Download citation
Download citation
link to html
The crystal structure of the title compound, C16H13NO3S, is stabilized by weak C—H...O and C—H...N interactions. The crystal structure has three pairs of bifurcated donor hydrogen bonds and two pairs of bifurcated acceptor hydrogen bonds. Both the O atoms of the sulfonyl group form a fork-like intermolecular hydrogen-bonding motif with the CH groups of the quinoline ring. The sulfonyl O atoms also form a three-center symmetrical hydrogen-bonded chelate motif with the H atom of the neighboring quinoline ring. One of the sulfonyl O atoms and the O atom of the quinoline moiety form weak C—H...O bonds with the H atoms of the neighboring 4-tolyl ring to generate another ring motif. The quinoline N atom forms an almost linear C—H...N bond with the H atom of the neighboring 4-tolyl ring. The supramolecular aggregation is completed by several other C—H...O and C—H...N interactions. The dihedral angle between the mean planes of the 4-tolyl and the quinoline rings is 47.53 (6)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009656/fl6034sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009656/fl6034Isup2.hkl
Contains datablock I

CCDC reference: 214817

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.128
  • Data-to-parameter ratio = 12.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.00 From the CIF: _reflns_number_total 3053 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3316 Completeness (_total/calc) 92.07% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

p-Toluenesulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of σ sub-units of the E. coli RNA polymerase (Narayanan & Krakow, 1983). Derivatives of 8-hydroxyquinoline are known for their anti-amoebic, antibacterial and antifungal activities (Balasubramanian & Muthiah, 1996). The present crystal structure determination may serve as a forerunner for assessing the biological activity of the title compound, (I). The crystal structure of (I) has already been reported at 298 K (Lee et al., 2001), where there were no significant intermolecular interactions. In order to validate the above statement, the present investigation was undertaken at 100 K. A search of the July 2002 release of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (with the following refcodes: KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound. The S—C, S—O and SO bond lengths (Table 1) are comparable to those found in these structures. The bond lengths and angles within the quinoline moiety are comparable to those values observed in 8-hydroxyquinoline (Banerjee & Saha, 1986). The dihedral angle between the mean planes of the quinoline and the 4-tolyl rings is 47.53 (6)°, thereby confirming their non-coplanar orientation. This is similar to the non-coplanar orientation of the 2-chlorophenyl and 4-tolyl rings in 2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b) and in contrast to the near coplanar orientation of the 4-tolyl and 2,4-dinitrophenyl rings in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu et al., 2003a).

The crystal structure of (I) is stabilized by weak C—H···O and C—H···N interactions. The range of H···O distances (Table 2) found in (I) agrees with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The existence of bifurcated hydrogen bonds in the crystal structures of molecular complexes and derivatives of 8-hydroxyquinoline has been pointed out (Prout & Wheeler, 1967; Castellano & Prout, 1971; Polyakova et al., 1980). The present crystal structure has five pairs of bifurcated hydrogen bonds consisting of three pairs of donor and two pairs of acceptor bonds. The C16—-H16···O2/C15–H15···O2 and C10—H10···O1/C11—H11···O1 interactions constitute two pairs of bifurcated acceptor bonds. There are two types of bifurcated donor bonds. The C1—H1B···O3/C1—H1B···O1 and C15—H15···O1/C15—H15···O2 constitute two pairs of bifurcated homo bonds. The C16—H16···O2/C16—H16···N interactions form a pair of bifurcated hetero bonds. Atoms O1 and O2 of the sulfonyl group act as acceptors to form a fork-like (Vembu et al., 2003a) intermolecular weak hydrogen bonds (Fig. 2), with atoms H15 and H16, respectively, with the graph-set motif R22(7) (Etter, 1990; Bernstein et al., 1995). Atoms O1 and O2 of the sulfonyl group act as acceptors, forming weak hydrogen bonds with H15 of the neighbouring quinoline moiety (Fig. 2). The H15···O1 and H15···O2 distances differ by only 0.10 Å. The resulting configuration is best regarded as a three-center symmetrical hydrogen-bonded chelate (Desiraju, 1989) with the graph-set motif R21(4) and is also observed in 2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b). The C15—-H15···O2 and C16–H16···O2 interactions (Fig. 2) together form a ring with the graph-set motif R12(5). The R21(4) chelate motif and the R12(5) motif are present within the R22(7) fork motif (Fig. 2). The quinoline N atom forms a weak C—H···N interaction with H16. The C16—H16···O2 and C16—H16···N interactions together form a ring (Fig. 2) with the graph-set motif R21(7). A pair of fork-like C16—H16···N interactions generate a six-membered ring with the graph-set motif R22(6), which links two R22(7) fork motifs and two R21(7) ring motifs together (Fig. 2) to generate a supramolecular network. Atoms O1, H15, O2, H16 and N form a hydrogen-bonded chain with the graph-set motif C32(5). Two such symmetry-related chains are linked through a R22(6) ring motif. Sulfonyl atom O1 acts as an acceptor to form weak C—H···O bonds with H10 and H11 of the neighbouring quinoline moiety, generating a ring of the graph-set motif R12(5) (Fig. 3). Atoms O3 and O1 act as acceptors to form weak hydrogen bonds with H1B of the neighbouring 4-tolyl ring generating a ring motif with the graph-set notation R21(4) (Fig. 3). The quinoline N atom forms an almost linear C—H···N bond with H7 of the neighbouring 4-tolyl ring (Fig. 3). The C7—H7···N and C1—H1B···O3 interactions together generate a ring (Fig. 3) of graph-set motif R22(9). Sulfonyl atom O2 acts as an acceptor to form a weak hydrogen bond with C6 of the neighbouring 4-tolyl ring (Table 2). The view of the title molecule in the unit cell along the c axis shows that the molecules are arranged in parallel layers (Fig. 4).

Experimental top

4-Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 8-hydroxyquinoline (4 mmol) in aqueous NaOH (2.5 ml, 10%) with vigorous shaking. The precipitated 8-tosyloxyquinoline (1.8 mmol, yield: 45%) was filtered off and recrystallized from ethyl acetate.

Refinement top

All the H atoms were located in a difference Fourier map and their positional coordinates and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.91 (3)–0.98 (2) Å and the H—C—H angles for the methyl group are in the range 104 (3)–110 (3)°.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing ellipsoids at the 50% probablity level.
[Figure 2] Fig. 2. Diagram showing hydrogen bonds 1–4 in the title molecule.
[Figure 3] Fig. 3. Diagram showing hydrogen bonds 5–7,9 and 10 in the title molecule.
[Figure 4] Fig. 4. View of the molecule in the unit cell along the c axis.
8-Quinolyl 4-toluenesulfonate top
Crystal data top
C16H13NO3SF(000) = 312
Mr = 299.33Dx = 1.454 Mg m3
Triclinic, P1Melting point = 110–112 K
a = 8.984 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.248 (3) ÅCell parameters from 4490 reflections
c = 9.330 (3) Åθ = 2.4–28.3°
α = 66.957 (4)°µ = 0.25 mm1
β = 79.762 (5)°T = 100 K
γ = 73.983 (5)°Block, colorless
V = 683.5 (4) Å30.45 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker Apex CCD area-detector
diffractometer
3053 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.897, Tmax = 0.952k = 1112
5712 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.062P)2 + 0.4098P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H13NO3Sγ = 73.983 (5)°
Mr = 299.33V = 683.5 (4) Å3
Triclinic, P1Z = 2
a = 8.984 (3) ÅMo Kα radiation
b = 9.248 (3) ŵ = 0.25 mm1
c = 9.330 (3) ÅT = 100 K
α = 66.957 (4)°0.45 × 0.30 × 0.20 mm
β = 79.762 (5)°
Data collection top
Bruker Apex CCD area-detector
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2776 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.952Rint = 0.033
5712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.10Δρmax = 0.65 e Å3
3053 reflectionsΔρmin = 0.40 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.19202 (5)0.51251 (5)1.20823 (5)0.01467 (15)
O10.22924 (18)0.53156 (16)1.34080 (16)0.0229 (3)
O20.03792 (16)0.57218 (16)1.15968 (17)0.0212 (3)
O30.30758 (15)0.60042 (15)1.06941 (15)0.0157 (3)
N0.17821 (18)0.91830 (19)0.90716 (18)0.0161 (3)
C10.4520 (3)0.1664 (3)1.2196 (3)0.0275 (5)
C20.3801 (2)0.0020 (2)1.2269 (2)0.0178 (4)
C30.4551 (2)0.0655 (2)1.2949 (2)0.0172 (4)
C40.3954 (2)0.2206 (2)1.2948 (2)0.0157 (4)
C50.2579 (2)0.3098 (2)1.2244 (2)0.0137 (4)
C60.1776 (2)0.2443 (2)1.1599 (2)0.0170 (4)
C70.2392 (2)0.0875 (2)1.1632 (2)0.0176 (4)
C80.2744 (2)0.6455 (2)0.9136 (2)0.0147 (4)
C90.3122 (2)0.5339 (2)0.8431 (2)0.0175 (4)
C100.2841 (2)0.5818 (2)0.6855 (2)0.0192 (4)
C110.2245 (2)0.7408 (2)0.6005 (2)0.0177 (4)
C120.1898 (2)0.8586 (2)0.6710 (2)0.0147 (4)
C130.2114 (2)0.8118 (2)0.8313 (2)0.0132 (4)
C140.1350 (2)1.0258 (2)0.5867 (2)0.0165 (4)
C150.1032 (2)1.1319 (2)0.6625 (2)0.0187 (4)
C160.1255 (2)1.0723 (2)0.8229 (2)0.0185 (4)
H1A0.468 (4)0.240 (4)1.319 (4)0.061 (10)*
H1B0.393 (5)0.204 (5)1.173 (5)0.082 (13)*
H1C0.548 (5)0.166 (5)1.156 (5)0.088 (13)*
H30.546 (3)0.003 (3)1.344 (3)0.020 (6)*
H40.449 (3)0.262 (3)1.344 (3)0.016 (5)*
H60.082 (3)0.311 (3)1.112 (3)0.019 (6)*
H70.188 (3)0.045 (3)1.116 (2)0.014 (5)*
H90.354 (3)0.429 (3)0.903 (3)0.029 (7)*
H100.303 (3)0.501 (3)0.638 (3)0.019 (6)*
H110.206 (3)0.772 (3)0.494 (3)0.016 (5)*
H140.123 (3)1.056 (3)0.483 (3)0.026 (6)*
H150.070 (3)1.246 (3)0.611 (3)0.027 (6)*
H160.102 (3)1.149 (3)0.873 (3)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0144 (2)0.0094 (2)0.0171 (2)0.00045 (16)0.00102 (16)0.00367 (17)
O10.0309 (8)0.0152 (7)0.0213 (7)0.0012 (6)0.0017 (6)0.0080 (6)
O20.0137 (7)0.0153 (7)0.0280 (7)0.0020 (5)0.0011 (5)0.0048 (6)
O30.0148 (6)0.0115 (6)0.0185 (7)0.0022 (5)0.0036 (5)0.0025 (5)
N0.0138 (8)0.0132 (7)0.0180 (7)0.0004 (6)0.0012 (6)0.0045 (6)
C10.0281 (12)0.0159 (10)0.0373 (13)0.0040 (8)0.0055 (10)0.0125 (9)
C20.0182 (9)0.0126 (8)0.0194 (9)0.0041 (7)0.0047 (7)0.0048 (7)
C30.0105 (8)0.0135 (9)0.0232 (9)0.0005 (7)0.0012 (7)0.0037 (7)
C40.0129 (9)0.0139 (9)0.0191 (9)0.0039 (7)0.0014 (7)0.0040 (7)
C50.0130 (8)0.0086 (8)0.0157 (8)0.0008 (6)0.0007 (7)0.0017 (7)
C60.0153 (9)0.0160 (9)0.0164 (8)0.0041 (7)0.0019 (7)0.0019 (7)
C70.0198 (10)0.0182 (9)0.0167 (9)0.0082 (7)0.0003 (7)0.0061 (7)
C80.0098 (8)0.0134 (9)0.0176 (9)0.0016 (6)0.0011 (7)0.0027 (7)
C90.0152 (9)0.0113 (9)0.0228 (9)0.0018 (7)0.0005 (7)0.0042 (7)
C100.0175 (9)0.0174 (9)0.0238 (10)0.0031 (7)0.0008 (7)0.0101 (8)
C110.0150 (9)0.0196 (9)0.0176 (9)0.0035 (7)0.0008 (7)0.0063 (7)
C120.0080 (8)0.0136 (9)0.0198 (9)0.0016 (6)0.0000 (7)0.0044 (7)
C130.0082 (8)0.0116 (8)0.0174 (8)0.0016 (6)0.0000 (6)0.0038 (7)
C140.0106 (8)0.0173 (9)0.0163 (9)0.0013 (7)0.0023 (7)0.0012 (7)
C150.0132 (9)0.0129 (9)0.0236 (10)0.0015 (7)0.0023 (7)0.0025 (7)
C160.0164 (9)0.0132 (9)0.0229 (10)0.0011 (7)0.0007 (7)0.0067 (7)
Geometric parameters (Å, º) top
S—O11.4224 (15)C6—C71.392 (3)
S—O21.4255 (15)C6—H60.98 (2)
S—O31.6062 (14)C7—H70.93 (2)
S—C51.7564 (19)C8—C91.368 (3)
O3—C81.410 (2)C8—C131.423 (2)
N—C161.324 (2)C9—C101.408 (3)
N—C131.367 (2)C9—H90.91 (3)
C1—C21.502 (3)C10—C111.371 (3)
C1—H1A0.92 (4)C10—H100.98 (2)
C1—H1B0.95 (4)C11—C121.420 (3)
C1—H1C0.95 (4)C11—H110.95 (2)
C2—C31.393 (3)C12—C131.418 (3)
C2—C71.395 (3)C12—C141.420 (3)
C3—C41.385 (3)C14—C151.365 (3)
C3—H30.94 (2)C14—H140.91 (3)
C4—C51.393 (2)C15—C161.408 (3)
C4—H40.95 (2)C15—H150.95 (2)
C5—C61.389 (3)C16—H160.95 (2)
O1—S—O2120.79 (9)C6—C7—H7118.8 (14)
O1—S—O3103.43 (8)C2—C7—H7120.0 (14)
O2—S—O3108.94 (8)C9—C8—O3120.38 (16)
O1—S—C5109.85 (8)C9—C8—C13122.10 (17)
O2—S—C5109.50 (9)O3—C8—C13117.36 (16)
O3—S—C5102.67 (8)C8—C9—C10119.83 (17)
C8—O3—S118.81 (11)C8—C9—H9117.4 (16)
C16—N—C13116.74 (16)C10—C9—H9122.7 (16)
C2—C1—H1A109 (2)C11—C10—C9120.36 (18)
C2—C1—H1B115 (2)C11—C10—H10119.8 (13)
H1A—C1—H1B108 (3)C9—C10—H10119.8 (13)
C2—C1—H1C111 (3)C10—C11—C12120.28 (18)
H1A—C1—H1C110 (3)C10—C11—H11119.7 (14)
H1B—C1—H1C104 (3)C12—C11—H11120.0 (14)
C3—C2—C7118.61 (17)C13—C12—C14117.15 (17)
C3—C2—C1120.40 (19)C13—C12—C11120.18 (16)
C7—C2—C1120.98 (19)C14—C12—C11122.66 (18)
C4—C3—C2121.35 (17)N—C13—C12123.30 (16)
C4—C3—H3119.7 (14)N—C13—C8119.52 (17)
C2—C3—H3118.9 (14)C12—C13—C8117.16 (16)
C3—C4—C5118.78 (17)C15—C14—C12119.38 (18)
C3—C4—H4119.2 (13)C15—C14—H14123.3 (16)
C5—C4—H4122.0 (13)C12—C14—H14117.3 (16)
C6—C5—C4121.32 (17)C14—C15—C16118.89 (18)
C6—C5—S119.90 (14)C14—C15—H15122.7 (15)
C4—C5—S118.69 (14)C16—C15—H15118.4 (15)
C5—C6—C7118.74 (17)N—C16—C15124.50 (18)
C5—C6—H6118.6 (14)N—C16—H16118.5 (14)
C7—C6—H6122.7 (14)C15—C16—H16117.0 (14)
C6—C7—C2121.12 (18)
O1—S—O3—C8162.13 (12)O3—C8—C9—C10177.43 (16)
O2—S—O3—C832.46 (14)C13—C8—C9—C102.1 (3)
C5—S—O3—C883.57 (13)C8—C9—C10—C112.4 (3)
C7—C2—C3—C42.4 (3)C9—C10—C11—C120.3 (3)
C1—C2—C3—C4176.22 (18)C10—C11—C12—C132.2 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—C14176.88 (18)
C3—C4—C5—C62.4 (3)C16—N—C13—C121.0 (3)
C3—C4—C5—S174.13 (14)C16—N—C13—C8177.48 (17)
O1—S—C5—C6148.75 (15)C14—C12—C13—N1.9 (3)
O2—S—C5—C613.91 (18)C11—C12—C13—N178.96 (16)
O3—S—C5—C6101.72 (16)C14—C12—C13—C8176.64 (16)
O1—S—C5—C434.68 (17)C11—C12—C13—C82.5 (3)
O2—S—C5—C4169.52 (14)C9—C8—C13—N178.93 (16)
O3—S—C5—C474.85 (16)O3—C8—C13—N3.5 (2)
C4—C5—C6—C71.6 (3)C9—C8—C13—C120.4 (3)
S—C5—C6—C7174.84 (14)O3—C8—C13—C12175.08 (14)
C5—C6—C7—C21.2 (3)C13—C12—C14—C151.3 (3)
C3—C2—C7—C63.2 (3)C11—C12—C14—C15179.60 (17)
C1—C2—C7—C6175.45 (18)C12—C14—C15—C160.1 (3)
S—O3—C8—C980.47 (19)C13—N—C16—C150.5 (3)
S—O3—C8—C13104.00 (16)C14—C15—C16—N1.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Ni0.95 (2)3.00 (2)3.376 (3)105.4 (16)
C16—H16···O2i0.95 (2)2.46 (2)3.266 (3)142.2 (19)
C15—H15···O2i0.95 (2)3.09 (2)3.569 (3)112.6 (17)
C15—H15···O1i0.95 (2)2.99 (3)3.665 (2)129.4 (18)
C11—H11···O1ii0.95 (2)3.03 (2)3.634 (2)123.1 (16)
C10—H10···O1ii0.98 (2)2.85 (2)3.558 (3)130.1 (17)
C9—H9···O3iii0.91 (3)3.03 (3)3.426 (3)108.4 (18)
C7—H7···Niv0.93 (2)2.66 (2)3.510 (3)151.6 (18)
C6—H6···O2v0.98 (2)2.63 (2)3.435 (2)139.8 (18)
C1—H1B···Niv0.95 (4)3.07 (4)3.855 (3)141 (3)
C1—H1B···O3iv0.95 (4)2.68 (4)3.586 (3)160 (3)
C1—H1B···O1iv0.95 (4)2.96 (4)3.591 (3)125 (3)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x, y1, z; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H13NO3S
Mr299.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.984 (3), 9.248 (3), 9.330 (3)
α, β, γ (°)66.957 (4), 79.762 (5), 73.983 (5)
V3)683.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerBruker Apex CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.897, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
5712, 3053, 2776
Rint0.033
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.10
No. of reflections3053
No. of parameters242
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.65, 0.40

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S—O11.4224 (15)O3—C81.410 (2)
S—O21.4255 (15)N—C161.324 (2)
S—O31.6062 (14)N—C131.367 (2)
S—C51.7564 (19)C1—C21.502 (3)
O1—S—O2120.79 (9)O2—S—C5109.50 (9)
O1—S—O3103.43 (8)O3—S—C5102.67 (8)
O2—S—O3108.94 (8)C8—O3—S118.81 (11)
O1—S—C5109.85 (8)C16—N—C13116.74 (16)
C5—S—O3—C883.57 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···Ni0.95 (2)3.00 (2)3.376 (3)105.4 (16)
C16—H16···O2i0.95 (2)2.46 (2)3.266 (3)142.2 (19)
C15—H15···O2i0.95 (2)3.09 (2)3.569 (3)112.6 (17)
C15—H15···O1i0.95 (2)2.99 (3)3.665 (2)129.4 (18)
C11—H11···O1ii0.95 (2)3.03 (2)3.634 (2)123.1 (16)
C10—H10···O1ii0.98 (2)2.85 (2)3.558 (3)130.1 (17)
C7—H7···Niii0.93 (2)2.66 (2)3.510 (3)151.6 (18)
C6—H6···O2iv0.98 (2)2.63 (2)3.435 (2)139.8 (18)
C1—H1B···O3iii0.95 (4)2.68 (4)3.586 (3)160 (3)
C1—H1B···O1iii0.95 (4)2.96 (4)3.591 (3)125 (3)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y, z1; (iii) x, y1, z; (iv) x, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds