Download citation
Download citation
link to html
The title compound, (C10H17N5)[ZnCl4], was crystallized from an aqueous solution (pH 2) containing a 1:1 molar ratio of ZnCl2 and 1-phenethyl­biguanide hydro­chloride. The geom­etry of the tetra­chloro­zincate(II) anion is a slightly distorted tetrahedron. The N-phenethyl­biguanidium divalent cation is diprotonated at the two imino groups, resulting in an intramolecular N—H...N hydrogen bond, which stabilizes the conformation of the cation in the structure. The dihedral angle between the two guanidine groups is 48.7 (2)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001557/fl6012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001557/fl6012Isup2.hkl
Contains datablock I

CCDC reference: 204666

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.031
  • wR factor = 0.063
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_352 Alert C Short N-H Bond (0.87A) N(1) - H(15) = 0.76 Ang. PLAT_352 Alert C Short N-H Bond (0.87A) N(2) - H(14) = 0.74 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _reflns_number_total 3197 Count of symmetry unique reflns 1908 Completeness (_total/calc) 167.56% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1289 Fraction of Friedel pairs measured 0.676 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Phenformin (1-phenethylbiguanide hydrochloride) is a synthetic oral hypoglycemic agent used to control maturity-onset diabetes. Pharmacologically, phenformin acts to enhance anaerobic glycolysis, decrease gluconeogenesis, and inhibit intestinal absorption of glucose. Because studies have shown that phenformin has two negative side effects, lactic acidosis and shorter lifespans for patients taking phenformin, its use has decreased significantly (University Group Diabetes Program Research Group, 1975). In some countries, such as the US and most European countries, phenformin has been entirely withdrawn from the market. Most people now use metformin (1,1-dimethylbiguanide hydrochloride) when a biguanide is to be used. However, phenformin itself is still available in developing countries (Kwong & Brubacher, 1998; Haupt & Panten, 1997). Zinc also has many biological functions. It is considered to be an essential nutrient that is required for optimal growth and normal development of vertebrate organisms, as well as being important for maintaining the structure of many proteins. From previous research results, it has been known for many years that zinc mimics the actions of insulin on cells, including promotion of both lipogenesis and glucose transport. Zinc deficiency may indeed affect the optimal functioning of the insulin-signaling pathwway (Tang, 2001; Lynch, 2001; Coulston & Dandona, 1980; May & Contoreggi, 1982).

Our current research is aimed at preparing the zinc(II) complex of N-phenethylbiguanide similar to another biguanide complex (Zhu et al., 2002) in order to analyse the role of metal ions on antidiabetes agents because the monoprotonated, neutral and deprotonated molecules of the biguanides can function as mono- and bidentate ligands to form complexes with ZnII, CuII and NiII (Zhu et al., 2002, 2002a,b). However, in this case, the N-phenethylbiguanidium did not act as a mono- or bidentate ligand to form the desired complex. Instead, the reaction produced a diprotonated divalent cation that formed a salt by cocrystalizing, at low pH, with a ZnCl42− anion. Interestingly, we note that this is the first diprotonated N-phenethylbiguanidium to be studied in the solid state. The structures of two polymorphs of the chloride salt of the monoprotonatd form have been reported (Herrnstadt et al., 1979; Soriano-Lesh et al., 1998). In these monprotonated salts, there are two independent N-phenethylbiguanidinium cations in the asymmetric unit that form hydrogen-bonded dimers.

Selected geometric parameters are listed in Table 1, and a perspective view of the structure is shown in Fig. 1. In the title complex, (I), the site of diprotonation (at the two imino groups) and the conformation of the cation are different from monoprotonated (at the terminal imino group) biguanide derivatives, such as (C4H12N5)[ZnCl3] (Zhu et al., 2002), (C6H14N5O)[ZnCl3] (Yang & Zhu, 1991, 1992), C10H16N5+·Cl (Herrnstadt et al., 1979; Soriano-Lesh et al., 1998), (C4H12N5)[TlBr4] (He et al., 2002), C4H12N5+·Cl (Hariharan et al., 1989). All the C—N bond distances in (I) are shorter than single bonds and longer than double bonds, indicating a delocalization of π-electron density across the biguanide group. In addition, the molecules in the crystal are held together by a number of intermolecular N—H···Cl interactions (Desiraju, 1991). A weak N—H···N intramolecular hydrogen bond stabilizes the cation conformation (Fig. 1). Hydrogen-bond parameters are listed in Table 2, and a packing diagram is shown in Fig. 2.

In the structure of (I), atom N3 is a bridging N atom linking the two guanidine groups of the cation. The C9—N3—C10 angle [127.2 (3)°] is larger than found in the other biguanide derivatives listed in Table 3. As a result of protonation, there is a notable difference in the planar angle between the two guanidine groups in mono- and diprotonated residues. Namely, the dihedral angle in compound (I) is smaller than those in the monoprotonated biguanides and obviously larger than that of bidentate chelated forms. The central angle of the C–N–C chain in (I) is the largest of all the biguanidines listed in Table 3.

Experimental top

Crystals of (I) were grown from an aqueous solution at pH 2 of zinc(II) dichloride dihydrate (1.0 mmol) and N-phenethylbiguanide hydrochloride (1.0 mmol). The solution was left at room temperature and crystals formed after one to three months. The elemental analysis result was in agreement with the structural composition of (I).

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, with Csp2—H = 0.99 Å and Csp3—H = 0.95 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H atoms on N atoms were located in difference Fourier maps and refined with Uiso = 0.01–0.08 Å2 and N–H distances in the range 0.74–0.89 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 2000); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The dotted lines represent hydrogen bonds.
[Figure 2] Fig. 2. A packing diagram of the structure of the title compound.
[Figure 3] Fig. 3. Projection of the crystal structure of (I) along the a axis. The dotted lines represent hydrogen bonds.
N-phenethylbiguanidium tetrachlorozinc(II) top
Crystal data top
(C10H17N5)[ZnCl4]F(000) = 840
Mr = 414.46Dx = 1.582 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4240 reflections
a = 6.6088 (10) Åθ = 2.8–26.4°
b = 7.5837 (12) ŵ = 2.02 mm1
c = 34.710 (5) ÅT = 173 K
V = 1739.6 (5) Å3BLOCK, colourless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3197 independent reflections
Radiation source: fine-focus sealed tube3064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.467, Tmax = 0.545k = 96
7460 measured reflectionsl = 4235
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3197 reflectionsΔρmax = 0.39 e Å3
213 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1291 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (12)
Crystal data top
(C10H17N5)[ZnCl4]V = 1739.6 (5) Å3
Mr = 414.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6088 (10) ŵ = 2.02 mm1
b = 7.5837 (12) ÅT = 173 K
c = 34.710 (5) Å0.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3064 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.545Rint = 0.025
7460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.23 e Å3
3197 reflectionsAbsolute structure: Flack (1983), 1291 Friedel pairs
213 parametersAbsolute structure parameter: 0.010 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.42267 (6)0.57556 (5)0.160470 (10)0.03038 (11)
Cl10.40008 (12)0.83552 (11)0.19134 (2)0.03182 (18)
Cl20.28585 (12)0.36172 (10)0.19906 (2)0.03039 (19)
Cl30.75808 (14)0.51983 (12)0.15375 (3)0.0550 (3)
Cl40.27058 (14)0.57135 (12)0.10251 (2)0.0366 (2)
C10.5955 (5)0.0660 (5)0.06628 (9)0.0313 (7)
C20.7083 (5)0.2076 (5)0.05367 (9)0.0343 (8)
H20.69910.31740.06670.041*
C30.8357 (5)0.1907 (6)0.02188 (10)0.0406 (9)
H30.91150.28910.01310.049*
C40.8511 (5)0.0319 (6)0.00342 (10)0.0473 (11)
H40.93970.01990.01800.057*
C50.7402 (6)0.1097 (6)0.01554 (11)0.0548 (11)
H50.74970.21890.00220.066*
C60.6131 (6)0.0941 (6)0.04737 (10)0.0454 (9)
H60.53840.19340.05610.055*
C70.4499 (5)0.0859 (5)0.09968 (8)0.0336 (8)
H7A0.48950.18970.11530.040*
H7B0.45890.01960.11640.040*
C80.2326 (5)0.1086 (4)0.08611 (8)0.0290 (7)
H8A0.22720.20090.06600.035*
H8B0.18430.00320.07460.035*
C90.0093 (4)0.0533 (4)0.13881 (8)0.0239 (7)
C100.1599 (4)0.0702 (5)0.20336 (9)0.0261 (7)
N10.2919 (4)0.1544 (4)0.22408 (9)0.0324 (7)
N20.0547 (5)0.0600 (5)0.21745 (9)0.0398 (8)
N30.1301 (4)0.1290 (4)0.16681 (7)0.0262 (6)
N40.0197 (5)0.1186 (4)0.13340 (9)0.0317 (7)
N50.1001 (4)0.1581 (4)0.11811 (8)0.0286 (6)
H90.113 (4)0.251 (4)0.1267 (8)0.010 (8)*
H100.102 (5)0.170 (5)0.1460 (9)0.030 (10)*
H110.059 (8)0.177 (7)0.1194 (12)0.083 (17)*
H120.170 (5)0.239 (5)0.1645 (10)0.035 (10)*
H130.062 (6)0.100 (5)0.2091 (9)0.039 (10)*
H140.085 (5)0.097 (5)0.2363 (9)0.023 (9)*
H150.364 (4)0.222 (4)0.2152 (8)0.003 (8)*
H160.314 (5)0.118 (5)0.2480 (11)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0307 (2)0.02508 (19)0.0354 (2)0.00142 (18)0.00518 (18)0.00062 (18)
Cl10.0356 (4)0.0264 (4)0.0335 (4)0.0010 (4)0.0005 (4)0.0018 (3)
Cl20.0302 (4)0.0297 (4)0.0313 (4)0.0034 (4)0.0030 (3)0.0007 (3)
Cl30.0326 (5)0.0254 (4)0.1070 (9)0.0041 (4)0.0220 (5)0.0115 (5)
Cl40.0505 (5)0.0293 (4)0.0299 (4)0.0027 (4)0.0045 (4)0.0013 (4)
C10.0236 (15)0.041 (2)0.0292 (16)0.0069 (18)0.0040 (14)0.0036 (16)
C20.0337 (19)0.035 (2)0.0340 (19)0.0042 (17)0.0072 (15)0.0025 (15)
C30.0320 (19)0.053 (3)0.037 (2)0.0017 (18)0.0020 (15)0.0117 (19)
C40.037 (2)0.072 (3)0.033 (2)0.002 (2)0.0091 (16)0.007 (2)
C50.057 (2)0.053 (3)0.054 (2)0.008 (2)0.019 (2)0.018 (2)
C60.046 (2)0.044 (2)0.046 (2)0.014 (2)0.0113 (17)0.0072 (19)
C70.0314 (18)0.042 (2)0.0280 (17)0.0041 (17)0.0017 (14)0.0039 (16)
C80.0330 (17)0.0295 (19)0.0246 (16)0.0049 (16)0.0039 (13)0.0007 (14)
C90.0228 (15)0.0241 (18)0.0248 (16)0.0004 (14)0.0048 (13)0.0029 (14)
C100.0209 (15)0.0274 (17)0.0300 (17)0.0050 (15)0.0005 (12)0.0025 (16)
N10.0312 (17)0.0350 (17)0.0311 (17)0.0088 (16)0.0041 (14)0.0042 (14)
N20.0371 (19)0.049 (2)0.0331 (18)0.0143 (17)0.0110 (15)0.0158 (16)
N30.0281 (14)0.0206 (15)0.0301 (15)0.0017 (12)0.0035 (11)0.0005 (12)
N40.0354 (17)0.0244 (17)0.0352 (17)0.0037 (14)0.0044 (14)0.0002 (14)
N50.0318 (15)0.0214 (15)0.0327 (15)0.0039 (14)0.0039 (13)0.0030 (13)
Geometric parameters (Å, º) top
Zn1—Cl12.2487 (9)C7—H7B0.9900
Zn1—Cl42.2492 (9)C8—N51.463 (4)
Zn1—Cl32.2686 (10)C8—H8A0.9900
Zn1—Cl22.2894 (9)C8—H8B0.9900
C1—C21.378 (5)C9—N51.292 (4)
C1—C61.386 (5)C9—N41.319 (4)
C1—C71.515 (4)C9—N31.382 (4)
C2—C31.394 (5)C10—N11.298 (4)
C2—H20.9500C10—N21.303 (4)
C3—C41.368 (5)C10—N31.359 (4)
C3—H30.9500N1—H150.77 (3)
C4—C51.367 (6)N1—H160.89 (4)
C4—H40.9500N2—H130.88 (4)
C5—C61.393 (5)N2—H140.74 (3)
C5—H50.9500N3—H120.88 (4)
C6—H60.9500N4—H100.80 (4)
C7—C81.521 (4)N4—H110.84 (5)
C7—H7A0.9900N5—H90.77 (3)
Cl1—Zn1—Cl4114.14 (3)H7A—C7—H7B107.9
Cl1—Zn1—Cl3106.09 (4)N5—C8—C7111.0 (2)
Cl4—Zn1—Cl3110.00 (4)N5—C8—H8A109.4
Cl1—Zn1—Cl2108.42 (3)C7—C8—H8A109.4
Cl4—Zn1—Cl2109.68 (3)N5—C8—H8B109.4
Cl3—Zn1—Cl2108.30 (4)C7—C8—H8B109.4
C2—C1—C6119.2 (3)H8A—C8—H8B108.0
C2—C1—C7120.6 (3)N5—C9—N4123.9 (3)
C6—C1—C7120.2 (3)N5—C9—N3117.3 (3)
C1—C2—C3120.4 (3)N4—C9—N3118.7 (3)
C1—C2—H2119.8N1—C10—N2121.5 (3)
C3—C2—H2119.8N1—C10—N3117.0 (3)
C4—C3—C2119.8 (4)N2—C10—N3121.4 (3)
C4—C3—H3120.1C10—N1—H15122 (2)
C2—C3—H3120.1C10—N1—H16119 (2)
C5—C4—C3120.5 (3)H15—N1—H16118 (3)
C5—C4—H4119.8C10—N2—H13127 (2)
C3—C4—H4119.8C10—N2—H14118 (3)
C4—C5—C6120.1 (4)H13—N2—H14113 (3)
C4—C5—H5120.0C10—N3—C9127.2 (3)
C6—C5—H5120.0C10—N3—H12111 (2)
C1—C6—C5120.0 (4)C9—N3—H12120 (2)
C1—C6—H6120.0C9—N4—H10116 (3)
C5—C6—H6120.0C9—N4—H11125 (3)
C1—C7—C8112.0 (2)H10—N4—H11119 (4)
C1—C7—H7A109.2C9—N5—C8126.8 (3)
C8—C7—H7A109.2C9—N5—H9114 (2)
C1—C7—H7B109.2C8—N5—H9118 (2)
C8—C7—H7B109.2
C6—C1—C2—C31.1 (5)C6—C1—C7—C878.7 (4)
C7—C1—C2—C3177.2 (3)C1—C7—C8—N5170.1 (3)
C1—C2—C3—C41.0 (5)N1—C10—N3—C9175.0 (3)
C2—C3—C4—C51.0 (6)N2—C10—N3—C97.8 (5)
C3—C4—C5—C61.3 (6)N5—C9—N3—C10137.8 (3)
C2—C1—C6—C51.4 (6)N4—C9—N3—C1045.7 (5)
C7—C1—C6—C5177.0 (3)N4—C9—N5—C81.2 (5)
C4—C5—C6—C11.4 (6)N3—C9—N5—C8177.5 (3)
C2—C1—C7—C899.6 (4)C7—C8—N5—C995.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H16···Cl1i0.89 (4)2.73 (4)3.319 (3)125 (3)
N1—H16···Cl2i0.89 (4)2.68 (4)3.471 (4)148 (3)
N3—H12···Cl3ii0.88 (4)2.21 (4)3.088 (3)173 (3)
N4—H11···Cl4iii0.84 (5)2.44 (5)3.219 (3)155 (4)
N1—H15···Cl2ii0.77 (3)2.60 (3)3.319 (3)156 (3)
N5—H9···Cl20.77 (3)2.89 (3)3.433 (3)130 (3)
N5—H9···Cl40.77 (3)2.77 (3)3.374 (3)137 (3)
N2—H14···Cl2i0.74 (3)2.63 (3)3.330 (4)160 (3)
N2—H13···Cl1iii0.88 (4)2.37 (4)3.237 (3)170 (3)
N4—H10···N20.80 (4)2.63 (3)2.960 (5)106 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C10H17N5)[ZnCl4]
Mr414.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.6088 (10), 7.5837 (12), 34.710 (5)
V3)1739.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.467, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
7460, 3197, 3064
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 1.04
No. of reflections3197
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23
Absolute structureFlack (1983), 1291 Friedel pairs
Absolute structure parameter0.010 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 2000), SHELXL97 (Sheldrick, 2000), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Zn1—Cl12.2487 (9)C9—N41.319 (4)
Zn1—Cl42.2492 (9)C9—N31.382 (4)
Zn1—Cl32.2686 (10)C10—N11.298 (4)
Zn1—Cl22.2894 (9)C10—N21.303 (4)
C8—N51.463 (4)C10—N31.359 (4)
C9—N51.292 (4)
Cl1—Zn1—Cl4114.14 (3)N5—C9—N3117.3 (3)
Cl1—Zn1—Cl3106.09 (4)N4—C9—N3118.7 (3)
Cl4—Zn1—Cl3110.00 (4)N1—C10—N2121.5 (3)
Cl1—Zn1—Cl2108.42 (3)N1—C10—N3117.0 (3)
Cl4—Zn1—Cl2109.68 (3)N2—C10—N3121.4 (3)
Cl3—Zn1—Cl2108.30 (4)C10—N3—C9127.2 (3)
N5—C9—N4123.9 (3)C9—N5—C8126.8 (3)
N1—C10—N3—C9175.0 (3)N4—C9—N3—C1045.7 (5)
N2—C10—N3—C97.8 (5)N4—C9—N5—C81.2 (5)
N5—C9—N3—C10137.8 (3)N3—C9—N5—C8177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H16···Cl1i0.89 (4)2.73 (4)3.319 (3)125 (3)
N1—H16···Cl2i0.89 (4)2.68 (4)3.471 (4)148 (3)
N3—H12···Cl3ii0.88 (4)2.21 (4)3.088 (3)173 (3)
N4—H11···Cl4iii0.84 (5)2.44 (5)3.219 (3)155 (4)
N1—H15···Cl2ii0.77 (3)2.60 (3)3.319 (3)156 (3)
N5—H9···Cl20.77 (3)2.89 (3)3.433 (3)130 (3)
N5—H9···Cl40.77 (3)2.77 (3)3.374 (3)137 (3)
N2—H14···Cl2i0.74 (3)2.63 (3)3.330 (4)160 (3)
N2—H13···Cl1iii0.88 (4)2.37 (4)3.237 (3)170 (3)
N4—H10···N20.80 (4)2.63 (3)2.960 (5)106 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y1, z.
Relationship of guanidine planes in biguanide (Å, °) top
CompoundPlane 1Plane 2Dihedral angleC—N—C' (centre)
C(N1/N2/N3)C'(N3/N4/N5)between planes
a0.024 (3)-0.019 (3)48.7 (2)127.2 (3)
b0.042 (2)-0.030 (2)67.5 (1)118.7 (1)
c-0.008 (15)-0.039 (15)62.3 (5)124.9 (11)
d77.6 (2)119.1 (3)
e67.9 (1)122.5 (3)
f54.8 (1)123.1 (2)
72.5 (1)123.8 (2)
g0.002 (2)-0.011 (3)9.7 (1)121.0 (1)
h0.021 (2)-0.024 (2)9.8 (2)118.5 (2)
i48.4126.2 (3)
j0.0170.01058.9122.7
Notes: (a) (C10H17N5)[ZnCl4] (this work); (b) [ZnCl3(C4H12N5)] (Zhu et al., 2002); (c) (C4H12N5)[TlBr4] (He et al., 2002); (d) [ZnCl3(C6H14N5O)] (Yang & Zhu, 1991, 1992); (e) C4H11N5·HCl (Hariharan et al., 1989); (f) dimer of C10H15N5·HCl (Soriano-Lesh et al., 1998); (g) [Cu(C4H10N5)2]·8H2O (Zhu et al., 2002a); (h) [Ni(C4H10N5)2] (Zhu et al., 2002b); (i) C2H9N52+·SO42−·H2O (Brown, 1967); (j) C11H16ClN5·HCl (Pinkerton & Schwarzenbach, 1978).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds