Download citation
Download citation
link to html
Polymeric di­chloro(N,N-di­methyl­ethyl­enedi­amine)­cad­mium­(II), [CdCl2(C4H12N2)]n, has been synthesized and characterized by single-crystal X-ray diffraction. The two-dimensional polymeric sheet structure involves 12-membered zigzag rings formed by chloro bridges.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803003556/fl6015sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803003556/fl6015Isup2.hkl
Contains datablock I

CCDC reference: 206743

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.046
  • wR factor = 0.124
  • Data-to-parameter ratio = 18.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N(1) - H(1D) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Dichloro(N,N-dimethylethylenediamine}cadmium(II) top
Crystal data top
[CdCl2(C4H12N2)]F(000) = 528
Mr = 271.46Dx = 2.130 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.455 (9) ÅCell parameters from 3239 reflections
b = 6.731 (6) Åθ = 2.2–25.0°
c = 13.399 (12) ŵ = 3.13 mm1
β = 97.002 (15)°T = 293 K
V = 846.3 (13) Å3Monoclinic, colourless
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
1484 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.508, Tmax = 0.651k = 87
3239 measured reflectionsl = 815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.5378P]
where P = (Fo2 + 2Fc2)/3
1484 reflections(Δ/σ)max = 0.013
82 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.93294 (6)0.07603 (8)0.62548 (4)0.0269 (2)
Cl10.9536 (2)0.2684 (3)0.70198 (14)0.0370 (5)
Cl21.1711 (2)0.0968 (3)0.55439 (14)0.0356 (5)
N10.8510 (8)0.3639 (10)0.5469 (5)0.0349 (16)
H1C0.89300.46910.57980.042*
H1D0.87360.36540.48360.042*
N20.6973 (7)0.1154 (10)0.6753 (5)0.0343 (16)
C10.6991 (12)0.3781 (17)0.5452 (8)0.060 (3)
H1A0.65250.29080.49370.072*
H1B0.66840.51310.52920.072*
C20.6580 (11)0.3205 (16)0.6456 (8)0.057 (3)
H2A0.70360.41080.69600.069*
H2B0.55580.33580.64420.069*
C30.6971 (12)0.1039 (17)0.7839 (7)0.059 (3)
H3A0.60160.12020.79990.088*
H3B0.75650.20710.81570.088*
H3C0.73310.02320.80750.088*
C40.6044 (10)0.0331 (17)0.6292 (7)0.059 (3)
H4A0.51120.01620.64950.088*
H4B0.64050.16210.64950.088*
H4C0.59880.02130.55740.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0388 (4)0.0245 (4)0.0191 (3)0.0023 (3)0.0107 (2)0.0019 (2)
Cl10.0607 (13)0.0220 (10)0.0262 (10)0.0006 (10)0.0024 (9)0.0042 (8)
Cl20.0381 (11)0.0467 (13)0.0241 (9)0.0059 (10)0.0120 (8)0.0067 (9)
N10.058 (5)0.023 (4)0.025 (3)0.002 (3)0.010 (3)0.004 (3)
N20.034 (4)0.039 (4)0.032 (4)0.001 (3)0.012 (3)0.003 (3)
C10.066 (7)0.060 (7)0.054 (6)0.023 (6)0.011 (5)0.020 (5)
C20.057 (6)0.060 (7)0.058 (6)0.025 (5)0.021 (5)0.005 (5)
C30.063 (6)0.083 (8)0.035 (5)0.005 (6)0.026 (5)0.011 (5)
C40.046 (6)0.082 (8)0.050 (6)0.019 (6)0.016 (5)0.016 (6)
Geometric parameters (Å, º) top
Cd1—N12.294 (7)C1—C21.496 (14)
Cd1—N22.417 (7)C1—H1A0.9700
Cd1—Cl12.533 (3)C1—H1B0.9700
Cd1—Cl22.553 (3)C2—H2A0.9700
Cd1—Cl1i2.643 (3)C2—H2B0.9700
Cd1—Cl2ii2.748 (3)C3—H3A0.9600
N1—C11.436 (12)C3—H3B0.9600
N1—H1C0.9000C3—H3C0.9600
N1—H1D0.9000C4—H4A0.9600
N2—C41.421 (11)C4—H4B0.9600
N2—C21.472 (12)C4—H4C0.9600
N2—C31.457 (11)
N1—Cd1—N276.3 (2)C2—N2—Cd1103.8 (5)
N1—Cd1—Cl1164.5 (2)C3—N2—Cd1112.6 (6)
N2—Cd1—Cl190.96 (17)N1—C1—C2109.7 (8)
N1—Cd1—Cl292.67 (19)N1—C1—H1A109.7
N2—Cd1—Cl2168.96 (17)C2—C1—H1A109.7
Cl1—Cd1—Cl299.96 (7)N1—C1—H1B109.7
N1—Cd1—Cl1i98.33 (19)C2—C1—H1B109.7
N2—Cd1—Cl1i90.24 (18)H1A—C1—H1B108.2
Cl1—Cd1—Cl1i90.32 (6)N2—C2—C1113.7 (8)
Cl2—Cd1—Cl1i91.28 (8)N2—C2—H2A108.8
N1—Cd1—Cl2ii83.71 (19)C1—C2—H2A108.8
N2—Cd1—Cl2ii92.61 (17)N2—C2—H2B108.8
Cl1—Cd1—Cl2ii88.24 (8)C1—C2—H2B108.8
Cl2—Cd1—Cl2ii86.20 (8)H2A—C2—H2B107.7
Cl1i—Cd1—Cl2ii176.83 (7)N2—C3—H3A109.5
Cd1—Cl1—Cd1iii136.03 (9)N2—C3—H3B109.5
Cd1—Cl2—Cd1ii93.80 (8)H3A—C3—H3B109.5
C1—N1—Cd1110.2 (6)N2—C3—H3C109.5
C1—N1—H1C109.6H3A—C3—H3C109.5
Cd1—N1—H1C109.6H3B—C3—H3C109.5
C1—N1—H1D109.6N2—C4—H4A109.5
Cd1—N1—H1D109.6N2—C4—H4B109.5
H1C—N1—H1D108.1H4A—C4—H4B109.5
C4—N2—C2114.8 (8)N2—C4—H4C109.5
C4—N2—C3108.7 (8)H4A—C4—H4C109.5
C2—N2—C3106.8 (8)H4B—C4—H4C109.5
C4—N2—Cd1110.1 (5)
N1—Cd1—Cl1—Cd1iii130.6 (6)Cl1i—Cd1—N2—C4151.0 (6)
N2—Cd1—Cl1—Cd1iii96.5 (2)Cl2ii—Cd1—N2—C427.6 (6)
Cl2—Cd1—Cl1—Cd1iii85.06 (14)N1—Cd1—N2—C212.9 (6)
Cl1i—Cd1—Cl1—Cd1iii6.29 (7)Cl1—Cd1—N2—C2176.0 (6)
Cl2ii—Cd1—Cl1—Cd1iii170.89 (13)Cl2—Cd1—N2—C212.3 (12)
N1—Cd1—Cl2—Cd1ii83.51 (19)Cl1i—Cd1—N2—C285.7 (6)
N2—Cd1—Cl2—Cd1ii84.1 (9)Cl2ii—Cd1—N2—C295.7 (6)
Cl1—Cd1—Cl2—Cd1ii87.54 (9)N1—Cd1—N2—C3128.0 (7)
Cl1i—Cd1—Cl2—Cd1ii178.08 (7)Cl1—Cd1—N2—C360.8 (6)
Cl2ii—Cd1—Cl2—Cd1ii0.0Cl2—Cd1—N2—C3127.4 (8)
N2—Cd1—N1—C116.5 (6)Cl1i—Cd1—N2—C329.5 (6)
Cl1—Cd1—N1—C118.7 (11)Cl2ii—Cd1—N2—C3149.1 (6)
Cl2—Cd1—N1—C1163.6 (6)Cd1—N1—C1—C243.9 (10)
Cl1i—Cd1—N1—C1104.7 (6)C4—N2—C2—C178.7 (11)
Cl2ii—Cd1—N1—C177.7 (6)C3—N2—C2—C1160.7 (9)
N1—Cd1—N2—C4110.5 (6)Cd1—N2—C2—C141.6 (10)
Cl1—Cd1—N2—C460.6 (6)N1—C1—C2—N260.8 (12)
Cl2—Cd1—N2—C4111.1 (10)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y, z+1; (iii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1iv0.902.433.300 (8)163
Symmetry code: (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds