organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o438-o439

Crystal structure of 1-[(2,4,6-triiso­propyl­phen­yl)sulfon­yl]aziridine

CROSSMARK_Color_square_no_text.svg

aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by U. Flörke, University of Paderborn, Germany (Received 30 April 2015; accepted 27 May 2015; online 3 June 2015)

The title compound, C17H27NO2S, exhibits a distorted geometry of the aromatic ring with elongated bonds at the ipso-C atom. The S atom deviates from the aromatic ring plane by 0.393 (4) Å. Similar to this, the adjacent isopropyl groups are bent out of the aromatic ring plane by −0.125 (4) and −0.154 (4) Å. Even the distant isopropyl group in para-position to the sulfonyl moiety shows a slight deviation from the ring plane of 0.111 (5) Å. These distortions, which are caused by the bulky substituents, can also be observed in related sulfonyl­aziridine structures.

1. Related literature

For the crystal structure of a related phenyl-substituted compound, see: Golz et al. (2014[Golz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153.]). For a discussion of the geometry of the triiso­propyl­benzene­sulfonyl moiety, see: Sandrock et al. (2004[Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544-o546.]). For a discussion of the pyramidalized geometry of N-sulfonyl­amides, see: Ohwada et al. (1998[Ohwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877-7880.]). By regioselective ring opening reactions, countless nitro­gen-containing compounds are accessible, see: Stamm (1999[Stamm, H. (1999). J. Prakt. Chem. 341, 319-331.]); Schneider (2009[Schneider, C. (2009). Angew. Chem. Int. Ed. 48, 2082-2084.]). For consecutive ring-opening reactions of aziridines by tri­ethyl­amine, see: Golz & Strohmann (2015[Golz, C. & Strohmann, C. (2015). Acta Cryst. E71, 564-566.]). In some cases, the three-membered aziridine ring is further activated by electron-withdrawing groups (Hu, 2004[Hu, X. E. (2004). Tetrahedron, 60, 2701-2743.]) to increase its reactivity.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H27NO2S

  • Mr = 309.45

  • Monoclinic, P 21 /c

  • a = 6.2679 (8) Å

  • b = 17.5289 (18) Å

  • c = 16.3890 (13) Å

  • β = 100.331 (10)°

  • V = 1771.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.33 × 0.25 × 0.01 mm

2.2. Data collection

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.782, Tmax = 1.000

  • 9521 measured reflections

  • 3449 independent reflections

  • 2479 reflections with I > 2σ(I)

  • Rint = 0.049

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.07

  • 3449 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

Aziridines are inter­esting and versatile building blocks in synthetic chemistry due to their high ring strain. By regioselective ring opening reactions, countless nitro­gen-containing compounds are accessible (Stamm, 1999; Schneider, 2009). For example, the aziridine ring can be opened by tri­ethyl­amine (Golz & Strohmann, 2015). In some cases, the three-membered aziridine ring is further activated by electron-withdrawing groups (Hu, 2004) to increase its reactivity.

The title compound, C17H27NO2S, is a representative of the class of activated aziridines, as it contains a triiso­propyl­benzene substituted sulfonyl ester attached to the nitro­gen atom. In the aromatic ring, the bulky substituents lead to a distortion of its geometry. This is expressed by the increased bond lengths and out-of-plane bent substituents around the benzene ring. At the ipso-carbon, the bonds C10–C11 and C10–C6 are slightly elongated to 1.410 (3) Å. In contrast, the other bonds of the aromatic ring exhibit usual lengths [C4–C15 1.374 (3) Å, C5–C61.380 (3) Å, C11–C15 1.388 (3) Å, C4–C5 1.389 (3) Å]. The sulfonyl group as well as the adjacent iso­propyl groups bend out of the aromatic plane. This is caused by steric repulsion between the iso­propyl groups and the sulfonyl oxygen atoms. The sulfur atom deviates from the mean aromatic ring plane by 0.393 (4) Å. The carbon atoms C7 and C12 show distances of -0.125 (4) Å and -0.154 (4) Å, respectively (see Table 5). A similar distortion can also be observed at the iso­propyl group in para position to the sulfonyl moiety. Here, C1 has a distance to the aromatic ring plane of 0.111 (5) Å, thus being distorted in the same direction as the sulfur atom. This is caused by steric repulsion between the C1 iso­propyl group and the adjacent iso­propyl groups in ortho position in respect of the sulfonyl moiety.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were located from difference Fourier maps, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3) and aromatic C–H = 0.95 Å, primary C–H = 0.98 Å, secondary C–H = 0.99 Å, tertiary C–H = 1.00 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip. Aziridine protons could be located from difference Fourier maps, but were refined as idealized CH2 groups.

Related literature top

For the crystal structure of a related phenyl-substituted compound, see: Golz et al. (2014). For a discussion of the geometry of the triisopropylbenzenesulfonyl moiety, see: Sandrock et al. (2004). For a discussion of the pyramidalized geometry of N-sulfonylamides, see: Ohwada et al. (1998). By regioselective ring opening reactions, countless nitrogen-containing compounds are accessible, see: Stamm (1999); Schneider (2009). For consecutive ring-opening reactions of aziridines by triethylamine, see: Golz & Strohmann (2015). In some cases, the three-membered aziridine ring is further activated by electron-withdrawing groups (Hu, 2004) to increase its reactivity.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.
(I) top
Crystal data top
C17H27NO2SF(000) = 672
Mr = 309.45Dx = 1.160 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.2679 (8) ÅCell parameters from 2277 reflections
b = 17.5289 (18) Åθ = 3.3–29.2°
c = 16.3890 (13) ŵ = 0.19 mm1
β = 100.331 (10)°T = 173 K
V = 1771.5 (3) Å3Plate, colourless
Z = 40.33 × 0.25 × 0.01 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
3449 independent reflections
Radiation source: Enhance (Mo) X-ray Source2479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.0560 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1521
Tmin = 0.782, Tmax = 1.000l = 2020
9521 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.8936P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3449 reflectionsΔρmax = 0.33 e Å3
196 parametersΔρmin = 0.58 e Å3
Crystal data top
C17H27NO2SV = 1771.5 (3) Å3
Mr = 309.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2679 (8) ŵ = 0.19 mm1
b = 17.5289 (18) ÅT = 173 K
c = 16.3890 (13) Å0.33 × 0.25 × 0.01 mm
β = 100.331 (10)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
3449 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2479 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.049
9521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
3449 reflectionsΔρmin = 0.58 e Å3
196 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71473 (10)0.20619 (4)0.37952 (4)0.0245 (2)
C100.7527 (4)0.26810 (13)0.29748 (14)0.0205 (5)
C150.8227 (4)0.28863 (14)0.16069 (15)0.0272 (6)
H150.82290.27050.10610.033*
C60.8105 (4)0.34434 (14)0.31802 (14)0.0246 (6)
C50.8842 (4)0.38836 (15)0.25903 (15)0.0297 (6)
H50.92730.43940.27260.036*
C110.7462 (4)0.24050 (14)0.21624 (15)0.0243 (6)
C40.8981 (4)0.36110 (15)0.18058 (15)0.0279 (6)
O10.7219 (3)0.12858 (10)0.35547 (11)0.0370 (5)
O20.8625 (3)0.22687 (11)0.45315 (10)0.0360 (5)
N10.4729 (4)0.23217 (13)0.39562 (14)0.0345 (6)
C170.3491 (5)0.17365 (19)0.4317 (2)0.0500 (9)
H17A0.41850.12340.44510.060*
H17B0.25360.19080.47020.060*
C160.2886 (6)0.1945 (3)0.3447 (2)0.0701 (12)
H16A0.15430.22460.32800.084*
H16B0.31900.15720.30290.084*
C120.6577 (5)0.16388 (14)0.18281 (15)0.0312 (6)
H120.58720.13910.22610.037*
C70.7975 (4)0.38301 (14)0.40041 (15)0.0290 (6)
H70.72910.34630.43470.035*
C10.9900 (5)0.41027 (15)0.11913 (15)0.0331 (7)
H10.97660.38110.06600.040*
C130.4860 (6)0.17400 (18)0.10515 (18)0.0489 (9)
H13A0.37510.20990.11660.073*
H13B0.41840.12460.08870.073*
H13C0.55390.19400.06020.073*
C30.8614 (5)0.48402 (17)0.10107 (18)0.0457 (8)
H3A0.70950.47190.07870.068*
H3B0.92230.51420.06050.068*
H3C0.86950.51330.15250.068*
C140.8399 (5)0.11176 (17)0.1661 (2)0.0471 (8)
H14A0.91670.13610.12590.071*
H14B0.77870.06310.14360.071*
H14C0.94150.10260.21800.071*
C21.2285 (5)0.42692 (19)0.1493 (2)0.0496 (9)
H2A1.24590.45670.20060.074*
H2B1.28560.45600.10680.074*
H2C1.30830.37880.15970.074*
C81.0244 (5)0.40142 (17)0.44750 (16)0.0407 (8)
H8A1.10990.35440.45640.061*
H8B1.01370.42430.50120.061*
H8C1.09510.43740.41510.061*
C90.6542 (6)0.45350 (17)0.38647 (18)0.0476 (8)
H9A0.72280.49190.35620.071*
H9B0.63510.47440.44010.071*
H9C0.51250.43960.35410.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0289 (4)0.0256 (4)0.0205 (3)0.0015 (3)0.0085 (3)0.0032 (3)
C100.0213 (13)0.0238 (13)0.0168 (11)0.0008 (10)0.0048 (10)0.0025 (10)
C150.0372 (16)0.0275 (14)0.0178 (12)0.0032 (12)0.0077 (11)0.0036 (10)
C60.0284 (14)0.0279 (14)0.0174 (12)0.0012 (11)0.0039 (11)0.0011 (10)
C50.0401 (17)0.0269 (14)0.0228 (13)0.0082 (12)0.0077 (12)0.0035 (11)
C110.0283 (14)0.0233 (13)0.0212 (12)0.0003 (11)0.0043 (11)0.0005 (10)
C40.0358 (16)0.0297 (15)0.0190 (12)0.0034 (12)0.0068 (11)0.0003 (11)
O10.0590 (14)0.0250 (10)0.0292 (10)0.0063 (9)0.0137 (10)0.0051 (8)
O20.0431 (13)0.0460 (12)0.0184 (9)0.0037 (9)0.0036 (9)0.0068 (8)
N10.0286 (13)0.0448 (14)0.0326 (12)0.0001 (11)0.0128 (11)0.0007 (11)
C170.0423 (19)0.053 (2)0.063 (2)0.0197 (15)0.0294 (17)0.0063 (17)
C160.0294 (19)0.123 (4)0.059 (2)0.014 (2)0.0122 (17)0.030 (2)
C120.0473 (18)0.0251 (14)0.0221 (13)0.0042 (12)0.0088 (12)0.0015 (11)
C70.0442 (17)0.0251 (14)0.0197 (12)0.0084 (12)0.0115 (12)0.0048 (11)
C10.0504 (18)0.0296 (15)0.0224 (13)0.0063 (13)0.0152 (13)0.0008 (11)
C130.060 (2)0.0442 (19)0.0360 (16)0.0173 (16)0.0084 (16)0.0013 (14)
C30.060 (2)0.0423 (19)0.0371 (16)0.0001 (16)0.0160 (16)0.0155 (14)
C140.059 (2)0.0336 (17)0.0517 (19)0.0011 (15)0.0181 (17)0.0145 (15)
C20.047 (2)0.055 (2)0.0497 (19)0.0071 (16)0.0182 (16)0.0124 (16)
C80.056 (2)0.0432 (18)0.0215 (13)0.0145 (15)0.0028 (14)0.0060 (13)
C90.070 (2)0.0402 (18)0.0353 (16)0.0090 (16)0.0172 (16)0.0109 (14)
Geometric parameters (Å, º) top
S1—C101.777 (2)C7—H71.0000
S1—O11.4193 (19)C7—C81.526 (4)
S1—O21.4300 (19)C7—C91.520 (4)
S1—N11.649 (2)C1—H11.0000
C10—C61.410 (3)C1—C31.524 (4)
C10—C111.410 (3)C1—C21.517 (4)
C15—H150.9500C13—H13A0.9800
C15—C111.388 (3)C13—H13B0.9800
C15—C41.374 (4)C13—H13C0.9800
C6—C51.380 (3)C3—H3A0.9800
C6—C71.526 (3)C3—H3B0.9800
C5—H50.9500C3—H3C0.9800
C5—C41.389 (3)C14—H14A0.9800
C11—C121.518 (4)C14—H14B0.9800
C4—C11.516 (3)C14—H14C0.9800
N1—C171.473 (3)C2—H2A0.9800
N1—C161.456 (4)C2—H2B0.9800
C17—H17A0.9900C2—H2C0.9800
C17—H17B0.9900C8—H8A0.9800
C17—C161.455 (5)C8—H8B0.9800
C16—H16A0.9900C8—H8C0.9800
C16—H16B0.9900C9—H9A0.9800
C12—H121.0000C9—H9B0.9800
C12—C131.523 (4)C9—H9C0.9800
C12—C141.526 (4)
O1—S1—C10111.10 (11)C8—C7—H7107.9
O1—S1—O2115.43 (12)C9—C7—C6110.6 (2)
O1—S1—N1112.65 (12)C9—C7—H7107.9
O2—S1—C10109.23 (11)C9—C7—C8112.1 (2)
O2—S1—N1105.67 (12)C4—C1—H1107.8
N1—S1—C10101.77 (11)C4—C1—C3111.1 (2)
C6—C10—S1117.51 (17)C4—C1—C2111.3 (2)
C6—C10—C11120.9 (2)C3—C1—H1107.8
C11—C10—S1121.32 (19)C2—C1—H1107.8
C11—C15—H15118.3C2—C1—C3110.9 (2)
C4—C15—H15118.3C12—C13—H13A109.5
C4—C15—C11123.4 (2)C12—C13—H13B109.5
C10—C6—C7125.5 (2)C12—C13—H13C109.5
C5—C6—C10117.8 (2)H13A—C13—H13B109.5
C5—C6—C7116.7 (2)H13A—C13—H13C109.5
C6—C5—H5118.6H13B—C13—H13C109.5
C6—C5—C4122.7 (2)C1—C3—H3A109.5
C4—C5—H5118.6C1—C3—H3B109.5
C10—C11—C12126.2 (2)C1—C3—H3C109.5
C15—C11—C10117.1 (2)H3A—C3—H3B109.5
C15—C11—C12116.6 (2)H3A—C3—H3C109.5
C15—C4—C5117.5 (2)H3B—C3—H3C109.5
C15—C4—C1121.6 (2)C12—C14—H14A109.5
C5—C4—C1120.9 (2)C12—C14—H14B109.5
C17—N1—S1116.0 (2)C12—C14—H14C109.5
C16—N1—S1116.1 (2)H14A—C14—H14B109.5
C16—N1—C1759.5 (2)H14A—C14—H14C109.5
N1—C17—H17A117.8H14B—C14—H14C109.5
N1—C17—H17B117.8C1—C2—H2A109.5
H17A—C17—H17B114.9C1—C2—H2B109.5
C16—C17—N159.7 (2)C1—C2—H2C109.5
C16—C17—H17A117.8H2A—C2—H2B109.5
C16—C17—H17B117.8H2A—C2—H2C109.5
N1—C16—H16A117.7H2B—C2—H2C109.5
N1—C16—H16B117.7C7—C8—H8A109.5
C17—C16—N160.8 (2)C7—C8—H8B109.5
C17—C16—H16A117.7C7—C8—H8C109.5
C17—C16—H16B117.7H8A—C8—H8B109.5
H16A—C16—H16B114.8H8A—C8—H8C109.5
C11—C12—H12107.9H8B—C8—H8C109.5
C11—C12—C13110.9 (2)C7—C9—H9A109.5
C11—C12—C14111.0 (2)C7—C9—H9B109.5
C13—C12—H12107.9C7—C9—H9C109.5
C13—C12—C14111.1 (2)H9A—C9—H9B109.5
C14—C12—H12107.9H9A—C9—H9C109.5
C6—C7—H7107.9H9B—C9—H9C109.5
C8—C7—C6110.4 (2)
S1—C10—C6—C5166.7 (2)C5—C6—C7—C867.6 (3)
S1—C10—C6—C713.6 (3)C5—C6—C7—C957.1 (3)
S1—C10—C11—C15166.5 (2)C5—C4—C1—C358.7 (4)
S1—C10—C11—C1215.3 (4)C5—C4—C1—C265.4 (3)
S1—N1—C17—C16106.4 (3)C11—C10—C6—C57.3 (4)
S1—N1—C16—C17106.1 (2)C11—C10—C6—C7172.4 (3)
C10—S1—N1—C17154.1 (2)C11—C15—C4—C53.9 (4)
C10—S1—N1—C1687.0 (2)C11—C15—C4—C1177.0 (3)
C10—C6—C5—C41.6 (4)C4—C15—C11—C101.5 (4)
C10—C6—C7—C8112.8 (3)C4—C15—C11—C12176.8 (2)
C10—C6—C7—C9122.6 (3)O1—S1—C10—C6162.51 (19)
C10—C11—C12—C13125.2 (3)O1—S1—C10—C1111.4 (3)
C10—C11—C12—C14110.8 (3)O1—S1—N1—C1735.1 (2)
C15—C11—C12—C1352.9 (3)O1—S1—N1—C1632.0 (3)
C15—C11—C12—C1471.0 (3)O2—S1—C10—C634.0 (2)
C15—C4—C1—C3120.4 (3)O2—S1—C10—C11139.9 (2)
C15—C4—C1—C2115.5 (3)O2—S1—N1—C1791.8 (2)
C6—C10—C11—C157.2 (4)O2—S1—N1—C16158.9 (2)
C6—C10—C11—C12170.9 (2)N1—S1—C10—C677.4 (2)
C6—C5—C4—C153.8 (4)N1—S1—C10—C11108.7 (2)
C6—C5—C4—C1177.1 (3)C7—C6—C5—C4178.1 (3)

Experimental details

Crystal data
Chemical formulaC17H27NO2S
Mr309.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.2679 (8), 17.5289 (18), 16.3890 (13)
β (°) 100.331 (10)
V3)1771.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.33 × 0.25 × 0.01
Data collection
DiffractometerAgilent Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9521, 3449, 2479
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.07
No. of reflections3449
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.58

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

Deviation of atoms from the benzene ring least-square plane (Å). top
AtomDeviation
C40.033 (2)
C5-0.013 (2)
C6-0.026 (2)
C100.046 (2)
C11-0.026 (2)
C15-0.014 (2)
S1*0.393 (4)
C1*0.111 (5)
C7*-0.125 (4)
C12*-0.154 (4)
Note: (*) not used in the least-squares-plane calculation.
 

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationAgilent (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153.  CSD CrossRef IUCr Journals Google Scholar
First citationGolz, C. & Strohmann, C. (2015). Acta Cryst. E71, 564–566.  CSD CrossRef IUCr Journals Google Scholar
First citationHu, X. E. (2004). Tetrahedron, 60, 2701–2743.  Web of Science CrossRef CAS Google Scholar
First citationOhwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877–7880.  Web of Science CSD CrossRef CAS Google Scholar
First citationSandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544–o546.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchneider, C. (2009). Angew. Chem. Int. Ed. 48, 2082–2084.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStamm, H. (1999). J. Prakt. Chem. 341, 319–331.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o438-o439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds