (Fig. 5). In the second one-dimensional substructure, methyl atom C18 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H18B, to the C19–C24 ring in the molecule at (x, y, -1 + z), so generating by translation a chain running along [001] (Fig. 6). The combination of these two chain motifs is sufficient to link all the molecules into a two-dimensional sheet parallel to (011). Two such sheets pass through each unit cell in the same domain 0 < x < 1, but there are no direction-specific interactions between the two sheets.

Accordingly, the anomeric effect and the supramolecular structures in (II) and (III) described here show some marked variations consequent upon changes of the para-position atoms of the aryl ring. Wherease compound (II), containing 4-chloro substituents and therefore possessing low lone-pair electronic density on N atoms compared with (III), exhibits endo anomeric effects described as nN σ*C—N, and aggregates into a three-dimensional structure by C—H···Cl hydrogen bonds, compound (III), containing 4-methoxy substituents and possessing high electronic density on N atoms, exhibits inter-ring anomeric effects best described as the `negative hyperconjugation' of the p-electron pair on an N atom with the adjacent antibonding C—N orbital, and forms a sheet structure via C—H···O hydrogen bonds involving methyl groups.

Related literature top

For related literature, see: Bernstein et al. (1995); Chandrasekhar et al. (2007); Farnia & Kakanejadifard (1992); Farnia et al. (1993); Kakanejadifard & Farnia (1997); Koppes et al. (1987); Li et al. (2005).

Experimental top

To a mixture of aqueous formaldehyde (0.2 mol) and aqueous glyoxal (0.1 mol) in ethanol (95%, 100 ml) were added 4-chlorophenylamine (or 4-methoxyphenyl) (0.4 mol) and a catalytic amount of acetic acid (1 ml). The resulted mixture was refluxed with stirring for ca 10 min, then allowed to stand for 1 h at room temperature to precipitate the product completely. The precipitate was filtered off, washed with ethanol (95%) and dried to give the crystalline product (II) [or (III)] Crystals of (II) were obtained by recrystallization from acetonitrile. 1H NMR (DMSO, 400 MHz): δ 7.19–6.91 (dd, 16H), 6.38 (s, 2H), 4.80–4.58 (ABq, J = 7.8 Hz, 4H). Crystals of (III) were obtained by recrystallization from ethyl acetate. 1H NMR (DMSO, 400 MHz): δ 6.86–6.74 (dd, 16H), 6.02 (s, 2H), 4.60–4.53 (ABq, J = 7.2 Hz, 4H), 3.64 (s, 12H).

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom with C—H distances of 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) and 0.98 (CH) Å and with Uiso(H) values of 1.2 times Ueq(C) (1.5 for methyl H atoms). The methyl group on atom O3 in (III) was found to be disordered. Atom C25 was modelled over two sets of positions, with a refined major occupancy of 65.3 (5)%. Geometric restraints were applied to the disordered methyl group to keep their geometry sensible.

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
Figure 1. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x+1, y, -z+1/2.] Please check added symcodes.

Figure 2. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3. Part of the crystal structure of (II), showing the formation of a C(24) chain of R22(24) rings parallel to the [001] direction and a C22(11) chain running along the [110] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Intermolecular interactions are represented by dashed lines. Selected atoms are labelled. [Symmetry codes: (iii) x, -y + 1, z + 1/2; (i) -x + 1, y, -z + 1/2; (iv) -x + 1, -y + 1, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2.]

Figure 4. Part of the crystal structure of (II), showing the formation of an hydogen-bonded chain along the [110] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Intermolecular interactions are represented by dashed lines. Selected atoms are labelled. [Symmetry codes: (i) -x + 1, y, -z + 1/2; (v) x + 1/2, y + 1/2, z; (vi) -x + 1/2, y - 1/2, -z + 1/2.]

Figure 5. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain of R22(30)R22(6) rings running along the [010] direction. Intermolecular interactions are represented by dashed lines. Selected atoms are labelled. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 2, -z + 1.]

Figure 6. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain running along the [001] direction. [Symmetry codes: (iii) x, y, z - 1; (iv) x, y, z + 1; Cg is the centroid of the C19–C24 ring.]
(II) 1,3,4,6-tetrakis(4-chlorophenyl)octahydroimidazo[4,5-d]imidazole top
Crystal data top
C28H22Cl4N4F(000) = 1144
Mr = 556.30Dx = 1.489 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.368 (15) ÅCell parameters from 2452 reflections
b = 5.880 (4) Åθ = 3.0–25.9°
c = 21.894 (16) ŵ = 0.50 mm1
β = 95.602 (9)°T = 294 K
V = 2481 (3) Å3Block, colourless
Z = 40.40 × 0.19 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2276 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.813, Tmax = 0.930k = 77
7355 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2498P]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H22Cl4N4V = 2481 (3) Å3
Mr = 556.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.368 (15) ŵ = 0.50 mm1
b = 5.880 (4) ÅT = 294 K
c = 21.894 (16) Å0.40 × 0.19 × 0.15 mm
β = 95.602 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1821 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.930Rint = 0.022
7355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.97Δρmax = 0.23 e Å3
2276 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24975 (3)0.55926 (10)0.38580 (3)0.0574 (2)
Cl20.39252 (4)0.87042 (12)0.00237 (3)0.0711 (3)
N10.49298 (8)0.1283 (3)0.16869 (7)0.0360 (4)
N20.42081 (8)0.0446 (3)0.24395 (7)0.0369 (4)
C30.37907 (9)0.0938 (3)0.27702 (9)0.0352 (5)
C40.35982 (11)0.0302 (3)0.33457 (10)0.0422 (5)
H40.37430.10930.35120.051*
C50.31972 (10)0.1709 (4)0.36700 (10)0.0455 (5)
H50.30800.12750.40550.055*
C60.29687 (10)0.3772 (4)0.34200 (10)0.0416 (5)
C70.31195 (10)0.4399 (3)0.28462 (10)0.0413 (5)
H70.29460.57550.26740.050*
C80.35313 (10)0.3006 (3)0.25225 (9)0.0386 (5)
H80.36380.34480.21350.046*
C90.46681 (10)0.3080 (3)0.12891 (9)0.0350 (4)
C100.51318 (11)0.4624 (3)0.10768 (10)0.0422 (5)
H100.56020.44900.12060.051*
C110.49111 (12)0.6355 (4)0.06775 (10)0.0467 (5)
H110.52270.73850.05430.056*
C120.42093 (12)0.6531 (4)0.04808 (9)0.0458 (5)
C130.37434 (12)0.5055 (4)0.06823 (11)0.0527 (6)
H130.32750.51860.05450.063*
C140.39661 (11)0.3347 (4)0.10935 (11)0.0476 (5)
H140.36430.23690.12400.057*
C20.44552 (11)0.0421 (3)0.18693 (9)0.0386 (5)
H2A0.46890.18690.19410.046*
H2B0.40710.06210.15550.046*
C10.47152 (9)0.2059 (3)0.27285 (8)0.0335 (4)
H10.45130.35740.27660.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0474 (4)0.0541 (4)0.0731 (5)0.0030 (2)0.0183 (3)0.0161 (3)
Cl20.0964 (5)0.0601 (4)0.0546 (4)0.0181 (4)0.0041 (4)0.0158 (3)
N10.0422 (9)0.0312 (8)0.0350 (9)0.0016 (7)0.0052 (7)0.0012 (7)
N20.0404 (9)0.0349 (9)0.0365 (9)0.0059 (7)0.0091 (7)0.0054 (7)
C10.0355 (10)0.0295 (9)0.0353 (10)0.0008 (7)0.0020 (8)0.0023 (7)
C20.0467 (11)0.0333 (10)0.0363 (11)0.0039 (8)0.0068 (9)0.0034 (8)
C30.0316 (10)0.0343 (10)0.0398 (11)0.0005 (7)0.0039 (8)0.0007 (8)
C40.0411 (11)0.0404 (11)0.0466 (12)0.0051 (9)0.0115 (9)0.0088 (9)
C50.0411 (11)0.0514 (12)0.0454 (13)0.0001 (9)0.0120 (9)0.0042 (10)
C60.0295 (10)0.0412 (11)0.0543 (13)0.0001 (8)0.0062 (9)0.0081 (9)
C70.0368 (10)0.0335 (10)0.0534 (13)0.0011 (8)0.0024 (9)0.0000 (9)
C80.0416 (11)0.0359 (10)0.0382 (11)0.0007 (8)0.0036 (8)0.0033 (8)
C90.0412 (10)0.0340 (10)0.0304 (10)0.0001 (8)0.0066 (8)0.0027 (8)
C100.0419 (11)0.0450 (12)0.0400 (11)0.0008 (9)0.0059 (9)0.0033 (9)
C110.0578 (13)0.0444 (12)0.0391 (12)0.0028 (10)0.0107 (10)0.0047 (9)
C120.0636 (14)0.0406 (11)0.0327 (11)0.0079 (10)0.0010 (10)0.0014 (8)
C130.0475 (13)0.0536 (13)0.0548 (15)0.0040 (10)0.0065 (11)0.0007 (11)
C140.0412 (11)0.0459 (12)0.0554 (14)0.0037 (9)0.0039 (10)0.0027 (10)
Geometric parameters (Å, º) top
Cl1—C61.752 (2)C8—H80.9300
Cl2—C121.743 (2)C9—C101.389 (3)
N1—C91.431 (3)C9—C141.394 (3)
N1—C21.442 (3)C10—C111.382 (3)
N1—C1i1.465 (3)C10—H100.9300
N2—C31.398 (3)C11—C121.389 (3)
N2—C11.464 (2)C11—H110.9300
N2—C21.471 (3)C12—C131.356 (3)
C3—C41.399 (3)C13—C141.389 (3)
C3—C81.404 (3)C13—H130.9300
C4—C51.378 (3)C14—H140.9300
C4—H40.9300C2—H2A0.9700
C5—C61.385 (3)C2—H2B0.9700
C5—H50.9300C1—N1i1.465 (3)
C6—C71.368 (3)C1—C1i1.560 (4)
C7—C81.386 (3)C1—H10.9800
C7—H70.9300
C9—N1—C2118.96 (17)C11—C10—C9121.53 (19)
C9—N1—C1i114.19 (15)C11—C10—H10119.2
C2—N1—C1i103.42 (15)C9—C10—H10119.2
C3—N2—C1123.42 (16)C10—C11—C12119.0 (2)
C3—N2—C2119.36 (16)C10—C11—H11120.5
C1—N2—C2109.34 (15)C12—C11—H11120.5
N2—C3—C4121.95 (18)C13—C12—C11120.9 (2)
N2—C3—C8120.48 (18)C13—C12—Cl2119.77 (18)
C4—C3—C8117.54 (19)C11—C12—Cl2119.35 (18)
C5—C4—C3121.10 (19)C12—C13—C14119.9 (2)
C5—C4—H4119.4C12—C13—H13120.0
C3—C4—H4119.4C14—C13—H13120.0
C4—C5—C6119.8 (2)C13—C14—C9120.8 (2)
C4—C5—H5120.1C13—C14—H14119.6
C6—C5—H5120.1C9—C14—H14119.6
C7—C6—C5120.7 (2)N1—C2—N2105.26 (15)
C7—C6—Cl1120.47 (17)N1—C2—H2A110.7
C5—C6—Cl1118.82 (18)N2—C2—H2A110.7
C6—C7—C8119.69 (19)N1—C2—H2B110.7
C6—C7—H7120.2N2—C2—H2B110.7
C8—C7—H7120.2H2A—C2—H2B108.8
C7—C8—C3121.1 (2)N2—C1—N1i114.42 (15)
C7—C8—H8119.4N2—C1—C1i102.08 (15)
C3—C8—H8119.4N1i—C1—C1i105.03 (18)
C10—C9—C14117.83 (19)N2—C1—H1111.6
C10—C9—N1118.98 (18)N1i—C1—H1111.6
C14—C9—N1123.18 (18)C1i—C1—H1111.6
C1—N2—C3—C427.7 (3)C14—C9—C10—C110.9 (3)
C2—N2—C3—C4173.39 (18)N1—C9—C10—C11178.10 (18)
C1—N2—C3—C8154.30 (18)C9—C10—C11—C120.7 (3)
C2—N2—C3—C88.6 (3)C10—C11—C12—C131.0 (3)
N2—C3—C4—C5178.76 (18)C10—C11—C12—Cl2179.90 (16)
C8—C3—C4—C53.1 (3)C11—C12—C13—C140.4 (4)
C3—C4—C5—C61.2 (3)Cl2—C12—C13—C14178.78 (18)
C4—C5—C6—C72.0 (3)C12—C13—C14—C92.0 (4)
C4—C5—C6—Cl1176.75 (17)C10—C9—C14—C132.3 (3)
C5—C6—C7—C82.9 (3)N1—C9—C14—C13176.71 (19)
Cl1—C6—C7—C8175.75 (14)C9—N1—C2—N290.5 (2)
C6—C7—C8—C30.8 (3)C1i—N1—C2—N237.30 (19)
N2—C3—C8—C7179.72 (18)C3—N2—C2—N1173.37 (15)
C4—C3—C8—C72.1 (3)C1—N2—C2—N123.2 (2)
C2—N1—C9—C10175.27 (18)C3—N2—C1—N1i35.9 (2)
C1i—N1—C9—C1062.1 (2)C2—N2—C1—N1i112.77 (18)
C2—N1—C9—C143.7 (3)C3—N2—C1—C1i148.76 (17)
C1i—N1—C9—C14118.9 (2)C2—N2—C1—C1i0.09 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1ii0.932.803.670 (4)155
C5—H5···Cl2iii0.932.903.536 (3)127
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.
(III) 1,3,4,6-tetrakis(4-methoxyphenyl)octahydroimidazo[4,5-d]imidazole top
Crystal data top
C32H34N4O4Z = 2
Mr = 538.63F(000) = 572
Triclinic, P1Dx = 1.284 Mg m3
a = 9.889 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.996 (5) ÅCell parameters from 4225 reflections
c = 12.312 (5) Åθ = 2.4–28.3°
α = 89.495 (5)°µ = 0.09 mm1
β = 74.381 (5)°T = 291 K
γ = 82.332 (5)°Block, colourless
V = 1393.6 (11) Å30.48 × 0.41 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5134 independent reflections
Radiation source: fine-focus sealed tube4059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.828, Tmax = 0.979k = 1414
10373 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2363P]
where P = (Fo2 + 2Fc2)/3
5134 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.17 e Å3
34 restraintsΔρmin = 0.22 e Å3
Crystal data top
C32H34N4O4γ = 82.332 (5)°
Mr = 538.63V = 1393.6 (11) Å3
Triclinic, P1Z = 2
a = 9.889 (4) ÅMo Kα radiation
b = 11.996 (5) ŵ = 0.09 mm1
c = 12.312 (5) ÅT = 291 K
α = 89.495 (5)°0.48 × 0.41 × 0.25 mm
β = 74.381 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5134 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4059 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.979Rint = 0.019
10373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04134 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
5134 reflectionsΔρmin = 0.22 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C250.6328 (5)0.8796 (4)0.4806 (4)0.0878 (13)0.653 (5)
H25A0.62580.81040.52020.132*0.653 (5)
H25B0.58120.94110.53060.132*0.653 (5)
H25C0.73060.89050.45410.132*0.653 (5)
C25'0.6734 (8)0.9321 (7)0.4173 (8)0.0878 (13)0.347 (5)
H25D0.73370.88000.44910.132*0.347 (5)
H25E0.62440.99020.47230.132*0.347 (5)
H25F0.72970.96500.35220.132*0.347 (5)
O10.22203 (12)0.04585 (11)0.12591 (11)0.0626 (3)
O20.69664 (16)0.59026 (11)0.42008 (10)0.0698 (4)
O30.57354 (14)0.87471 (11)0.38526 (12)0.0735 (4)
O40.98004 (13)0.14137 (10)0.56958 (10)0.0590 (3)
N10.73844 (12)0.21295 (10)0.07974 (10)0.0412 (3)
N20.77531 (14)0.36594 (10)0.03831 (10)0.0433 (3)
N30.80335 (12)0.49545 (10)0.09999 (10)0.0386 (3)
N40.85009 (14)0.32620 (11)0.18546 (11)0.0480 (3)
C10.71482 (15)0.41677 (12)0.07343 (12)0.0382 (3)
H10.61680.45200.08380.046*
C20.72416 (15)0.31516 (13)0.15083 (12)0.0413 (3)
H20.64040.31970.21570.050*
C30.81518 (16)0.24473 (12)0.03247 (13)0.0426 (3)
H3A0.78890.20480.09020.051*
H3B0.91660.22700.04330.051*
C40.91633 (15)0.42286 (12)0.13373 (13)0.0423 (3)
H4A0.99520.39900.06860.051*
H4B0.95050.46220.18740.051*
C50.60410 (15)0.17429 (12)0.08613 (12)0.0386 (3)
C60.55236 (17)0.10343 (13)0.17320 (14)0.0483 (4)
H60.60460.08270.22450.058*
C70.42524 (18)0.06355 (14)0.18465 (14)0.0523 (4)
H70.39190.01730.24410.063*
C80.34612 (16)0.09173 (13)0.10825 (13)0.0449 (4)
C90.39643 (16)0.16100 (13)0.02069 (13)0.0458 (4)
H90.34500.18010.03150.055*
C100.52413 (16)0.20223 (13)0.01056 (13)0.0433 (4)
H100.55660.24960.04820.052*
C110.13172 (19)0.08093 (19)0.05646 (18)0.0721 (6)
H11A0.11300.16160.05860.108*
H11B0.04410.05050.08350.108*
H11C0.17690.05440.01970.108*
C120.76153 (14)0.42170 (11)0.13515 (11)0.0356 (3)
C130.81322 (16)0.36901 (13)0.24151 (12)0.0430 (4)
H130.86150.29630.24820.052*
C140.79422 (18)0.42279 (14)0.33760 (13)0.0490 (4)
H140.82920.38560.40750.059*
C150.72354 (17)0.53134 (13)0.33025 (13)0.0456 (4)
C160.67797 (15)0.58681 (12)0.22607 (13)0.0410 (3)
H160.63410.66090.22060.049*
C170.69664 (14)0.53375 (12)0.12995 (12)0.0383 (3)
H170.66580.57280.06090.046*
C180.7372 (4)0.5325 (2)0.52588 (18)0.1233 (12)
H18A0.83810.51180.54840.148*
H18B0.70910.58050.58100.148*
H18C0.69180.46600.52000.148*
C190.73890 (15)0.59167 (12)0.17112 (11)0.0361 (3)
C200.59425 (16)0.61948 (13)0.21947 (13)0.0457 (4)
H200.53170.57360.20550.055*
C210.54234 (17)0.71482 (14)0.28816 (15)0.0544 (4)
H210.44510.73260.31920.065*
C220.63244 (18)0.78401 (13)0.31149 (14)0.0509 (4)
C230.77585 (18)0.75951 (14)0.26120 (15)0.0569 (4)
H230.83770.80640.27460.068*
C240.82773 (17)0.66575 (14)0.19116 (14)0.0499 (4)
H240.92440.65140.15630.060*
C260.87853 (15)0.27670 (12)0.28185 (12)0.0405 (3)
C271.00597 (16)0.28741 (14)0.30714 (13)0.0466 (4)
H271.07230.32560.25830.056*
C281.03490 (17)0.24239 (14)0.40290 (14)0.0496 (4)
H281.11960.25190.41860.060*
C290.93978 (16)0.18328 (13)0.47608 (13)0.0435 (4)
C300.81457 (18)0.17021 (14)0.45223 (14)0.0496 (4)
H300.74960.13070.50090.060*
C310.78461 (17)0.21579 (14)0.35564 (13)0.0500 (4)
H310.70010.20530.34010.060*
C320.8873 (2)0.07639 (15)0.64407 (14)0.0614 (5)
H32A0.79890.12260.67750.092*
H32B0.92940.04820.70230.092*
H32C0.87070.01440.60280.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C250.103 (2)0.083 (3)0.085 (3)0.022 (2)0.053 (2)0.0387 (19)
C25'0.103 (2)0.083 (3)0.085 (3)0.022 (2)0.053 (2)0.0387 (19)
O10.0491 (7)0.0754 (8)0.0739 (8)0.0278 (6)0.0255 (6)0.0113 (7)
O20.1077 (11)0.0604 (8)0.0460 (7)0.0072 (7)0.0310 (7)0.0088 (6)
O30.0708 (8)0.0612 (8)0.0943 (10)0.0123 (6)0.0415 (7)0.0354 (7)
O40.0641 (8)0.0689 (8)0.0504 (7)0.0141 (6)0.0246 (6)0.0165 (6)
N10.0385 (7)0.0436 (7)0.0441 (7)0.0106 (5)0.0131 (5)0.0030 (5)
N20.0548 (8)0.0387 (7)0.0363 (7)0.0022 (6)0.0139 (6)0.0028 (5)
N30.0346 (6)0.0437 (7)0.0393 (7)0.0085 (5)0.0113 (5)0.0017 (5)
N40.0478 (7)0.0580 (8)0.0500 (8)0.0264 (6)0.0248 (6)0.0175 (6)
C10.0354 (7)0.0441 (8)0.0369 (8)0.0078 (6)0.0116 (6)0.0028 (6)
C20.0372 (8)0.0507 (9)0.0406 (8)0.0143 (6)0.0142 (6)0.0024 (7)
C30.0403 (8)0.0403 (8)0.0461 (8)0.0049 (6)0.0098 (7)0.0011 (7)
C40.0357 (8)0.0465 (8)0.0467 (9)0.0106 (6)0.0123 (7)0.0052 (7)
C50.0386 (8)0.0359 (7)0.0432 (8)0.0061 (6)0.0140 (6)0.0011 (6)
C60.0528 (9)0.0509 (9)0.0506 (9)0.0163 (7)0.0257 (8)0.0106 (7)
C70.0547 (10)0.0567 (10)0.0523 (10)0.0230 (8)0.0190 (8)0.0149 (8)
C80.0402 (8)0.0468 (8)0.0507 (9)0.0118 (7)0.0141 (7)0.0033 (7)
C90.0468 (9)0.0481 (9)0.0484 (9)0.0075 (7)0.0227 (7)0.0006 (7)
C100.0460 (8)0.0427 (8)0.0443 (8)0.0098 (7)0.0159 (7)0.0058 (7)
C110.0498 (10)0.0885 (14)0.0885 (14)0.0183 (10)0.0327 (10)0.0001 (12)
C120.0322 (7)0.0398 (8)0.0369 (8)0.0091 (6)0.0106 (6)0.0001 (6)
C130.0465 (8)0.0387 (8)0.0424 (8)0.0034 (6)0.0106 (7)0.0050 (6)
C140.0604 (10)0.0504 (9)0.0352 (8)0.0107 (8)0.0095 (7)0.0052 (7)
C150.0526 (9)0.0480 (9)0.0398 (8)0.0128 (7)0.0160 (7)0.0051 (7)
C160.0382 (8)0.0389 (8)0.0472 (9)0.0072 (6)0.0131 (7)0.0013 (6)
C170.0359 (7)0.0407 (8)0.0386 (8)0.0061 (6)0.0096 (6)0.0061 (6)
C180.227 (4)0.0952 (18)0.0476 (12)0.012 (2)0.0534 (17)0.0041 (12)
C190.0383 (7)0.0402 (8)0.0324 (7)0.0103 (6)0.0116 (6)0.0044 (6)
C200.0384 (8)0.0496 (9)0.0528 (9)0.0100 (7)0.0164 (7)0.0079 (7)
C210.0400 (8)0.0593 (10)0.0650 (11)0.0008 (7)0.0192 (8)0.0156 (8)
C220.0545 (10)0.0440 (9)0.0584 (10)0.0014 (7)0.0263 (8)0.0101 (8)
C230.0559 (10)0.0507 (9)0.0705 (12)0.0187 (8)0.0220 (9)0.0088 (8)
C240.0403 (8)0.0542 (9)0.0560 (10)0.0169 (7)0.0093 (7)0.0038 (8)
C260.0417 (8)0.0436 (8)0.0393 (8)0.0116 (6)0.0138 (6)0.0026 (6)
C270.0378 (8)0.0556 (9)0.0500 (9)0.0151 (7)0.0140 (7)0.0116 (7)
C280.0405 (8)0.0572 (10)0.0573 (10)0.0121 (7)0.0214 (7)0.0085 (8)
C290.0489 (9)0.0431 (8)0.0402 (8)0.0054 (7)0.0153 (7)0.0018 (7)
C300.0528 (9)0.0533 (9)0.0466 (9)0.0201 (8)0.0140 (7)0.0094 (7)
C310.0463 (9)0.0610 (10)0.0513 (9)0.0235 (8)0.0204 (7)0.0107 (8)
C320.0808 (13)0.0548 (10)0.0477 (10)0.0110 (9)0.0156 (9)0.0111 (8)
Geometric parameters (Å, º) top
C25—O31.451 (3)C9—H90.9300
C25—H25A0.9600C10—H100.9300
C25—H25B0.9600C11—H11A0.9600
C25—H25C0.9600C11—H11B0.9600
C25'—O31.414 (6)C11—H11C0.9600
C25'—H25D0.9600C12—C131.394 (2)
C25'—H25E0.9600C12—C171.404 (2)
C25'—H25F0.9600C13—C141.387 (2)
O1—C81.3750 (18)C13—H130.9300
O1—C111.418 (2)C14—C151.385 (2)
O2—C151.3740 (19)C14—H140.9300
O2—C181.414 (2)C15—C161.384 (2)
O3—C221.383 (2)C16—C171.383 (2)
O4—C291.386 (2)C16—H160.9300
O4—C321.420 (2)C17—H170.9300
N1—C51.447 (2)C18—H18A0.9600
N1—C31.460 (2)C18—H18B0.9600
N1—C21.482 (2)C18—H18C0.9600
N2—C121.392 (2)C19—C201.389 (2)
N2—C11.448 (2)C19—C241.397 (2)
N2—C31.461 (2)C20—C211.383 (2)
N3—C191.424 (2)C20—H200.9300
N3—C11.464 (2)C21—C221.380 (2)
N3—C41.471 (2)C21—H210.9300
N4—C261.401 (2)C22—C231.379 (2)
N4—C21.443 (2)C23—C241.377 (2)
N4—C41.464 (2)C23—H230.9300
C1—C21.549 (2)C24—H240.9300
C1—H10.9800C26—C311.392 (2)
C2—H20.9800C26—C271.399 (2)
C3—H3A0.9700C27—C281.376 (2)
C3—H3B0.9700C27—H270.9300
C4—H4A0.9700C28—C291.382 (2)
C4—H4B0.9700C28—H280.9300
C5—C101.387 (2)C29—C301.376 (2)
C5—C61.392 (2)C30—C311.391 (2)
C6—C71.376 (2)C30—H300.9300
C6—H60.9300C31—H310.9300
C7—C81.390 (2)C32—H32A0.9600
C7—H70.9300C32—H32B0.9600
C8—C91.380 (2)C32—H32C0.9600
C9—C101.391 (2)
O3—C25—H25A109.5H11A—C11—H11B109.5
O3—C25—H25B109.5O1—C11—H11C109.5
O3—C25—H25C109.5H11A—C11—H11C109.5
O3—C25'—H25D109.5H11B—C11—H11C109.5
O3—C25'—H25E109.5N2—C12—C13121.33 (13)
H25D—C25'—H25E109.5N2—C12—C17121.41 (12)
O3—C25'—H25F109.5C13—C12—C17117.26 (13)
H25D—C25'—H25F109.5C14—C13—C12121.39 (14)
H25E—C25'—H25F109.5C14—C13—H13119.3
C8—O1—C11117.83 (14)C12—C13—H13119.3
C15—O2—C18116.91 (16)C15—C14—C13120.56 (14)
C22—O3—C25'114.5 (3)C15—C14—H14119.7
C22—O3—C25114.76 (18)C13—C14—H14119.7
C25'—O3—C2542.0 (3)O2—C15—C16116.57 (14)
C29—O4—C32117.37 (13)O2—C15—C14124.72 (14)
C5—N1—C3114.97 (12)C16—C15—C14118.70 (14)
C5—N1—C2113.05 (11)C17—C16—C15121.00 (14)
C3—N1—C2103.70 (11)C17—C16—H16119.5
C12—N2—C1122.15 (12)C15—C16—H16119.5
C12—N2—C3124.92 (12)C16—C17—C12120.93 (13)
C1—N2—C3111.00 (12)C16—C17—H17119.5
C19—N3—C1119.72 (11)C12—C17—H17119.5
C19—N3—C4115.99 (11)O2—C18—H18A109.5
C1—N3—C4104.20 (11)O2—C18—H18B109.5
C26—N4—C2123.42 (12)H18A—C18—H18B109.5
C26—N4—C4122.16 (12)O2—C18—H18C109.5
C2—N4—C4111.30 (12)H18A—C18—H18C109.5
N2—C1—N3111.65 (12)H18B—C18—H18C109.5
N2—C1—C2102.57 (12)C20—C19—C24117.39 (14)
N3—C1—C2106.70 (11)C20—C19—N3125.15 (12)
N2—C1—H1111.8C24—C19—N3117.43 (13)
N3—C1—H1111.8C21—C20—C19120.61 (14)
C2—C1—H1111.8C21—C20—H20119.7
N4—C2—N1113.25 (12)C19—C20—H20119.7
N4—C2—C1102.55 (11)C22—C21—C20121.11 (15)
N1—C2—C1106.43 (12)C22—C21—H21119.4
N4—C2—H2111.4C20—C21—H21119.4
N1—C2—H2111.4C23—C22—C21118.91 (15)
C1—C2—H2111.4C23—C22—O3123.21 (15)
N1—C3—N2106.21 (11)C21—C22—O3117.87 (15)
N1—C3—H3A110.5C24—C23—C22120.13 (15)
N2—C3—H3A110.5C24—C23—H23119.9
N1—C3—H3B110.5C22—C23—H23119.9
N2—C3—H3B110.5C23—C24—C19121.72 (15)
H3A—C3—H3B108.7C23—C24—H24119.1
N4—C4—N3104.93 (12)C19—C24—H24119.1
N4—C4—H4A110.8C31—C26—C27117.23 (14)
N3—C4—H4A110.8C31—C26—N4122.81 (13)
N4—C4—H4B110.8C27—C26—N4119.95 (13)
N3—C4—H4B110.8C28—C27—C26121.17 (14)
H4A—C4—H4B108.8C28—C27—H27119.4
C10—C5—C6117.81 (14)C26—C27—H27119.4
C10—C5—N1124.32 (13)C27—C28—C29120.88 (14)
C6—C5—N1117.87 (13)C27—C28—H28119.6
C7—C6—C5121.07 (15)C29—C28—H28119.6
C7—C6—H6119.5C30—C29—C28119.04 (14)
C5—C6—H6119.5C30—C29—O4124.99 (14)
C6—C7—C8120.68 (15)C28—C29—O4115.97 (14)
C6—C7—H7119.7C29—C30—C31120.32 (14)
C8—C7—H7119.7C29—C30—H30119.8
O1—C8—C9124.78 (14)C31—C30—H30119.8
O1—C8—C7116.14 (14)C30—C31—C26121.32 (14)
C9—C8—C7119.07 (14)C30—C31—H31119.3
C8—C9—C10119.91 (14)C26—C31—H31119.3
C8—C9—H9120.0O4—C32—H32A109.5
C10—C9—H9120.0O4—C32—H32B109.5
C5—C10—C9121.45 (14)H32A—C32—H32B109.5
C5—C10—H10119.3O4—C32—H32C109.5
C9—C10—H10119.3H32A—C32—H32C109.5
O1—C11—H11A109.5H32B—C32—H32C109.5
O1—C11—H11B109.5
C12—N2—C1—N379.87 (16)C3—N2—C12—C17167.35 (13)
C3—N2—C1—N3115.28 (13)N2—C12—C13—C14177.20 (13)
C12—N2—C1—C2166.23 (12)C17—C12—C13—C143.6 (2)
C3—N2—C1—C21.37 (14)C12—C13—C14—C150.4 (2)
C19—N3—C1—N2147.96 (12)C18—O2—C15—C16177.3 (2)
C4—N3—C1—N280.35 (14)C18—O2—C15—C143.9 (3)
C19—N3—C1—C2100.71 (14)C13—C14—C15—O2178.33 (15)
C4—N3—C1—C230.97 (14)C13—C14—C15—C162.9 (2)
C26—N4—C2—N186.62 (17)O2—C15—C16—C17178.27 (13)
C4—N4—C2—N1113.03 (14)C14—C15—C16—C172.8 (2)
C26—N4—C2—C1159.11 (13)C15—C16—C17—C120.5 (2)
C4—N4—C2—C11.24 (16)N2—C12—C17—C16177.17 (13)
C5—N1—C2—N4154.14 (12)C13—C12—C17—C163.6 (2)
C3—N1—C2—N480.69 (14)C1—N3—C19—C200.2 (2)
C5—N1—C2—C193.94 (13)C4—N3—C19—C20126.56 (15)
C3—N1—C2—C131.23 (14)C1—N3—C19—C24178.20 (13)
N2—C1—C2—N498.98 (13)C4—N3—C19—C2455.46 (17)
N3—C1—C2—N418.50 (14)C24—C19—C20—C212.4 (2)
N2—C1—C2—N120.18 (14)N3—C19—C20—C21179.57 (15)
N3—C1—C2—N1137.67 (11)C19—C20—C21—C220.7 (3)
C5—N1—C3—N293.79 (14)C20—C21—C22—C232.8 (3)
C2—N1—C3—N230.14 (14)C20—C21—C22—O3176.86 (16)
C12—N2—C3—N1146.18 (13)C25'—O3—C22—C238.1 (5)
C1—N2—C3—N118.16 (15)C25—O3—C22—C2354.6 (3)
C26—N4—C4—N3140.35 (14)C25'—O3—C22—C21171.5 (5)
C2—N4—C4—N320.29 (16)C25—O3—C22—C21125.1 (3)
C19—N3—C4—N4102.65 (14)C21—C22—C23—C241.6 (3)
C1—N3—C4—N431.16 (14)O3—C22—C23—C24178.02 (16)
C3—N1—C5—C1023.98 (19)C22—C23—C24—C191.6 (3)
C2—N1—C5—C1094.85 (17)C20—C19—C24—C233.6 (2)
C3—N1—C5—C6155.34 (13)N3—C19—C24—C23178.22 (15)
C2—N1—C5—C685.84 (16)C2—N4—C26—C312.6 (2)
C10—C5—C6—C70.8 (2)C4—N4—C26—C31155.66 (15)
N1—C5—C6—C7179.89 (14)C2—N4—C26—C27177.30 (14)
C5—C6—C7—C81.0 (3)C4—N4—C26—C2724.4 (2)
C11—O1—C8—C96.8 (2)C31—C26—C27—C281.9 (2)
C11—O1—C8—C7174.12 (16)N4—C26—C27—C28178.14 (15)
C6—C7—C8—O1178.82 (15)C26—C27—C28—C291.2 (2)
C6—C7—C8—C90.3 (2)C27—C28—C29—C300.3 (2)
O1—C8—C9—C10179.61 (15)C27—C28—C29—O4179.79 (15)
C7—C8—C9—C100.5 (2)C32—O4—C29—C302.5 (2)
C6—C5—C10—C90.1 (2)C32—O4—C29—C28177.54 (14)
N1—C5—C10—C9179.18 (13)C28—C29—C30—C310.1 (2)
C8—C9—C10—C50.8 (2)O4—C29—C30—C31179.94 (15)
C1—N2—C12—C13176.16 (13)C29—C30—C31—C260.9 (3)
C3—N2—C12—C1313.5 (2)C27—C26—C31—C301.8 (2)
C1—N2—C12—C174.7 (2)N4—C26—C31—C30178.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···O1i0.962.593.169 (2)119
C25—H25B···O3ii0.962.573.499 (4)164
C18—H18B···Cgiii0.962.603.54 (3)167
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z1.

Experimental details

(II)(III)
Crystal data
Chemical formulaC28H22Cl4N4C32H34N4O4
Mr556.30538.63
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)294291
a, b, c (Å)19.368 (15), 5.880 (4), 21.894 (16)9.889 (4), 11.996 (5), 12.312 (5)
α, β, γ (°)90, 95.602 (9), 9089.495 (5), 74.381 (5), 82.332 (5)
V3)2481 (3)1393.6 (11)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.500.09
Crystal size (mm)0.40 × 0.19 × 0.150.48 × 0.41 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.813, 0.9300.828, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7355, 2276, 1821 10373, 5134, 4059
Rint0.0220.019
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.133, 0.97 0.041, 0.111, 1.02
No. of reflections22765134
No. of parameters163370
No. of restraints034
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.190.17, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (II) top
N1—C91.431 (3)N2—C31.398 (3)
N1—C21.442 (3)N2—C21.471 (3)
C9—N1—C2118.96 (17)C3—N2—C2119.36 (16)
C9—N1—C1i114.19 (15)C1—N2—C2109.34 (15)
C2—N1—C1i103.42 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1ii0.932.803.670 (4)155.4
C5—H5···Cl2iii0.932.903.536 (3)127.1
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2.
Selected geometric parameters (Å, º) for (III) top
C25—O31.451 (3)N2—C31.461 (2)
N1—C51.447 (2)N3—C191.424 (2)
N1—C21.482 (2)N3—C11.464 (2)
N2—C121.392 (2)N4—C21.443 (2)
N2—C11.448 (2)
C5—N1—C3114.97 (12)C1—N3—C4104.20 (11)
C5—N1—C2113.05 (11)C26—N4—C2123.42 (12)
C12—N2—C1122.15 (12)C26—N4—C4122.16 (12)
C12—N2—C3124.92 (12)C2—N4—C4111.30 (12)
C1—N2—C3111.00 (12)N2—C1—N3111.65 (12)
C19—N3—C1119.72 (11)N4—C2—N1113.25 (12)
C19—N3—C4115.99 (11)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···O1i0.962.593.169 (2)119.2
C25—H25B···O3ii0.962.573.499 (4)164.2
C18—H18B···Cgiii0.962.603.54 (3)167.3
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds