Download citation
Download citation
link to html
The title compound, C8H14O5, is a 1,4:3,6-dianhydro-D-fructose derivative. Its structure consists of two fused tetra­hydro­furan rings with a cis ring junction, giving a V-shaped mol­ecule with an angle between the two rings of 129.9°. Inter­molecular O—H...O hydrogen bonds help stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033387/fl2143sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033387/fl2143Isup2.hkl
Contains datablock I

CCDC reference: 657881

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.051
  • wR factor = 0.138
  • Data-to-parameter ratio = 6.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 6.74 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.10 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 829 Count of symmetry unique reflns 869 Completeness (_total/calc) 95.40% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Sugar derivatives are an important class of compounds having a broad spectrum of applications in the chemical, biochemical, medicinal(Chang et al., 2001), and pharmaceutical fields (Stutz, 1999), Here we report the structure of a novel Sugar derivative.

The molecular structure of title compound is shown in Fig.1. Torsion angle C(2)—C(3)—C(4)—C(5) is -129.9°.Intermolecular O3–H···O4 hydrogen bonds links the molecules into chains along the a axis.

Related literature top

Bioactivity of sugar derivatives: Stutz (1999); Chang et al. (2001).

Experimental top

1,4:3,6-dianhydro-D-fructose, having three known chiral centers, was dissolved in MeOH. Catalytic amount of H2SO4 was added and the mixture was stirred at room temperature for 4 h,and evaporated under reduced pressure to dryness. The residue was recrystallization from MeOH,to give title compound as a colorless crystal.

Refinement top

The absolute configuration could not be determined from the experimental data, therefore, the Friedel equivalents were merged before refinement. The absolute configuration was set from the starting material of known configurataion.

Structure description top

Sugar derivatives are an important class of compounds having a broad spectrum of applications in the chemical, biochemical, medicinal(Chang et al., 2001), and pharmaceutical fields (Stutz, 1999), Here we report the structure of a novel Sugar derivative.

The molecular structure of title compound is shown in Fig.1. Torsion angle C(2)—C(3)—C(4)—C(5) is -129.9°.Intermolecular O3–H···O4 hydrogen bonds links the molecules into chains along the a axis.

Bioactivity of sugar derivatives: Stutz (1999); Chang et al. (2001).

Computing details top

Data collection: R-AXIS (Molecular Structure Corporation, 1993); cell refinement: R-AXIS; data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corporation, 1993); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with 30% probability displacement ellipsoids and hydrogen atoms shown as spheres of arbitrary radii
[Figure 2] Fig. 2. The Molecular stacking of title compound along the a axis showing the intermolecular hydrogen bonds.
2,2-Di-C-methoxy-1,4:3,6-dianhydromannitol top
Crystal data top
C8H14O5F(000) = 204
Mr = 190.19Dx = 1.398 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4996 (13) ÅCell parameters from 389 reflections
b = 6.3375 (13) Åθ = 2–25.1°
c = 10.983 (2) ŵ = 0.12 mm1
β = 93.07 (3)°T = 291 K
V = 451.77 (16) Å3Prism, colorless
Z = 20.20 × 0.18 × 0.17 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
Detector resolution: 0 pixels mm-1h = 07
Oscillation frames scansk = 77
1418 measured reflectionsl = 1313
829 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0956P)2 + 0.0821P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
829 reflectionsΔρmax = 0.20 e Å3
123 parametersΔρmin = 0.23 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.32 (5)
Crystal data top
C8H14O5V = 451.77 (16) Å3
Mr = 190.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4996 (13) ŵ = 0.12 mm1
b = 6.3375 (13) ÅT = 291 K
c = 10.983 (2) Å0.20 × 0.18 × 0.17 mm
β = 93.07 (3)°
Data collection top
Rigaku R-AXIS-IV
diffractometer
772 reflections with I > 2σ(I)
1418 measured reflectionsRint = 0.045
829 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
829 reflectionsΔρmin = 0.23 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Because the absolute configuration was established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration, we have merged the Friedels in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0086 (5)0.4646 (6)0.1232 (3)0.0643 (9)
O20.1615 (4)0.4646 (6)0.4086 (2)0.0658 (9)
O30.2707 (5)0.2344 (7)0.2434 (4)0.0799 (11)
O40.4505 (4)0.6120 (5)0.1554 (2)0.0534 (8)
O50.3034 (4)0.8296 (5)0.2983 (3)0.0526 (8)
C10.0757 (7)0.6726 (7)0.1524 (4)0.0559 (11)
H1A0.02530.74490.19920.067*
H1B0.09540.75260.07860.067*
C20.2786 (6)0.6500 (6)0.2271 (3)0.0453 (9)
C30.2496 (6)0.4386 (7)0.2940 (4)0.0481 (10)
H3A0.37980.36070.30290.058*
C40.0928 (6)0.3198 (7)0.2124 (3)0.0543 (10)
H4A0.15680.19920.17330.065*
C50.0701 (6)0.2466 (7)0.2976 (4)0.0543 (10)
H5A0.03080.10770.33040.065*
C60.0468 (6)0.4083 (9)0.3988 (4)0.0647 (13)
H6A0.13150.53110.37940.078*
H6B0.08870.34880.47500.078*
C70.5017 (8)0.7814 (8)0.0763 (4)0.0684 (13)
H7A0.61920.74260.03190.103*
H7B0.53330.90540.12390.103*
H7C0.38680.80980.02010.103*
C80.4823 (6)0.8327 (9)0.3786 (4)0.0630 (12)
H8A0.48720.96290.42330.095*
H8B0.60280.82080.33220.095*
H8C0.47770.71660.43440.095*
H3E0.298 (15)0.36 (2)0.204 (8)0.18 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0798 (19)0.0572 (19)0.0542 (15)0.0192 (16)0.0124 (13)0.0022 (16)
O20.0693 (17)0.078 (2)0.0499 (14)0.0169 (18)0.0038 (12)0.0008 (17)
O30.0611 (18)0.074 (2)0.103 (3)0.0198 (18)0.0077 (16)0.016 (2)
O40.0644 (17)0.0408 (15)0.0562 (14)0.0050 (13)0.0141 (12)0.0020 (14)
O50.0541 (15)0.0410 (15)0.0622 (16)0.0028 (14)0.0034 (12)0.0060 (15)
C10.061 (2)0.045 (3)0.060 (2)0.0047 (19)0.0137 (18)0.010 (2)
C20.049 (2)0.042 (2)0.0446 (18)0.0019 (16)0.0024 (15)0.0011 (18)
C30.0427 (17)0.044 (2)0.057 (2)0.0065 (17)0.0017 (15)0.011 (2)
C40.068 (2)0.036 (2)0.060 (2)0.0005 (19)0.0112 (19)0.006 (2)
C50.057 (2)0.042 (2)0.064 (2)0.0064 (18)0.0012 (17)0.008 (2)
C60.064 (3)0.065 (3)0.067 (3)0.001 (2)0.018 (2)0.005 (2)
C70.091 (3)0.052 (3)0.063 (2)0.015 (2)0.014 (2)0.009 (2)
C80.062 (2)0.062 (3)0.064 (2)0.012 (2)0.0107 (18)0.007 (3)
Geometric parameters (Å, º) top
O1—C11.420 (6)C3—C41.521 (6)
O1—C41.429 (5)C3—H3A0.9800
O2—C61.399 (5)C4—C51.522 (6)
O2—C31.419 (5)C4—H4A0.9800
O3—C51.406 (5)C5—C61.514 (7)
O3—H3E0.91 (14)C5—H5A0.9800
O4—C21.422 (5)C6—H6A0.9700
O4—C71.431 (5)C6—H6B0.9700
O5—C21.385 (5)C7—H7A0.9600
O5—C81.421 (4)C7—H7B0.9600
C1—C21.523 (5)C7—H7C0.9600
C1—H1A0.9700C8—H8A0.9600
C1—H1B0.9700C8—H8B0.9600
C2—C31.545 (6)C8—H8C0.9600
C1—O1—C4109.9 (3)C3—C4—H4A110.9
C6—O2—C3109.7 (3)C5—C4—H4A110.9
C5—O3—H3E108 (7)O3—C5—C6113.7 (4)
C2—O4—C7115.1 (3)O3—C5—C4114.6 (3)
C2—O5—C8115.4 (3)C6—C5—C4101.5 (3)
O1—C1—C2106.3 (3)O3—C5—H5A108.9
O1—C1—H1A110.5C6—C5—H5A108.9
C2—C1—H1A110.5C4—C5—H5A108.9
O1—C1—H1B110.5O2—C6—C5106.7 (4)
C2—C1—H1B110.5O2—C6—H6A110.4
H1A—C1—H1B108.7C5—C6—H6A110.4
O5—C2—O4112.4 (3)O2—C6—H6B110.4
O5—C2—C1107.4 (3)C5—C6—H6B110.4
O4—C2—C1113.7 (3)H6A—C6—H6B108.6
O5—C2—C3117.2 (3)O4—C7—H7A109.5
O4—C2—C3103.6 (3)O4—C7—H7B109.5
C1—C2—C3102.3 (3)H7A—C7—H7B109.5
O2—C3—C4106.9 (3)O4—C7—H7C109.5
O2—C3—C2112.7 (3)H7A—C7—H7C109.5
C4—C3—C2104.1 (3)H7B—C7—H7C109.5
O2—C3—H3A110.9O5—C8—H8A109.5
C4—C3—H3A110.9O5—C8—H8B109.5
C2—C3—H3A110.9H8A—C8—H8B109.5
O1—C4—C3107.8 (3)O5—C8—H8C109.5
O1—C4—C5111.3 (3)H8A—C8—H8C109.5
C3—C4—C5104.7 (3)H8B—C8—H8C109.5
O1—C4—H4A110.9
C4—O1—C1—C225.6 (4)O4—C2—C3—C493.3 (3)
C8—O5—C2—O456.7 (4)C1—C2—C3—C425.1 (4)
C8—O5—C2—C1177.6 (3)C1—O1—C4—C38.7 (4)
C8—O5—C2—C363.2 (4)C1—O1—C4—C5105.6 (4)
C7—O4—C2—O556.8 (4)O2—C3—C4—O1108.3 (4)
C7—O4—C2—C165.4 (4)C2—C3—C4—O111.2 (4)
C7—O4—C2—C3175.7 (3)O2—C3—C4—C510.4 (4)
O1—C1—C2—O5155.2 (3)C2—C3—C4—C5129.9 (3)
O1—C1—C2—O479.9 (4)O1—C4—C5—O332.0 (5)
O1—C1—C2—C331.2 (4)C3—C4—C5—O3148.3 (4)
C6—O2—C3—C410.7 (5)O1—C4—C5—C691.0 (4)
C6—O2—C3—C2103.1 (4)C3—C4—C5—C625.3 (4)
O5—C2—C3—O226.8 (4)C3—O2—C6—C527.8 (5)
O4—C2—C3—O2151.2 (3)O3—C5—C6—O2156.3 (4)
C1—C2—C3—O290.3 (4)C4—C5—C6—O232.7 (5)
O5—C2—C3—C4142.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···O4i0.91 (14)2.33 (13)3.123 (6)145 (9)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H14O5
Mr190.19
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)6.4996 (13), 6.3375 (13), 10.983 (2)
β (°) 93.07 (3)
V3)451.77 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS-IV
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1418, 829, 772
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.04
No. of reflections829
No. of parameters123
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: R-AXIS (Molecular Structure Corporation, 1993), R-AXIS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN (Molecular Structure Corporation, 1993), TEXSAN.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···O4i0.91 (14)2.33 (13)3.123 (6)145 (9)
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds