Download citation
Download citation
link to html
Gaboxadol hydro­chloride, also known as THIP hydro­chloride (systematic name: 3-hy­droxy-4,5,6,7-tetra­hydro-1,2-oxazolo[5,4-c]pyridin-6-ium chloride), C6H9N2O2+·Cl-, exists as two enantio­tropically related polymorphs. Transformation between the polymorphs occurs in a single-crystal-to-single-crystal manner at 221 K, and the enthalpy of transformation from the high-temperature form to the low-temperature form is -0.7 kJ mol-1. Single-crystal structures have been determined at 298 and 220 K. At 298 K, the structure is triclinic (space group P\overline{1}), with two formula units in the crystallographic asymmetric unit. At 220 K, the structure is monoclinic (space group I2/a), with one formula unit in the asymmetric unit. The structures contain identical hydrogen-bonded layers and the transformation between the polymorphs corresponds to a shift of adjacent layers relative to each other. The transformation is shown to be reversible by differential scanning calorimetry and variable-temperature powder X-ray diffraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025961/fm3008sup1.cif
Contains datablocks global, RT, LT, RT_I-1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025961/fm3008RTsup2.hkl
Contains datablock RT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025961/fm3008LTsup3.hkl
Contains datablock LT

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113025961/fm3008RTsup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113025961/fm3008LTsup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270113025961/fm3008sup6.pdf
Supplementary material

CCDC references: 962285; 962286

Computing details top

Data collection: APEX2 (Bruker, 2010) for RT, LT. Cell refinement: SAINT (Bruker, 2010) for RT, LT. Data reduction: SAINT (Bruker, 2010) for RT, LT. Program(s) used to solve structure: SHELXTL (Sheldrick, 2008) for RT, LT. Program(s) used to refine structure: SHELXTL (Sheldrick, 2008) for RT, LT. Molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008) for RT, LT. Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) for RT, LT.

(RT) 3-Hydroxy-4,5,6,7-tetrahydro-1,2-oxazolo[5,4-c]pyridin-6-ium chloride top
Crystal data top
C6H9N2O2+·ClZ = 4
Mr = 176.60F(000) = 368
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6783 (3) ÅCell parameters from 3894 reflections
b = 10.8766 (6) Åθ = 3.0–25.1°
c = 11.2276 (6) ŵ = 0.45 mm1
α = 100.668 (2)°T = 298 K
β = 101.049 (2)°Lath, colourless
γ = 101.917 (2)°0.25 × 0.10 × 0.08 mm
V = 761.43 (7) Å3
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
2859 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
thin–slice ω and φ scansθmax = 25.8°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 87
Tmin = 0.680, Tmax = 0.965k = 1313
12968 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.0033P]
where P = (Fo2 + 2Fc2)/3
2859 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84575 (9)0.32226 (5)0.41555 (5)0.03877 (19)
Cl20.17997 (8)0.17488 (5)0.07924 (5)0.03638 (19)
O1A0.7123 (2)0.16164 (16)0.59102 (15)0.0433 (4)
H1A0.729 (4)0.209 (2)0.542 (2)0.058 (8)*
O2A0.1881 (2)0.16004 (15)0.57530 (13)0.0437 (4)
N1A0.3797 (3)0.19985 (19)0.53740 (17)0.0409 (5)
N2A0.1326 (3)0.07435 (19)0.76800 (18)0.0384 (5)
H2AA0.124 (4)0.1430 (16)0.7046 (16)0.054 (7)*
H2AB0.044 (3)0.105 (2)0.815 (2)0.064 (8)*
C1A0.5135 (3)0.1471 (2)0.59882 (19)0.0323 (5)
C2A0.4234 (3)0.0746 (2)0.67748 (18)0.0299 (5)
C3A0.2273 (4)0.0865 (2)0.65797 (19)0.0338 (5)
C4A0.0579 (4)0.0282 (2)0.7143 (2)0.0383 (5)
H4AA0.07330.00880.65120.046*
H4AB0.03530.09280.77890.046*
C5A0.3550 (3)0.0329 (2)0.84300 (19)0.0390 (6)
H5AA0.38630.10100.88260.047*
H5AB0.37190.04330.90830.047*
C6A0.5092 (3)0.0027 (2)0.76307 (19)0.0347 (5)
H6AA0.64600.04630.81550.042*
H6AB0.52570.08220.71490.042*
O1B0.0242 (3)0.66410 (17)0.09055 (15)0.0459 (4)
H1B0.056 (4)0.708 (2)0.0414 (19)0.049 (8)*
O2B0.4876 (2)0.65808 (15)0.07513 (14)0.0460 (4)
N1B0.2998 (3)0.70012 (19)0.03729 (17)0.0429 (5)
N2B0.4975 (3)0.41927 (19)0.26289 (19)0.0422 (5)
H2BA0.425 (4)0.3514 (17)0.1958 (16)0.061 (8)*
H2BB0.597 (4)0.387 (3)0.307 (3)0.102 (12)*
C1B0.1697 (4)0.6487 (2)0.09850 (19)0.0341 (5)
C2B0.2577 (3)0.5738 (2)0.17598 (18)0.0309 (5)
C3B0.4493 (3)0.5837 (2)0.15649 (19)0.0347 (5)
C4B0.6118 (4)0.5234 (2)0.2128 (2)0.0420 (6)
H4BA0.71840.58660.27940.050*
H4BB0.67960.48750.15050.050*
C5B0.3531 (4)0.4620 (2)0.3393 (2)0.0428 (6)
H5BA0.43150.53690.40550.051*
H5BB0.29830.39340.37750.051*
C6B0.1715 (4)0.4960 (2)0.2602 (2)0.0370 (5)
H6BA0.06830.41780.21100.044*
H6BB0.10320.54570.31320.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0435 (4)0.0375 (3)0.0425 (4)0.0131 (3)0.0151 (3)0.0186 (3)
Cl20.0393 (3)0.0367 (3)0.0399 (3)0.0116 (3)0.0151 (3)0.0175 (3)
O1A0.0428 (10)0.0477 (10)0.0500 (10)0.0119 (8)0.0211 (8)0.0265 (9)
O2A0.0424 (10)0.0507 (10)0.0475 (10)0.0197 (8)0.0109 (8)0.0259 (8)
N1A0.0405 (12)0.0446 (12)0.0432 (11)0.0105 (9)0.0125 (9)0.0218 (9)
N2A0.0435 (12)0.0399 (12)0.0417 (11)0.0123 (9)0.0253 (10)0.0158 (10)
C1A0.0370 (13)0.0263 (12)0.0330 (12)0.0037 (10)0.0122 (10)0.0065 (9)
C2A0.0343 (12)0.0279 (11)0.0275 (11)0.0058 (9)0.0079 (9)0.0078 (9)
C3A0.0399 (13)0.0324 (12)0.0304 (11)0.0115 (10)0.0066 (9)0.0096 (9)
C4A0.0339 (13)0.0435 (14)0.0412 (12)0.0134 (10)0.0112 (10)0.0126 (10)
C5A0.0454 (14)0.0432 (14)0.0352 (12)0.0153 (11)0.0127 (11)0.0176 (10)
C6A0.0355 (12)0.0374 (13)0.0364 (12)0.0127 (10)0.0113 (10)0.0147 (10)
O1B0.0461 (11)0.0541 (11)0.0474 (10)0.0212 (9)0.0098 (8)0.0279 (9)
O2B0.0462 (10)0.0508 (10)0.0500 (10)0.0136 (8)0.0194 (8)0.0245 (8)
N1B0.0484 (13)0.0453 (12)0.0417 (11)0.0150 (10)0.0120 (10)0.0217 (9)
N2B0.0392 (12)0.0354 (12)0.0484 (12)0.0109 (9)0.0020 (10)0.0122 (10)
C1B0.0424 (14)0.0320 (12)0.0293 (11)0.0119 (10)0.0067 (10)0.0093 (10)
C2B0.0339 (12)0.0293 (12)0.0284 (11)0.0073 (9)0.0046 (9)0.0075 (9)
C3B0.0387 (13)0.0321 (12)0.0338 (12)0.0077 (10)0.0100 (10)0.0093 (10)
C4B0.0360 (13)0.0454 (14)0.0478 (14)0.0123 (11)0.0131 (11)0.0132 (11)
C5B0.0476 (15)0.0440 (14)0.0403 (13)0.0103 (12)0.0088 (11)0.0219 (11)
C6B0.0374 (12)0.0407 (13)0.0369 (12)0.0115 (10)0.0101 (10)0.0156 (10)
Geometric parameters (Å, º) top
O1A—C1A1.326 (3)O1B—C1B1.328 (3)
O1A—H1A0.830 (17)O1B—H1B0.821 (16)
O2A—C3A1.356 (2)O2B—C3B1.353 (2)
O2A—N1A1.433 (2)O2B—N1B1.438 (2)
N1A—C1A1.313 (3)N1B—C1B1.308 (3)
N2A—C4A1.490 (3)N2B—C4B1.492 (3)
N2A—C5A1.490 (3)N2B—C5B1.496 (3)
N2A—H2AA0.915 (10)N2B—H2BA0.924 (10)
N2A—H2AB0.922 (10)N2B—H2BB0.919 (10)
C1A—C2A1.425 (3)C1B—C2B1.425 (3)
C2A—C3A1.323 (3)C2B—C3B1.325 (3)
C2A—C6A1.499 (3)C2B—C6B1.498 (3)
C3A—C4A1.486 (3)C3B—C4B1.480 (3)
C4A—H4AA0.9700C4B—H4BA0.9700
C4A—H4AB0.9700C4B—H4BB0.9700
C5A—C6A1.516 (3)C5B—C6B1.513 (3)
C5A—H5AA0.9700C5B—H5BA0.9700
C5A—H5AB0.9700C5B—H5BB0.9700
C6A—H6AA0.9700C6B—H6BA0.9700
C6A—H6AB0.9700C6B—H6BB0.9700
C1A—O1A—H1A105.7 (19)C1B—O1B—H1B112.8 (18)
C3A—O2A—N1A106.81 (16)C3B—O2B—N1B106.86 (16)
C1A—N1A—O2A104.67 (16)C1B—N1B—O2B104.53 (16)
C4A—N2A—C5A114.29 (18)C4B—N2B—C5B113.78 (18)
C4A—N2A—H2AA109.2 (15)C4B—N2B—H2BA107.4 (16)
C5A—N2A—H2AA107.1 (16)C5B—N2B—H2BA111.4 (17)
C4A—N2A—H2AB109.5 (17)C4B—N2B—H2BB107 (2)
C5A—N2A—H2AB110.3 (16)C5B—N2B—H2BB112 (2)
H2AA—N2A—H2AB106 (2)H2BA—N2B—H2BB104 (3)
N1A—C1A—O1A123.99 (19)N1B—C1B—O1B124.18 (19)
N1A—C1A—C2A112.6 (2)N1B—C1B—C2B112.9 (2)
O1A—C1A—C2A123.3 (2)O1B—C1B—C2B122.89 (19)
C3A—C2A—C1A103.46 (19)C3B—C2B—C1B103.39 (19)
C3A—C2A—C6A123.86 (19)C3B—C2B—C6B123.9 (2)
C1A—C2A—C6A132.7 (2)C1B—C2B—C6B132.71 (19)
C2A—C3A—O2A112.40 (19)C2B—C3B—O2B112.3 (2)
C2A—C3A—C4A127.3 (2)C2B—C3B—C4B127.0 (2)
O2A—C3A—C4A120.3 (2)O2B—C3B—C4B120.74 (19)
C3A—C4A—N2A105.72 (19)C3B—C4B—N2B105.70 (18)
C3A—C4A—H4AA110.6C3B—C4B—H4BA110.6
N2A—C4A—H4AA110.6N2B—C4B—H4BA110.6
C3A—C4A—H4AB110.6C3B—C4B—H4BB110.6
N2A—C4A—H4AB110.6N2B—C4B—H4BB110.6
H4AA—C4A—H4AB108.7H4BA—C4B—H4BB108.7
N2A—C5A—C6A111.78 (16)N2B—C5B—C6B111.34 (18)
N2A—C5A—H5AA109.3N2B—C5B—H5BA109.4
C6A—C5A—H5AA109.3C6B—C5B—H5BA109.4
N2A—C5A—H5AB109.3N2B—C5B—H5BB109.4
C6A—C5A—H5AB109.3C6B—C5B—H5BB109.4
H5AA—C5A—H5AB107.9H5BA—C5B—H5BB108.0
C2A—C6A—C5A107.86 (18)C2B—C6B—C5B108.10 (18)
C2A—C6A—H6AA110.1C2B—C6B—H6BA110.1
C5A—C6A—H6AA110.1C5B—C6B—H6BA110.1
C2A—C6A—H6AB110.1C2B—C6B—H6BB110.1
C5A—C6A—H6AB110.1C5B—C6B—H6BB110.1
H6AA—C6A—H6AB108.4H6BA—C6B—H6BB108.4
C3A—O2A—N1A—C1A0.4 (2)C3B—O2B—N1B—C1B0.3 (2)
O2A—N1A—C1A—O1A179.24 (18)O2B—N1B—C1B—O1B179.76 (18)
O2A—N1A—C1A—C2A0.6 (2)O2B—N1B—C1B—C2B0.0 (2)
N1A—C1A—C2A—C3A0.6 (2)N1B—C1B—C2B—C3B0.2 (2)
O1A—C1A—C2A—C3A179.3 (2)O1B—C1B—C2B—C3B180.0 (2)
N1A—C1A—C2A—C6A179.3 (2)N1B—C1B—C2B—C6B178.8 (2)
O1A—C1A—C2A—C6A2.0 (4)O1B—C1B—C2B—C6B1.4 (4)
C1A—C2A—C3A—O2A0.3 (2)C1B—C2B—C3B—O2B0.4 (2)
C6A—C2A—C3A—O2A179.20 (18)C6B—C2B—C3B—O2B179.10 (18)
C1A—C2A—C3A—C4A178.8 (2)C1B—C2B—C3B—C4B179.4 (2)
C6A—C2A—C3A—C4A0.0 (4)C6B—C2B—C3B—C4B0.7 (4)
N1A—O2A—C3A—C2A0.0 (2)N1B—O2B—C3B—C2B0.4 (2)
N1A—O2A—C3A—C4A179.21 (19)N1B—O2B—C3B—C4B179.40 (19)
C2A—C3A—C4A—N2A15.4 (3)C2B—C3B—C4B—N2B17.0 (3)
O2A—C3A—C4A—N2A163.69 (19)O2B—C3B—C4B—N2B162.76 (19)
C5A—N2A—C4A—C3A46.7 (2)C5B—N2B—C4B—C3B48.3 (2)
C4A—N2A—C5A—C6A65.6 (2)C4B—N2B—C5B—C6B66.3 (2)
C3A—C2A—C6A—C5A13.9 (3)C3B—C2B—C6B—C5B13.8 (3)
C1A—C2A—C6A—C5A167.6 (2)C1B—C2B—C6B—C5B167.8 (2)
N2A—C5A—C6A—C2A43.8 (2)N2B—C5B—C6B—C2B43.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···Cl1i0.92 (1)2.23 (1)3.123 (2)167 (2)
N2A—H2AB···Cl2ii0.92 (1)2.18 (1)3.1015 (19)177 (2)
N2B—H2BB···Cl10.92 (1)2.18 (1)3.101 (2)177 (3)
N2B—H2BA···Cl20.92 (1)2.24 (1)3.127 (2)160 (2)
O1A—H1A···Cl10.83 (2)2.19 (2)3.0053 (17)166 (3)
O1B—H1B···Cl2iii0.82 (2)2.19 (2)3.0021 (17)172 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z.
(LT) 3-Hydroxy-4,5,6,7-tetrahydro-1,2-oxazolo[5,4-c]pyridin-6-ium chloride top
Crystal data top
C6H9N2O2+·ClF(000) = 736
Mr = 176.60Dx = 1.589 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 5388 reflections
a = 13.1489 (5) Åθ = 2.4–27.3°
b = 6.5780 (2) ŵ = 0.46 mm1
c = 17.0721 (9) ÅT = 220 K
β = 90.420 (1)°Lath, colourless
V = 1476.59 (11) Å30.25 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
1643 independent reflections
Radiation source: fine-focus sealed tube1359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
thin–slice ω and φ scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.855, Tmax = 0.965k = 78
12044 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.9569P]
where P = (Fo2 + 2Fc2)/3
1643 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12433 (3)0.77808 (5)0.199929 (19)0.02848 (13)
O10.12661 (9)0.10490 (16)0.53688 (6)0.0313 (3)
H10.1223 (18)0.139 (4)0.5828 (7)0.074 (7)*
O20.11882 (8)0.42094 (15)0.54553 (6)0.0291 (2)
N10.11916 (10)0.22652 (18)0.58347 (7)0.0280 (3)
N20.09024 (10)0.46912 (19)0.33423 (7)0.0268 (3)
H2A0.0222 (8)0.435 (3)0.3349 (10)0.041 (5)*
H2B0.0994 (15)0.568 (2)0.2970 (10)0.058 (6)*
C10.12381 (10)0.0953 (2)0.52597 (8)0.0231 (3)
C20.12656 (10)0.1884 (2)0.45062 (8)0.0223 (3)
C30.12312 (10)0.3868 (2)0.46755 (8)0.0231 (3)
C40.12171 (11)0.5582 (2)0.41102 (8)0.0266 (3)
H4A0.18930.61990.40720.032*
H4B0.07320.66260.42750.032*
C50.15045 (12)0.2838 (2)0.31278 (8)0.0296 (3)
H5A0.22310.31680.31410.036*
H5B0.13270.24240.25930.036*
C60.12991 (11)0.1074 (2)0.36880 (7)0.0261 (3)
H6A0.06490.04270.35540.031*
H6B0.18390.00530.36440.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0354 (2)0.0314 (2)0.01853 (19)0.00035 (15)0.00293 (13)0.00197 (13)
O10.0460 (7)0.0268 (6)0.0213 (5)0.0007 (5)0.0004 (5)0.0029 (4)
O20.0418 (6)0.0268 (5)0.0188 (5)0.0000 (4)0.0010 (4)0.0030 (4)
N10.0354 (7)0.0286 (6)0.0200 (6)0.0006 (5)0.0005 (5)0.0023 (5)
N20.0308 (7)0.0285 (6)0.0210 (6)0.0013 (5)0.0020 (5)0.0052 (5)
C10.0221 (7)0.0271 (7)0.0202 (7)0.0007 (6)0.0008 (5)0.0008 (5)
C20.0220 (7)0.0260 (7)0.0188 (7)0.0005 (6)0.0005 (5)0.0000 (5)
C30.0242 (8)0.0285 (7)0.0166 (7)0.0002 (5)0.0000 (5)0.0015 (5)
C40.0314 (8)0.0246 (7)0.0236 (7)0.0020 (6)0.0002 (6)0.0002 (6)
C50.0362 (8)0.0338 (8)0.0189 (7)0.0017 (7)0.0022 (6)0.0003 (6)
C60.0342 (8)0.0260 (7)0.0181 (7)0.0025 (6)0.0018 (6)0.0020 (5)
Geometric parameters (Å, º) top
O1—C11.3303 (18)C2—C31.338 (2)
O1—H10.817 (10)C2—C61.4959 (18)
O2—C31.3518 (16)C3—C41.484 (2)
O2—N11.4336 (15)C4—H4A0.9800
N1—C11.3091 (18)C4—H4B0.9800
N2—C41.4915 (18)C5—C61.5288 (19)
N2—C51.5006 (19)C5—H5A0.9800
N2—H2A0.923 (9)C5—H5B0.9800
N2—H2B0.917 (9)C6—H6A0.9800
C1—C21.4255 (19)C6—H6B0.9800
C1—O1—H1113.6 (18)C3—C4—N2105.99 (11)
C3—O2—N1107.27 (10)C3—C4—H4A110.5
C1—N1—O2104.45 (11)N2—C4—H4A110.5
C4—N2—C5112.96 (11)C3—C4—H4B110.5
C4—N2—H2A110.4 (11)N2—C4—H4B110.5
C5—N2—H2A108.6 (11)H4A—C4—H4B108.7
C4—N2—H2B107.1 (13)N2—C5—C6111.59 (11)
C5—N2—H2B109.5 (13)N2—C5—H5A109.3
H2A—N2—H2B108.2 (16)C6—C5—H5A109.3
N1—C1—O1123.31 (13)N2—C5—H5B109.3
N1—C1—C2113.26 (12)C6—C5—H5B109.3
O1—C1—C2123.43 (12)H5A—C5—H5B108.0
C3—C2—C1102.90 (12)C2—C6—C5108.69 (11)
C3—C2—C6123.40 (12)C2—C6—H6A110.0
C1—C2—C6133.68 (12)C5—C6—H6A110.0
C2—C3—O2112.12 (12)C2—C6—H6B110.0
C2—C3—C4126.94 (13)C5—C6—H6B110.0
O2—C3—C4120.94 (12)H6A—C6—H6B108.3
C3—O2—N1—C10.16 (14)C6—C2—C3—C40.2 (2)
O2—N1—C1—O1179.36 (12)N1—O2—C3—C20.19 (16)
O2—N1—C1—C20.08 (15)N1—O2—C3—C4178.66 (12)
N1—C1—C2—C30.03 (16)C2—C3—C4—N218.4 (2)
O1—C1—C2—C3179.46 (13)O2—C3—C4—N2160.22 (12)
N1—C1—C2—C6178.66 (15)C5—N2—C4—C349.92 (15)
O1—C1—C2—C61.9 (2)C4—N2—C5—C666.15 (16)
C1—C2—C3—O20.14 (16)C3—C2—C6—C511.38 (19)
C6—C2—C3—O2178.95 (12)C1—C2—C6—C5170.22 (15)
C1—C2—C3—C4178.63 (13)N2—C5—C6—C242.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl10.92 (1)2.19 (1)3.0990 (12)174 (2)
N2—H2A···Cl1i0.92 (1)2.26 (1)3.1393 (13)159 (2)
O1—H1···Cl1ii0.82 (1)2.20 (1)3.0080 (11)170 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(RT_I-1) 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride top
Crystal data top
C6H9N2O2+·Clc = 17.0168 Å
Mr = 176.60α = 89.683°
Triclinic, I1β = 92.077°
Hall symbol: -I 1γ = 99.652°
a = 13.6018 ÅV = 1522.86 Å3
b = 6.6783 ÅZ = 8
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Cl10.618900.273140.20336
Cl20.622940.302910.70219
O1A0.373670.585970.03535
H1A0.374090.603370.08477
O2A0.382380.070470.04236
N1A0.381380.261060.08123
N2A0.403150.035890.17111
H2AA0.392080.059570.20877
H2AB0.468570.088630.17376
C1A0.376970.390440.02417
C2A0.373940.297450.05144
C3A0.377810.105020.03578
C4A0.378800.063270.09301
H4AA0.428780.144440.08000
H4AB0.314140.150460.09304
C5A0.344990.199920.18801
H5AA0.359380.245540.24185
H5AB0.274260.146190.18263
C6A0.369830.378940.13290
H6AA0.319150.465000.13464
H6AB0.433660.459220.14854
O1B0.372680.151510.46322
H1B0.375440.180940.41646
O2B0.383370.371040.45852
N1B0.381290.181090.41858
N2B0.408960.406490.67166
H2BA0.400300.492900.71022
H2BB0.474080.395890.67234
C1B0.376430.046180.47493
C2B0.375080.132650.55106
C3B0.379840.329280.53641
C4B0.381790.493690.59467
H4BA0.316910.535250.59640
H4BB0.430870.610700.58144
C5B0.349380.202230.68867
H5BA0.278810.210080.68452
H5BB0.364780.162750.74205
C6B0.371830.043300.63208
H6BA0.435460.003590.64656
H6BB0.320460.076290.63371
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds