Download citation
Download citation
link to html
A new compound, [Co4(C2F3O2)2(OH)4(C10H8N2)4]I2·2C2H3N·H2O, containing a tetranuclear cobalt(II)–hydroxo core with a cube-like structural geometry is reported. The four CoII coordination polyhedra are irregular octahedra and the CoII atoms are linked by three hydro­xo and tri­fluoro­acetate ions resulting in a Co4O4 core with approximate tetrahedral symmetry. The coordination polyhedra share edges with short Co...Co distances. A bond valence analysis shows that a cube-like arrangement of atoms in a tetranuclear cluster is ideal for the clusters [M4(OR)4]4+ (R is a strongly binding group) and [M4O4]8+ when the metal ions are in oxidation states of +2 and +4, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804008979/fl6099sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804008979/fl6099Isup2.hkl
Contains datablock I

CCDC reference: 239076

Key indicators

  • Single-crystal X-ray study
  • T = 110 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.058
  • wR factor = 0.139
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT432_ALERT_2_A Short Inter X...Y Contact I1B .. C34 .. 3.14 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.


PLAT702_ALERT_1_A Angle   Calc    55.70(2), Rep    55.79(2), Dev..       4.50 Sigma
              CO3  -CO4  -CO2     1.555   1.555   1.555

Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.88 Ratio
Author Response: Please see _publ_section_exptl_refinement. This is likely to be due to partial disorder. The anisotropic displacement parameters for some of the carbon atoms have a component perpendicular to the rings that is much larger than those nearly parallel to the rings. Following the advice given in the SHELX frequently-asked-questions; these atoms were not split. However, this approach results in larger ellipsoids for these atoms (and the physical validity of these ellipsoids representing harmonic motion may be doubtful).
PLAT432_ALERT_2_B Short Inter X...Y Contact  C24    ..  C3SB    ..       2.92 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.


PLAT432_ALERT_2_B Short Inter X...Y Contact  C33    ..  C4SB    ..       3.04 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.


PLAT432_ALERT_2_B Short Inter X...Y Contact  C34    ..  C3SB    ..       3.03 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97
Author Response: The completeness drops from 99% to 97% between 25 and 27 degrees.
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ ....          ?
PLAT165_ALERT_3_C Nr. of Status R Flagged Non-Hydrogen Atoms .....         12
PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent .........          6
Author Response: see _publ_section_exptl_refinement.
PLAT213_ALERT_2_C Atom C23     has ADP max/min Ratio .............       3.40 prolat
PLAT213_ALERT_2_C Atom F43F    has ADP max/min Ratio .............       3.40 prolat
PLAT222_ALERT_3_C Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       3.39 Ratio
PLAT241_ALERT_2_C Check High   U(eq) as Compared to Neighbors ....        C23
PLAT241_ALERT_2_C Check High   U(eq) as Compared to Neighbors ....        C33
PLAT241_ALERT_2_C Check High   U(eq) as Compared to Neighbors ....        C34
PLAT242_ALERT_2_C Check Low    U(eq) as Compared to Neighbors ....        C42
PLAT242_ALERT_2_C Check Low    U(eq) as Compared to Neighbors ....       C44B
PLAT301_ALERT_3_C Main Residue  Disorder .........................       5.00 Perc.
PLAT302_ALERT_4_C Anion/Solvent Disorder .........................      44.00 Perc.
PLAT432_ALERT_2_C Short Inter X...Y Contact  C4SA   ..  C34     ..       3.16 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.


PLAT432_ALERT_2_C Short Inter X...Y Contact  C34    ..  C4SB    ..       3.17 Ang.
Author Response: This non-bonded interatomic contact is between the minor component (5%) of a disordered iodide ion and C34, a carbon atom with a prolate thermal ellipsoid. This C atom can also be split into two positions but was refined anisotropically (see text). The intermolecular contacts between the major component and aromatic ring make chemical sense. It is likely that by splitting C34 the intermolecular contacts between two minor component would be reasonable. Refining I1 without splitting atoms results in all the non-bonded contacts making chemical sense. Splitting I1 was preferred as it lowered the residual electron density and improved the R-values. The short contact is a result of residual disorder that has not been modelled. The short distance is also due partly to favourable interactions between the iodide ions and the cationic aromatic rings.
 PROBLEM: Short Inter X...Y Contact C24 ..C3SB= 2.92 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 (25%) of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.

 PROBLEM: Short Inter X...Y Contact  C33..C4SB = 3.04 Ang.
 RESPONSE:

 These non-bonded interatomic contacts are between the minor component
 of a disordered acetonitrile solvent molecule and carbon atom with
 a prolate thermal ellipsoid. The intermolecular contacts between the major
 components make chemical sense.


PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........         26
PLAT735_ALERT_1_C D-H     Calc   0.967(19), Rep    0.967(9) ......       2.11 su-Rat
              O2   -H2O     1.555   1.555

2 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 18 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 14 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: X-SEED (Barbour, 2001) and SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000).

Tetrakis(2,2'-bipyridine)tetra-µ3-hydroxo-di-µ-trifluoroacetato- tetracobalt(II) diiodide diacetonitrile monohydrate top
Crystal data top
[Co4(C2F3O2)2(OH)4(C10H8N2)4]I2·2C2H3N·H2OF(000) = 5936
Mr = 1508.45Dx = 1.790 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5517 reflections
a = 20.027 (1) Åθ = 2.5–27.3°
b = 18.774 (1) ŵ = 2.35 mm1
c = 29.771 (2) ÅT = 110 K
V = 11194 (1) Å3Prism, brown
Z = 80.29 × 0.25 × 0.11 mm
Data collection top
SMART APEX CCD area-detector
diffractometer
12523 independent reflections
Radiation source: fine-focus sealed tube8819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω and φ scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2523
Tmin = 0.549, Tmax = 0.782k = 2424
72201 measured reflectionsl = 3823
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0647P)2 + 25.7334P]
where P = (Fo2 + 2Fc2)/3
12523 reflections(Δ/σ)max = 0.028
775 parametersΔρmax = 1.67 e Å3
119 restraintsΔρmin = 1.00 e Å3
Special details top

Experimental. Approximately a hemisphere of diffraction data in reciprocal space were collected by a combination of three sets of exposures: two 180° ω scans and one 120° φ scan. Exposure times of 30 s per frame and scan widths of 0.3° were used throughout the data collection. Crystal decay was monitored by analyzing duplicate reflections, and found to be negligible, therefore no decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I20.296668 (14)0.400138 (13)0.450074 (11)0.03723 (8)
Co10.43734 (3)0.31144 (2)0.320826 (17)0.01960 (12)
O10.44966 (13)0.20114 (11)0.32619 (8)0.0215 (6)
H1O0.4320 (18)0.1739 (16)0.3019 (9)0.069 (17)*
N10.41889 (16)0.42192 (14)0.31238 (11)0.0234 (8)
C10.4653 (2)0.47305 (18)0.31425 (14)0.0282 (10)
H10.51010.45970.32050.034*
I1A0.364753 (15)0.061955 (13)0.261046 (11)0.03361 (8)0.95
I1B0.3522 (3)0.0722 (3)0.2433 (2)0.03361 (8)0.05
Co20.42488 (3)0.18820 (2)0.393762 (18)0.02272 (12)
O20.42332 (12)0.29918 (11)0.38973 (8)0.0216 (6)
H2O0.3887 (7)0.3236 (12)0.4063 (8)0.066 (16)*
N20.33570 (16)0.31483 (14)0.29947 (10)0.0224 (8)
C20.4512 (2)0.54448 (19)0.30746 (14)0.0339 (11)
H20.48570.57930.30770.041*
Co30.52116 (3)0.30662 (2)0.413899 (18)0.02237 (12)
O30.52924 (13)0.19984 (11)0.39703 (9)0.0241 (6)
H3O0.5519 (9)0.1707 (10)0.4190 (6)0.055 (15)*
N30.32011 (18)0.17277 (16)0.39045 (11)0.0285 (8)
C30.3854 (2)0.56350 (18)0.30025 (16)0.0378 (12)
H30.37370.61220.29650.045*
Co40.55359 (3)0.20911 (2)0.329054 (18)0.02201 (12)
O40.53587 (13)0.31587 (11)0.34428 (9)0.0222 (6)
H4O0.5569 (17)0.3531 (14)0.3272 (12)0.085 (19)*
N40.41555 (18)0.07583 (15)0.39407 (11)0.0286 (9)
C40.3368 (2)0.51174 (19)0.29849 (15)0.0333 (11)
H40.29140.52440.29390.040*
O50.46842 (13)0.30578 (12)0.25254 (9)0.0248 (7)
N50.52437 (17)0.41605 (15)0.43030 (11)0.0270 (8)
C50.2415 (2)0.3892 (2)0.28443 (15)0.0344 (11)
H50.22280.43570.28310.041*
O60.55586 (13)0.22913 (12)0.25788 (9)0.0246 (7)
N60.61695 (17)0.31856 (15)0.44431 (11)0.0282 (9)
C60.2028 (2)0.3310 (2)0.27458 (15)0.0352 (11)
H60.15720.33650.26630.042*
O70.41777 (14)0.18869 (12)0.46542 (9)0.0308 (7)
N70.65964 (17)0.21521 (17)0.33497 (12)0.0302 (9)
C70.2318 (2)0.2636 (2)0.27697 (14)0.0310 (11)
H70.20660.22220.26980.037*
O80.48689 (14)0.28129 (13)0.48059 (9)0.0284 (7)
N80.58596 (17)0.10333 (15)0.31528 (11)0.0288 (9)
C80.2977 (2)0.25828 (19)0.28991 (14)0.0277 (10)
H80.31700.21220.29210.033*
C90.3550 (2)0.44045 (18)0.30352 (14)0.0261 (10)
C100.30814 (19)0.38028 (18)0.29645 (13)0.0247 (9)
C110.2741 (2)0.2242 (2)0.39259 (14)0.0312 (11)
H110.28870.27220.39380.037*
C120.2065 (2)0.2108 (2)0.39319 (16)0.0395 (12)
H120.17530.24890.39480.047*
C130.1850 (3)0.1415 (3)0.39137 (18)0.0516 (15)
H130.13870.13080.39130.062*
C140.2324 (2)0.0869 (2)0.38961 (17)0.0440 (13)
H140.21860.03850.38900.053*
C150.3415 (3)0.0222 (2)0.38323 (18)0.0516 (14)
H150.29730.03930.37900.062*
C160.3937 (3)0.0685 (2)0.38442 (19)0.0606 (17)
H160.38650.11810.38020.073*
C170.4569 (3)0.0430 (2)0.39176 (18)0.0538 (15)
H170.49370.07470.39380.065*
C180.4663 (2)0.0298 (2)0.39609 (14)0.0357 (12)
H180.51020.04760.40070.043*
C190.2993 (2)0.1042 (2)0.38882 (14)0.0348 (11)
C200.3536 (2)0.05043 (19)0.38835 (14)0.0333 (11)
C210.4749 (2)0.4625 (2)0.42177 (15)0.0366 (12)
H210.43640.44640.40610.044*
C220.4782 (3)0.5328 (2)0.4349 (2)0.0574 (16)
H220.44220.56430.42890.069*
C230.5338 (3)0.5563 (2)0.4567 (2)0.080 (2)
H230.53750.60500.46500.097*
C240.5846 (3)0.5093 (2)0.4666 (2)0.0665 (17)
H240.62280.52450.48290.080*
C250.6870 (2)0.3960 (2)0.48694 (16)0.0433 (13)
H250.69520.44220.49880.052*
C260.7318 (2)0.3420 (2)0.49523 (15)0.0401 (12)
H260.77140.35040.51210.048*
C270.7175 (2)0.2747 (2)0.47824 (15)0.0387 (12)
H270.74640.23560.48390.046*
C280.6604 (2)0.2664 (2)0.45307 (15)0.0358 (12)
H280.65130.22050.44110.043*
C290.5786 (2)0.43829 (19)0.45204 (15)0.0353 (11)
C300.6302 (2)0.38387 (19)0.46154 (15)0.0332 (11)
C310.6951 (2)0.2738 (2)0.34421 (15)0.0363 (12)
H590.67110.31630.35010.044*
C320.7633 (2)0.2773 (3)0.34585 (18)0.0538 (15)
H540.78590.31970.35430.065*
C330.7974 (3)0.2167 (4)0.3347 (3)0.094 (3)
H100.84480.21710.33350.112*
C340.7627 (3)0.1554 (4)0.3254 (3)0.093 (3)
H730.78620.11310.31780.111*
C350.6786 (3)0.0227 (3)0.31318 (17)0.0517 (14)
H640.72540.01510.31510.062*
C360.6363 (3)0.0326 (2)0.30523 (17)0.0510 (14)
H420.65340.07960.30250.061*
C370.5691 (3)0.0207 (2)0.30110 (15)0.0422 (13)
H440.53940.05890.29480.051*
C380.5452 (2)0.0482 (2)0.30623 (14)0.0339 (11)
H480.49860.05670.30330.041*
C390.6518 (2)0.0909 (2)0.31838 (15)0.0375 (12)
C400.6936 (2)0.1552 (3)0.32697 (16)0.0418 (13)
C410.51367 (19)0.26641 (18)0.23791 (13)0.0240 (9)
C430.4479 (2)0.23181 (19)0.48984 (14)0.0286 (10)
C44A0.4364 (2)0.22163 (19)0.54045 (15)0.0399 (12)0.44
F43A0.4243 (4)0.1552 (3)0.5538 (2)0.051 (2)0.44
F43C0.4879 (4)0.2448 (4)0.5650 (2)0.065 (3)0.44
F43B0.3854 (4)0.2642 (4)0.5534 (3)0.063 (2)0.44
C44B0.4364 (2)0.22163 (19)0.54045 (15)0.0399 (12)0.27
F43F0.4647 (7)0.2715 (6)0.5658 (4)0.067 (4)0.27
F43E0.3707 (4)0.2191 (8)0.5479 (4)0.065 (4)0.27
F43D0.4636 (6)0.1585 (5)0.5519 (4)0.066 (4)0.27
C44C0.4364 (2)0.22163 (19)0.54045 (15)0.0399 (12)0.29
F43I0.4113 (8)0.2755 (6)0.5629 (4)0.066 (4)0.29
F43H0.3961 (6)0.1687 (5)0.5513 (3)0.039 (3)0.29
F43G0.4949 (7)0.2105 (6)0.5626 (4)0.063 (4)0.29
O1S0.6313 (2)0.4298 (2)0.32043 (17)0.0936 (16)
H1SA0.6520 (17)0.4431 (19)0.3489 (5)0.112*
H1SB0.636 (3)0.4702 (11)0.2995 (7)0.112*
N1SB0.5931 (4)0.0982 (4)0.4584 (3)0.0594 (11)*0.43
C1SB0.6110 (4)0.0501 (4)0.4777 (3)0.0594 (11)*0.43
C2SB0.6352 (7)0.0116 (6)0.5019 (4)0.0594 (11)*0.43
H2S40.67690.02830.48830.089*0.43
H2S50.60170.04970.50050.089*0.43
H2S60.64330.00120.53340.089*0.43
N1SA0.6150 (3)0.0923 (3)0.4401 (2)0.0594 (11)*0.57
C1SA0.6291 (3)0.0444 (3)0.4610 (2)0.0594 (11)*0.57
C2SA0.6485 (6)0.0171 (4)0.4874 (3)0.0594 (11)*0.57
H2S10.67180.05130.46810.089*0.57
H2S20.60850.03960.50010.089*0.57
H2S30.67810.00200.51180.089*0.57
N2SB0.6861 (13)0.5132 (15)0.3849 (8)0.127 (2)*0.25
C3SB0.6784 (12)0.5672 (14)0.4008 (8)0.127 (2)*0.25
C4SB0.668 (2)0.6369 (16)0.4204 (12)0.127 (2)*0.25
H4S40.62290.65390.41260.191*0.25
H4S50.70110.67020.40870.191*0.25
H4S60.67190.63370.45320.191*0.25
N2SA0.7149 (4)0.4791 (5)0.3888 (3)0.127 (2)*0.75
C3SA0.7191 (4)0.5330 (5)0.4054 (3)0.127 (2)*0.75
C4SA0.7236 (8)0.6028 (5)0.4259 (4)0.127 (2)*0.75
H4S10.68020.62680.42380.191*0.75
H4S20.75750.63120.41030.191*0.75
H4S30.73610.59770.45760.191*0.75
F42A0.57495 (15)0.2445 (2)0.17015 (10)0.0703 (11)
F42C0.47636 (15)0.20765 (14)0.17241 (9)0.0547 (8)
F42B0.4939 (2)0.31733 (13)0.16567 (9)0.0753 (11)
C420.5152 (2)0.26139 (18)0.18648 (14)0.0293 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.02898 (15)0.02483 (11)0.05786 (19)0.00110 (10)0.00585 (14)0.01132 (12)
Co10.0210 (3)0.01126 (18)0.0265 (3)0.00018 (18)0.0039 (2)0.00075 (18)
O10.0241 (14)0.0154 (10)0.0251 (14)0.0001 (10)0.0042 (12)0.0029 (10)
N10.0281 (18)0.0181 (13)0.0240 (17)0.0010 (12)0.0043 (14)0.0004 (12)
C10.028 (2)0.0164 (15)0.040 (2)0.0010 (15)0.0107 (19)0.0004 (16)
I1A0.02909 (15)0.02071 (11)0.05103 (19)0.00373 (11)0.00273 (14)0.00458 (12)
I1B0.02909 (15)0.02071 (11)0.05103 (19)0.00373 (11)0.00273 (14)0.00458 (12)
Co20.0291 (3)0.01246 (19)0.0267 (3)0.00248 (19)0.0028 (2)0.00094 (19)
O20.0218 (14)0.0152 (10)0.0279 (14)0.0009 (10)0.0028 (12)0.0029 (10)
N20.0265 (17)0.0171 (12)0.0235 (17)0.0000 (12)0.0045 (14)0.0004 (12)
C20.047 (3)0.0175 (16)0.037 (2)0.0038 (17)0.004 (2)0.0004 (16)
Co30.0262 (3)0.01290 (19)0.0280 (3)0.00040 (18)0.0068 (2)0.00279 (19)
O30.0298 (15)0.0149 (10)0.0276 (14)0.0012 (10)0.0077 (12)0.0001 (10)
N30.036 (2)0.0233 (14)0.0265 (18)0.0089 (14)0.0012 (16)0.0016 (13)
C30.045 (3)0.0118 (15)0.057 (3)0.0050 (16)0.002 (2)0.0025 (17)
Co40.0225 (3)0.01451 (19)0.0290 (3)0.00154 (19)0.0046 (2)0.00179 (19)
O40.0242 (14)0.0139 (10)0.0286 (14)0.0017 (10)0.0075 (12)0.0008 (10)
N40.040 (2)0.0180 (13)0.0273 (18)0.0013 (14)0.0017 (16)0.0008 (13)
C40.032 (2)0.0197 (16)0.048 (3)0.0086 (16)0.003 (2)0.0014 (17)
O50.0278 (15)0.0202 (11)0.0264 (14)0.0038 (10)0.0018 (12)0.0008 (10)
N50.035 (2)0.0169 (13)0.0286 (18)0.0006 (13)0.0085 (16)0.0035 (12)
C50.031 (2)0.0257 (18)0.047 (3)0.0028 (17)0.001 (2)0.0030 (18)
O60.0224 (14)0.0209 (11)0.0306 (15)0.0036 (10)0.0004 (12)0.0001 (10)
N60.0334 (19)0.0192 (13)0.0320 (19)0.0012 (13)0.0081 (16)0.0014 (13)
C60.020 (2)0.039 (2)0.046 (3)0.0007 (17)0.005 (2)0.0041 (19)
O70.0395 (17)0.0204 (11)0.0325 (16)0.0040 (11)0.0014 (14)0.0013 (11)
N70.0240 (18)0.0355 (16)0.031 (2)0.0042 (14)0.0027 (16)0.0001 (15)
C70.030 (2)0.0252 (17)0.037 (2)0.0070 (16)0.006 (2)0.0006 (17)
O80.0356 (16)0.0223 (11)0.0273 (15)0.0009 (11)0.0059 (13)0.0033 (11)
N80.034 (2)0.0219 (14)0.0302 (19)0.0088 (14)0.0024 (16)0.0055 (13)
C80.029 (2)0.0204 (16)0.033 (2)0.0005 (15)0.0017 (19)0.0011 (16)
C90.028 (2)0.0198 (15)0.030 (2)0.0001 (15)0.0002 (18)0.0015 (15)
C100.024 (2)0.0200 (15)0.030 (2)0.0012 (15)0.0026 (18)0.0023 (15)
C110.036 (2)0.0253 (17)0.032 (2)0.0045 (17)0.006 (2)0.0050 (16)
C120.035 (3)0.033 (2)0.051 (3)0.0053 (18)0.006 (2)0.0074 (19)
C130.037 (3)0.049 (3)0.070 (4)0.016 (2)0.004 (3)0.003 (2)
C140.048 (3)0.0245 (18)0.059 (3)0.0145 (19)0.004 (3)0.0006 (19)
C150.064 (3)0.0240 (18)0.067 (3)0.021 (2)0.021 (3)0.008 (2)
C160.084 (4)0.0157 (17)0.082 (4)0.009 (2)0.037 (3)0.013 (2)
C170.071 (4)0.0166 (17)0.074 (4)0.005 (2)0.022 (3)0.002 (2)
C180.052 (3)0.0211 (17)0.034 (2)0.0004 (18)0.002 (2)0.0017 (17)
C190.049 (3)0.0248 (17)0.031 (2)0.0152 (18)0.001 (2)0.0029 (16)
C200.052 (3)0.0226 (17)0.025 (2)0.0087 (18)0.010 (2)0.0013 (16)
C210.040 (3)0.0256 (18)0.045 (3)0.0041 (17)0.014 (2)0.0092 (18)
C220.053 (3)0.0250 (19)0.094 (4)0.015 (2)0.032 (3)0.018 (2)
C230.094 (4)0.026 (2)0.121 (5)0.022 (2)0.064 (4)0.033 (3)
C240.068 (3)0.0241 (19)0.107 (4)0.004 (2)0.054 (3)0.020 (2)
C250.049 (3)0.0283 (19)0.053 (3)0.0069 (19)0.028 (2)0.0058 (19)
C260.042 (3)0.039 (2)0.039 (3)0.007 (2)0.022 (2)0.0012 (19)
C270.038 (3)0.036 (2)0.042 (3)0.0073 (19)0.010 (2)0.0054 (19)
C280.041 (3)0.0246 (17)0.042 (3)0.0020 (17)0.009 (2)0.0038 (18)
C290.041 (3)0.0184 (16)0.046 (3)0.0011 (16)0.019 (2)0.0080 (17)
C300.037 (2)0.0228 (16)0.040 (2)0.0038 (17)0.014 (2)0.0035 (17)
C310.029 (2)0.042 (2)0.038 (3)0.0067 (18)0.003 (2)0.0054 (19)
C320.028 (3)0.073 (3)0.060 (3)0.017 (2)0.006 (3)0.008 (3)
C330.024 (3)0.107 (5)0.150 (7)0.005 (3)0.010 (4)0.050 (5)
C340.026 (3)0.091 (4)0.161 (7)0.012 (3)0.008 (4)0.054 (4)
C350.048 (3)0.053 (2)0.054 (3)0.031 (2)0.011 (3)0.017 (2)
C360.074 (4)0.036 (2)0.044 (3)0.026 (2)0.002 (3)0.008 (2)
C370.072 (3)0.0220 (17)0.033 (2)0.006 (2)0.003 (2)0.0021 (17)
C380.045 (3)0.0262 (18)0.031 (2)0.0022 (18)0.002 (2)0.0000 (17)
C390.037 (3)0.041 (2)0.035 (2)0.0142 (19)0.002 (2)0.0134 (19)
C400.030 (3)0.056 (3)0.039 (3)0.012 (2)0.002 (2)0.015 (2)
C410.025 (2)0.0186 (15)0.029 (2)0.0075 (14)0.0003 (17)0.0010 (15)
C430.035 (2)0.0218 (16)0.029 (2)0.0059 (16)0.0044 (19)0.0009 (16)
C44A0.054 (3)0.034 (2)0.032 (2)0.006 (2)0.002 (2)0.0072 (18)
F43A0.069 (5)0.030 (3)0.054 (4)0.006 (3)0.005 (4)0.007 (3)
F43C0.092 (6)0.079 (5)0.025 (4)0.028 (5)0.009 (4)0.002 (4)
F43B0.058 (5)0.081 (5)0.051 (5)0.019 (4)0.013 (4)0.011 (4)
C44B0.054 (3)0.034 (2)0.032 (2)0.006 (2)0.002 (2)0.0072 (18)
F43F0.099 (9)0.070 (7)0.033 (6)0.051 (7)0.009 (7)0.019 (5)
F43E0.044 (6)0.112 (9)0.039 (6)0.016 (7)0.021 (5)0.003 (7)
F43D0.095 (9)0.068 (7)0.034 (6)0.032 (7)0.008 (6)0.022 (5)
C44C0.054 (3)0.034 (2)0.032 (2)0.006 (2)0.002 (2)0.0072 (18)
F43I0.110 (11)0.052 (6)0.035 (6)0.007 (7)0.000 (7)0.016 (5)
F43H0.055 (7)0.036 (5)0.027 (5)0.007 (5)0.003 (5)0.004 (4)
F43G0.088 (8)0.066 (7)0.037 (6)0.024 (6)0.021 (6)0.024 (5)
O1S0.055 (3)0.088 (3)0.137 (4)0.020 (2)0.030 (3)0.062 (3)
F42A0.0443 (18)0.130 (3)0.0363 (17)0.0133 (19)0.0084 (14)0.0041 (18)
F42C0.071 (2)0.0491 (14)0.0437 (16)0.0208 (14)0.0039 (15)0.0076 (13)
F42B0.158 (3)0.0340 (13)0.0341 (16)0.0388 (17)0.0113 (19)0.0088 (11)
C420.032 (2)0.0202 (16)0.036 (2)0.0011 (16)0.0028 (19)0.0025 (16)
Geometric parameters (Å, º) top
Co1—O22.083 (3)C14—C191.380 (6)
Co1—O12.091 (2)C14—H140.9500
Co1—O42.095 (3)C15—C161.360 (7)
Co1—N12.122 (3)C15—C201.394 (5)
Co1—O52.129 (3)C15—H150.9500
Co1—N22.134 (3)C16—C171.370 (8)
Co1—Co43.0283 (7)C16—H160.9500
O1—Co22.086 (3)C17—C181.386 (5)
O1—Co42.088 (3)C17—H170.9500
O1—H1O0.952 (18)C18—H180.9500
N1—C11.338 (5)C19—C201.484 (6)
N1—C91.353 (5)C21—C221.377 (6)
C1—C21.385 (5)C21—H210.9500
C1—H10.9500C22—C231.362 (7)
Co2—O22.087 (2)C22—H220.9500
Co2—O32.104 (3)C23—C241.379 (7)
Co2—N42.118 (3)C23—H230.9500
Co2—N32.120 (4)C24—C291.407 (5)
Co2—O72.138 (3)C24—H240.9500
Co2—Co33.0034 (7)C25—C261.377 (6)
Co2—Co43.2419 (8)C25—C301.385 (6)
O2—Co32.092 (3)C25—H250.9500
O2—H2O0.967 (19)C26—C271.390 (6)
N2—C81.337 (5)C26—H260.9500
N2—C101.350 (4)C27—C281.376 (6)
C2—C31.383 (6)C27—H270.9500
C2—H20.9500C28—H280.9500
Co3—O32.073 (2)C29—C301.481 (6)
Co3—O42.101 (3)C31—C321.368 (6)
Co3—N52.113 (3)C31—H590.9500
Co3—N62.133 (3)C32—C331.366 (8)
Co3—O82.154 (3)C32—H540.9500
Co3—Co43.1864 (7)C33—C341.373 (9)
O3—Co42.089 (3)C33—H100.9500
O3—H3O0.966 (9)C34—C401.386 (7)
N3—C111.336 (5)C34—H730.9500
N3—C191.354 (5)C35—C361.361 (7)
C3—C41.376 (6)C35—C391.396 (6)
C3—H30.9500C35—H640.9500
Co4—O42.085 (2)C36—C371.370 (7)
Co4—N82.129 (3)C36—H420.9500
Co4—N72.134 (3)C37—C381.388 (5)
Co4—O62.152 (3)C37—H440.9500
O4—H4O0.962 (18)C38—H480.9500
N4—C181.335 (5)C39—C401.490 (6)
N4—C201.340 (6)C41—C421.534 (6)
C4—C91.395 (5)C43—C44A1.537 (6)
C4—H40.9500C44A—F43A1.331 (6)
O5—C411.248 (4)C44A—F43C1.336 (8)
N5—C291.331 (5)C44A—F43B1.353 (7)
N5—C211.344 (5)O1S—H1SA0.977 (16)
C5—C61.372 (6)O1S—H1SB0.988 (16)
C5—C101.392 (6)N1SB—C1SB1.1291
C5—H50.9500C1SB—C2SB1.4491
O6—C411.248 (4)C2SB—H2S40.9800
N6—C281.336 (5)C2SB—H2S50.9800
N6—C301.355 (5)C2SB—H2S60.9800
C6—C71.394 (6)N1SA—C1SA1.1291
C6—H60.9500C1SA—C2SA1.4491
O7—C431.245 (5)C2SA—H2S10.9800
N7—C311.338 (5)C2SA—H2S20.9800
N7—C401.337 (6)C2SA—H2S30.9800
C7—C81.379 (6)N2SB—C3SB1.1290
C7—H70.9500C3SB—C4SB1.4491
O8—C431.244 (5)C4SB—H4S40.9800
N8—C391.342 (6)C4SB—H4S50.9800
N8—C381.346 (5)C4SB—H4S60.9800
C8—H80.9500N2SA—C3SA1.1290
C9—C101.483 (5)C3SA—C4SA1.4491
C11—C121.378 (6)C4SA—H4S10.9800
C11—H110.9500C4SA—H4S20.9800
C12—C131.372 (6)C4SA—H4S30.9800
C12—H120.9500F42A—C421.330 (5)
C13—C141.397 (7)F42C—C421.341 (5)
C13—H130.9500F42B—C421.292 (5)
O2—Co1—O180.29 (9)C41—O6—Co4123.6 (2)
O2—Co1—O478.6 (1)C28—N6—C30117.5 (4)
O1—Co1—O484.42 (9)C28—N6—Co3126.3 (3)
O2—Co1—N1101.6 (1)C30—N6—Co3115.6 (3)
O1—Co1—N1175.91 (11)C5—C6—C7118.5 (4)
O4—Co1—N199.5 (1)C5—C6—H6120.8
O2—Co1—O5166.98 (10)C7—C6—H6120.8
O1—Co1—O589.37 (9)C43—O7—Co2123.6 (3)
O4—Co1—O592.57 (10)C31—N7—C40117.3 (4)
N1—Co1—O589.2 (1)C31—N7—Co4126.2 (3)
O2—Co1—N299.68 (11)C40—N7—Co4116.4 (3)
O1—Co1—N299.49 (10)C8—C7—C6118.7 (4)
O4—Co1—N2175.47 (10)C8—C7—H7120.7
N1—Co1—N276.7 (1)C6—C7—H7120.7
O5—Co1—N289.7 (1)C43—O8—Co3124.7 (3)
O2—Co1—Co487.36 (7)C39—N8—C38118.5 (3)
N1—Co1—Co4139.78 (9)C39—N8—Co4116.6 (3)
O5—Co1—Co479.68 (7)C38—N8—Co4124.8 (3)
N2—Co1—Co4140.94 (7)N2—C8—C7123.1 (3)
Co2—O1—Co4101.9 (1)N2—C8—H8118.4
Co2—O1—Co199.3 (1)C7—C8—H8118.4
Co4—O1—Co192.85 (9)N1—C9—C4120.9 (3)
Co2—O1—H1O125 (2)N1—C9—C10115.5 (3)
Co4—O1—H1O116 (2)C4—C9—C10123.5 (4)
Co1—O1—H1O115 (2)N2—C10—C5121.3 (3)
C1—N1—C9118.8 (3)N2—C10—C9115.2 (3)
C1—N1—Co1125.1 (3)C5—C10—C9123.4 (3)
C9—N1—Co1116.1 (2)N3—C11—C12123.2 (4)
N1—C1—C2123.2 (4)N3—C11—H11118.4
N1—C1—H1118.4C12—C11—H11118.4
C2—C1—H1118.4C13—C12—C11118.7 (4)
O1—Co2—O280.32 (9)C13—C12—H12120.7
O1—Co2—O378.2 (1)C11—C12—H12120.7
O2—Co2—O385.05 (9)C12—C13—C14119.0 (5)
O1—Co2—N498.1 (1)C12—C13—H13120.5
O2—Co2—N4173.35 (12)C14—C13—H13120.5
O3—Co2—N4101.0 (1)C19—C14—C13119.2 (4)
O1—Co2—N3101.9 (1)C19—C14—H14120.4
O2—Co2—N396.84 (11)C13—C14—H14120.4
O3—Co2—N3178.11 (10)C16—C15—C20119.2 (5)
N4—Co2—N377.10 (13)C16—C15—H15120.4
O1—Co2—O7167.81 (10)C20—C15—H15120.4
O2—Co2—O792.98 (10)C15—C16—C17119.4 (4)
O3—Co2—O791.12 (11)C15—C16—H16120.3
N4—Co2—O789.67 (11)C17—C16—H16120.3
N3—Co2—O788.91 (12)C16—C17—C18119.0 (5)
O1—Co2—Co387.33 (7)C16—C17—H17120.5
N4—Co2—Co3142.48 (10)C18—C17—H17120.5
N3—Co2—Co3138.22 (8)N4—C18—C17122.0 (5)
O7—Co2—Co380.82 (7)N4—C18—H18119.0
O2—Co2—Co481.77 (7)C17—C18—H18119.0
N4—Co2—Co4101.14 (10)N3—C19—C14121.5 (4)
N3—Co2—Co4140.87 (9)N3—C19—C20114.9 (4)
O7—Co2—Co4130.19 (8)C14—C19—C20123.6 (4)
Co3—Co2—Co461.21 (2)N4—C20—C15121.6 (4)
Co1—O2—Co299.5 (1)N4—C20—C19115.8 (3)
Co1—O2—Co3101.8 (1)C15—C20—C19122.6 (4)
Co2—O2—Co391.88 (9)N5—C21—C22122.2 (4)
Co1—O2—H2O123.1 (17)N5—C21—H21118.9
Co2—O2—H2O117.1 (15)C22—C21—H21118.9
Co3—O2—H2O117.7 (12)C23—C22—C21119.0 (4)
C8—N2—C10118.4 (3)C23—C22—H22120.5
C8—N2—Co1125.7 (2)C21—C22—H22120.5
C10—N2—Co1115.9 (2)C22—C23—C24119.8 (4)
C3—C2—C1117.8 (4)C22—C23—H23120.1
C3—C2—H2121.1C24—C23—H23120.1
C1—C2—H2121.1C23—C24—C29118.5 (5)
O3—Co3—O285.7 (1)C23—C24—H24120.8
O3—Co3—O480.21 (9)C29—C24—H24120.8
O2—Co3—O478.3 (1)C26—C25—C30120.8 (4)
O3—Co3—N5173.75 (12)C26—C25—H25119.6
O2—Co3—N599.95 (11)C30—C25—H25119.6
O4—Co3—N598.24 (11)C25—C26—C27118.0 (4)
O3—Co3—N697.72 (11)C25—C26—H26121.0
O2—Co3—N6174.46 (12)C27—C26—H26121.0
O4—Co3—N6106.50 (12)C28—C27—C26118.2 (4)
N5—Co3—N676.84 (12)C28—C27—H27120.9
O3—Co3—O891.99 (10)C26—C27—H27120.9
O2—Co3—O890.22 (10)N6—C28—C27124.4 (4)
O4—Co3—O8166.52 (10)N6—C28—H28117.8
N5—Co3—O890.65 (11)C27—C28—H28117.8
N6—Co3—O885.33 (12)N5—C29—C24121.1 (4)
O4—Co3—Co287.38 (7)N5—C29—C30116.5 (3)
N5—Co3—Co2141.76 (10)C24—C29—C30122.4 (4)
N6—Co3—Co2137.73 (8)N6—C30—C25121.1 (4)
O8—Co3—Co279.40 (7)N6—C30—C29114.5 (4)
O2—Co3—Co483.10 (7)C25—C30—C29124.3 (4)
N5—Co3—Co4137.37 (9)N7—C31—C32125.3 (4)
N6—Co3—Co4102.33 (9)N7—C31—H59117.4
O8—Co3—Co4131.98 (7)C32—C31—H59117.4
Co2—Co3—Co463.09 (2)C33—C32—C31116.7 (5)
Co3—O3—Co499.9 (1)C33—C32—H54121.6
Co3—O3—Co292.0 (1)C31—C32—H54121.6
Co4—O3—Co2101.29 (11)C32—C33—C34119.6 (5)
Co3—O3—H3O114.9 (14)C32—C33—H10120.2
Co4—O3—H3O126.3 (14)C34—C33—H10120.2
Co2—O3—H3O116.1 (13)C33—C34—C40120.0 (6)
C11—N3—C19118.4 (4)C33—C34—H73120.0
C11—N3—Co2125.6 (3)C40—C34—H73120.0
C19—N3—Co2115.9 (3)C36—C35—C39118.7 (5)
C4—C3—C2119.8 (3)C36—C35—H64120.7
C4—C3—H3120.1C39—C35—H64120.7
C2—C3—H3120.1C35—C36—C37120.2 (4)
O4—Co4—O184.73 (9)C35—C36—H42119.9
O4—Co4—O380.20 (9)C37—C36—H42119.9
O1—Co4—O378.5 (1)C36—C37—C38118.7 (4)
O4—Co4—N8172.0 (1)C36—C37—H44120.6
O1—Co4—N8103.2 (1)C38—C37—H44120.6
O3—Co4—N8100.4 (1)N8—C38—C37122.0 (4)
O4—Co4—N795.73 (11)N8—C38—H48119.0
O1—Co4—N7177.39 (12)C37—C38—H48119.0
O3—Co4—N799.02 (12)N8—C39—C35121.9 (4)
N8—Co4—N776.29 (13)N8—C39—C40115.0 (4)
O4—Co4—O692.8 (1)C35—C39—C40123.1 (4)
O1—Co4—O689.6 (1)N7—C40—C34120.7 (5)
O3—Co4—O6166.7 (1)N7—C40—C39115.3 (4)
N8—Co4—O688.10 (11)C34—C40—C39123.9 (5)
N7—Co4—O692.92 (12)O6—C41—O5131.1 (4)
O3—Co4—Co187.23 (7)O6—C41—C42115.3 (3)
N8—Co4—Co1144.13 (10)O5—C41—C42113.5 (3)
N7—Co4—Co1137.53 (9)O8—C43—O7131.4 (4)
O6—Co4—Co179.97 (7)O8—C43—C44A113.9 (3)
O1—Co4—Co382.55 (7)O7—C43—C44A114.8 (3)
N8—Co4—Co3138.65 (9)F43A—C44A—F43C106.4 (5)
N7—Co4—Co396.12 (9)F43A—C44A—F43B109.3 (6)
O6—Co4—Co3133.18 (7)F43C—C44A—F43B103.6 (5)
Co1—Co4—Co362.80 (2)F43A—C44A—C43115.9 (4)
O4—Co4—Co281.49 (7)F43C—C44A—C43112.2 (4)
N8—Co4—Co2104.10 (9)F43B—C44A—C43108.7 (5)
N7—Co4—Co2138.48 (10)H1SA—O1S—H1SB108 (2)
O6—Co4—Co2128.53 (7)N1SB—C1SB—C2SB178.9
Co1—Co4—Co260.90 (2)N1SA—C1SA—C2SA178.8
Co3—Co4—Co255.79 (2)N2SB—C3SB—C4SB178.85 (14)
Co4—O4—Co192.85 (9)C3SB—C4SB—H4S4109.5
Co4—O4—Co399.1 (1)C3SB—C4SB—H4S5109.5
Co1—O4—Co3101.2 (1)H4S4—C4SB—H4S5109.5
Co4—O4—H4O121 (2)C3SB—C4SB—H4S6109.5
Co1—O4—H4O105 (2)H4S4—C4SB—H4S6109.5
Co3—O4—H4O130 (2)H4S5—C4SB—H4S6109.5
C18—N4—C20118.7 (3)N2SA—C3SA—C4SA178.8
C18—N4—Co2125.3 (3)C3SA—C4SA—H4S1109.5
C20—N4—Co2115.8 (3)C3SA—C4SA—H4S2109.5
C3—C4—C9119.3 (4)H4S1—C4SA—H4S2109.5
C3—C4—H4120.3C3SA—C4SA—H4S3109.5
C9—C4—H4120.3H4S1—C4SA—H4S3109.5
C41—O5—Co1125.1 (2)H4S2—C4SA—H4S3109.5
C29—N5—C21119.3 (3)F42B—C42—F42A108.4 (4)
C29—N5—Co3116.2 (2)F42B—C42—F42C105.7 (4)
C21—N5—Co3124.4 (3)F42A—C42—F42C103.2 (3)
C6—C5—C10120.0 (4)F42B—C42—C41115.0 (3)
C6—C5—H5120.0F42A—C42—C41113.4 (3)
C10—C5—H5120.0F42C—C42—C41110.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···I1A0.95 (2)2.78 (2)3.672 (2)157 (3)
O2—H2O···I20.97 (1)2.67 (1)3.641 (2)176 (2)
O3—H3O···N1SA0.97 (1)2.04 (1)2.944 (7)155 (2)
O4—H4O···O1S0.96 (2)2.08 (2)2.954 (5)150 (3)
O1S—H1SB···I1Ai0.99 (2)2.49 (3)3.471 (4)171 (3)
O1S—H1SA···N2SA0.98 (2)1.86 (2)2.79 (1)159 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds