metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicarbon­yl(hexa­methyl­ene-1,3,5,7-tetra­mine-κN1)(η5-penta­methyl­cyclo­penta­dien­yl)iron(II) tetra­fluoridoborate

aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya, and cMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: 208529737@stu.ukzn.ac.za

(Received 24 May 2012; accepted 11 June 2012; online 16 June 2012)

In the title compound, [Fe(C10H15)(C6H12N4)(CO)2]BF4, the arrangement around the FeII atom corresponds to a three-legged piano stool. The penta­methyl­cyclo­penta­dienyl (Cp*) ligand occupies three coordination sites, while two CO ligands and one N atom of the hexa­methyl­ene­tetra­mine ligand occupy the remaining coordination sites, completing a pseudo-octahedral geometry. Both the complex cation and the BF4 anion reside on crystallographic mirror planes. The Fe—N bond length is 2.069 (2) and the Fe—Cp*(centroid) distance is 1.7452 (3) Å.

Related literature

For the synthesis of the title compound and structure of the dinuclear compound [Fe2(η5-C5H5)2{N4(CH2)6}(CO)4](BF4)2 see: M'thiruaine et al. (2012a[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012a). Inorg. Chim. Acta, 390, 83-94.]). For other related compounds, see: Allan et al. (1970[Allan, J. R., Brown, D. H. & Lappin, M. (1970). J. Inorg. Nucl. Chem. 32, 2287-2292.]); Darensbourg et al. (2003[Darensbourg, D. J., Phelps, A. L., Adams, M. J. & Yarbrough, J. C. (2003). J. Organomet. Chem. 666, 49-53.]); Lu et al. (2004[Lu, S., Qin, S., Ke, Y., Li, J., Pei, H., Zhou, S., Wu, X. & Du, W. (2004). Cryst. Res. Technol. 39, 89-93.]); Matos & Verkade (2003[Matos, R. M. & Verkade, J. G. (2003). J. Braz. Chem. Soc. 14, 71-75.]); M'thiruaine et al. (2012b[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012b). Inorg. Chim. Acta, 382, 27-34.]); Shafiq et al. (2000[Shafiq, F., Szalda, D. J., Creutz, C. & Bullock, R. M. (2000). Organometallics, 19, 824-833.]). For mol­ecular structures of other metal complexes of hexa­methyl­ene­tetra­mine, see: Zheng et al. (2008[Zheng, G., Zhang, H., Song, S., Li, Y. & Guo, H. (2008). Eur. J. Inorg. Chem. pp. 1756-1759.]); Xue et al. (2009[Xue, M., Zhu, G., Ding, H., Wu, L., Zhao, X., Jin, Z. & Qiu, S. (2009). Cryst. Growth Des. 9, 1481-1488.]). For applications of hexa­methyl­ene­tetra­mine, see: Greenwood (1981[Greenwood, S. D. (1981). Infection, 9, 223-227.]); Strom & Jun (1986[Strom, J. G. J. & Jun, H. W. (1986). J. Pharm. Sci. 75, 416-420.]); Garcia et al. (2010[Garcia, B. B., Liu, D., Sepehri, S., Candelaria, S., Beckham, D. M., Savage, L. W. & Cao, G. (2010). J. Non-Cryst. Solids, 356, 1620-1625.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H15)(C6H12N4)(CO)2]BF4

  • Mr = 474.10

  • Orthorhombic, P n m a

  • a = 13.8388 (6) Å

  • b = 9.1771 (4) Å

  • c = 16.4365 (8) Å

  • V = 2087.44 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.746, Tmax = 0.746

  • 16663 measured reflections

  • 2671 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.04

  • 2671 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hexamethylenetetramine has been used as an antibacterial agent in the treatment of urinary tract infections for several years (Greenwood, 1981; Strom and Jun, 1986) and recently it has found application as a base catalyst to control the porosity and pores size of resorcinol furaldehyde cryogels synthesized in t-butanol (Garcia et al., 2010). A number of structures of metal-coordinated hexamethylenetetramine have been reported (Lu et al., 2004; Zheng et al., 2008; Xue et al., 2009) but very few in which hexamethylenetetramine is directly coordinated to iron are known (Allan et al., 1970).

The title compound was obtained as part of our ongoing investigation of the reactions of substitutionally unsaturated metal complexes with nitrogen donor ligands (M'thiruaine et al., 2012a; M'thiruaine et al., 2012b). The synthesis and characterization data was previously reported by us, but its crystal structure is not known. To the best of our knowledge the structure of the title compound is the first of the hexamethylenetetramine complex containing the Cp*(CO)2Fe moiety to be reported. It exhibits a typical three legged piano stool structure with FeII coordinated by hexamethylenetetramine through the nitrogen atom, in which the coordination geometry around Fe can be described as distorted octahedral with three sites occupied by the η5-pentamethylcyclopentadienyl ligand, while the two CO ligands and hexamethylenetetramine occupy the remaining three sites to complete the octahedron (Fig 1). Its structure is similar to those of the anionic 1,3,5-triaza-7-phosphaadamantane (PTA) complexes [CpFe(CN)2(PTA)]-, [CpFe(CN)2(PTAH)]- (Darensbourg et al., 2003) and that of neutral [CpW(CO)2(PTA)H] (Shafiq et al., 2000).

Both the iron complex and the BF4- anion crystallize on mirror planes at b= 0.25 and b=0.75 in the crystal structure of the title compound. In the case of the iron complex, the mirror plane goes through the iron atom and bisects the pentadienyl ligand and tertraamine equally, with the carbonyl atoms being located on either side of the mirror plane. In the case of the BF4- anion, the boron atom and two of the flourine atoms (F2 and F3) are located on the mirror plane, while the remaining flourine atoms are located at either side of the mirror. Consequently, the asymmetric unit of the title compound contains half a monocationic molecule and half a counter-anion. From a molecular structure point of view, the Fe—N bond was found to have a length of 2.069 (2) Å, which is slightly shorter than the 2.0817 (17) and 2.0858 (18) Å distances reported for the dinuclear complex [{Cp(CO)2Fe}2{N4(CH2)6}]2+ (M'thiruaine et al., 2012a) and 2.092 (4) Å reported for [(CO)4Fe{N2(CH2)6}] (Matos and Verkade, 2003).

Related literature top

For the synthesis of the title compound and structure of the dinuclear compound [Fe2(η5-C5H5)2{N4(CH2)6}(CO)4](BF4)2 see: M'thiruaine et al. (2012a). For other related compounds, see: Allan et al. (1970); Darensbourg et al. (2003); Lu et al. (2004); Matos & Verkade (2003); M'thiruaine et al. (2012b); Shafiq et al. (2000). For molecular structures of other metal complexes of hexamethylenetetramine, see: Zheng et al. (2008); Xue et al. (2009). For applications of hexamethylenetetramine, see: Greenwood (1981); Strom & Jun (1986); Garcia et al. (2010).

Experimental top

The title compound was prepared according to a reported procedure (M'thiruaine et al. 2012a) and crystals were grown by layering a concentrated solution of the compound in acetone with Et2O and the mixture kept undisturbed in the dark for four weeks.

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-square calculations on F2 using SHEXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms.

Structure description top

Hexamethylenetetramine has been used as an antibacterial agent in the treatment of urinary tract infections for several years (Greenwood, 1981; Strom and Jun, 1986) and recently it has found application as a base catalyst to control the porosity and pores size of resorcinol furaldehyde cryogels synthesized in t-butanol (Garcia et al., 2010). A number of structures of metal-coordinated hexamethylenetetramine have been reported (Lu et al., 2004; Zheng et al., 2008; Xue et al., 2009) but very few in which hexamethylenetetramine is directly coordinated to iron are known (Allan et al., 1970).

The title compound was obtained as part of our ongoing investigation of the reactions of substitutionally unsaturated metal complexes with nitrogen donor ligands (M'thiruaine et al., 2012a; M'thiruaine et al., 2012b). The synthesis and characterization data was previously reported by us, but its crystal structure is not known. To the best of our knowledge the structure of the title compound is the first of the hexamethylenetetramine complex containing the Cp*(CO)2Fe moiety to be reported. It exhibits a typical three legged piano stool structure with FeII coordinated by hexamethylenetetramine through the nitrogen atom, in which the coordination geometry around Fe can be described as distorted octahedral with three sites occupied by the η5-pentamethylcyclopentadienyl ligand, while the two CO ligands and hexamethylenetetramine occupy the remaining three sites to complete the octahedron (Fig 1). Its structure is similar to those of the anionic 1,3,5-triaza-7-phosphaadamantane (PTA) complexes [CpFe(CN)2(PTA)]-, [CpFe(CN)2(PTAH)]- (Darensbourg et al., 2003) and that of neutral [CpW(CO)2(PTA)H] (Shafiq et al., 2000).

Both the iron complex and the BF4- anion crystallize on mirror planes at b= 0.25 and b=0.75 in the crystal structure of the title compound. In the case of the iron complex, the mirror plane goes through the iron atom and bisects the pentadienyl ligand and tertraamine equally, with the carbonyl atoms being located on either side of the mirror plane. In the case of the BF4- anion, the boron atom and two of the flourine atoms (F2 and F3) are located on the mirror plane, while the remaining flourine atoms are located at either side of the mirror. Consequently, the asymmetric unit of the title compound contains half a monocationic molecule and half a counter-anion. From a molecular structure point of view, the Fe—N bond was found to have a length of 2.069 (2) Å, which is slightly shorter than the 2.0817 (17) and 2.0858 (18) Å distances reported for the dinuclear complex [{Cp(CO)2Fe}2{N4(CH2)6}]2+ (M'thiruaine et al., 2012a) and 2.092 (4) Å reported for [(CO)4Fe{N2(CH2)6}] (Matos and Verkade, 2003).

For the synthesis of the title compound and structure of the dinuclear compound [Fe2(η5-C5H5)2{N4(CH2)6}(CO)4](BF4)2 see: M'thiruaine et al. (2012a). For other related compounds, see: Allan et al. (1970); Darensbourg et al. (2003); Lu et al. (2004); Matos & Verkade (2003); M'thiruaine et al. (2012b); Shafiq et al. (2000). For molecular structures of other metal complexes of hexamethylenetetramine, see: Zheng et al. (2008); Xue et al. (2009). For applications of hexamethylenetetramine, see: Greenwood (1981); Strom & Jun (1986); Garcia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom labeling scheme. Ellipsoids are drawn at 50% probability level.
Dicarbonyl(hexamethylene-1,3,5,7-tetramine-κN1)(η5- pentamethylcyclopentadienyl)iron(II) tetrafluoridoborate top
Crystal data top
[Fe(C10H15)(C6H12N4)(CO)2]BF4F(000) = 984
Mr = 474.10Dx = 1.509 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4126 reflections
a = 13.8388 (6) Åθ = 2.5–26.9°
b = 9.1771 (4) ŵ = 0.78 mm1
c = 16.4365 (8) ÅT = 173 K
V = 2087.44 (16) Å3Block, brown
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker APEXII CCD
diffractometer
2671 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: integration
(SADABS; Bruker, 2005)
h = 1718
Tmin = 0.746, Tmax = 0.746k = 1212
16663 measured reflectionsl = 1421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
2671 reflections(Δ/σ)max = 0.008
153 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Fe(C10H15)(C6H12N4)(CO)2]BF4V = 2087.44 (16) Å3
Mr = 474.10Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.8388 (6) ŵ = 0.78 mm1
b = 9.1771 (4) ÅT = 173 K
c = 16.4365 (8) Å0.40 × 0.40 × 0.40 mm
Data collection top
Bruker APEXII CCD
diffractometer
2671 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2005)
2065 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.746Rint = 0.050
16663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
2671 reflectionsΔρmin = 0.55 e Å3
153 parameters
Special details top

Experimental. face indexed absorption corrections carried out with XPREP; Bruker, 2005)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.07473 (16)0.75000.29615 (16)0.0216 (5)
C20.04858 (13)0.8758 (2)0.25029 (10)0.0225 (4)
C30.01373 (12)0.82727 (19)0.17274 (10)0.0239 (4)
C40.13130 (18)0.75000.37414 (16)0.0286 (6)
H4A0.11610.66600.40520.043*0.50
H4B0.19850.75000.36290.043*
H4C0.11610.83400.40520.043*0.50
C50.06466 (14)1.0313 (2)0.27470 (13)0.0304 (4)
H5A0.12291.06850.24780.046*
H5B0.00881.09000.25840.046*
H5C0.07281.03700.33380.046*
C60.00822 (15)0.9225 (2)0.10053 (12)0.0351 (5)
H6A0.06010.87830.06830.053*
H6B0.02871.01900.11940.053*
H6C0.04990.93240.06680.053*
C70.15593 (13)0.6020 (2)0.23589 (11)0.0263 (4)
C80.09551 (13)0.61629 (18)0.43011 (11)0.0220 (4)
H8A0.02400.61200.42980.026*
H8B0.12000.52800.40230.026*
C90.23775 (17)0.75000.38815 (15)0.0238 (5)
H9A0.26290.66280.35970.029*0.50
H9B0.26290.83720.35970.029*0.50
C100.23601 (14)0.61969 (19)0.51331 (11)0.0295 (4)
H10A0.26010.61860.57000.035*
H10B0.26060.53130.48570.035*
C110.0944 (2)0.75000.55398 (16)0.0278 (6)
H11A0.11600.75000.61140.033*
H11B0.02280.75000.55370.033*
B10.2554 (3)0.25000.4092 (2)0.0361 (8)
F10.28284 (11)0.12563 (13)0.36756 (8)0.0570 (4)
F20.29634 (17)0.25000.48627 (13)0.0660 (6)
F30.15679 (15)0.25000.41946 (15)0.0703 (7)
Fe10.07875 (2)0.75000.26471 (2)0.01882 (12)
N10.12822 (14)0.75000.38349 (12)0.0187 (4)
N20.12944 (12)0.61662 (15)0.51387 (9)0.0253 (3)
N30.27327 (16)0.75000.47139 (13)0.0269 (5)
O10.19858 (10)0.50678 (17)0.21102 (9)0.0410 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (12)0.0302 (13)0.0161 (12)0.0000.0015 (9)0.000
C20.0204 (9)0.0277 (9)0.0194 (9)0.0024 (7)0.0024 (7)0.0002 (7)
C30.0224 (9)0.0318 (10)0.0174 (9)0.0007 (7)0.0027 (7)0.0037 (7)
C40.0205 (13)0.0430 (16)0.0223 (14)0.0000.0035 (11)0.000
C50.0316 (11)0.0271 (9)0.0326 (12)0.0070 (8)0.0011 (8)0.0017 (8)
C60.0375 (11)0.0463 (12)0.0216 (10)0.0025 (9)0.0019 (8)0.0118 (9)
C70.0247 (10)0.0361 (10)0.0182 (9)0.0006 (8)0.0031 (7)0.0028 (8)
C80.0296 (10)0.0189 (8)0.0177 (9)0.0013 (7)0.0010 (7)0.0008 (7)
C90.0197 (12)0.0320 (13)0.0198 (13)0.0000.0020 (10)0.000
C100.0377 (11)0.0289 (10)0.0219 (10)0.0049 (8)0.0073 (8)0.0024 (8)
C110.0410 (16)0.0265 (13)0.0158 (13)0.0000.0015 (11)0.000
B10.045 (2)0.0277 (15)0.036 (2)0.0000.0101 (15)0.000
F10.0836 (11)0.0364 (7)0.0509 (9)0.0058 (7)0.0261 (7)0.0094 (6)
F20.0916 (17)0.0588 (13)0.0476 (13)0.0000.0102 (12)0.000
F30.0478 (13)0.0654 (14)0.0979 (19)0.0000.0209 (12)0.000
Fe10.0191 (2)0.02309 (19)0.01423 (19)0.0000.00091 (13)0.000
N10.0216 (10)0.0195 (10)0.0151 (10)0.0000.0006 (8)0.000
N20.0361 (9)0.0220 (7)0.0178 (8)0.0003 (6)0.0030 (6)0.0009 (6)
N30.0295 (12)0.0298 (11)0.0213 (11)0.0000.0066 (9)0.000
O10.0396 (8)0.0480 (9)0.0354 (8)0.0173 (7)0.0028 (7)0.0147 (7)
Geometric parameters (Å, º) top
C1—C21.425 (2)C8—H8B0.9900
C1—C2i1.425 (2)C9—N31.454 (3)
C1—C41.502 (3)C9—N11.518 (3)
C1—Fe12.186 (2)C9—H9A0.9900
C2—C31.434 (2)C9—H9B0.9900
C2—C51.499 (2)C10—N31.473 (2)
C2—Fe12.1199 (18)C10—N21.475 (3)
C3—C3i1.418 (3)C10—H10A0.9900
C3—C61.505 (2)C10—H10B0.9900
C3—Fe12.1038 (17)C11—N21.473 (2)
C4—H4A0.9482C11—N2i1.473 (2)
C4—H4B0.9477C11—H11A0.9900
C4—H4C0.9482C11—H11B0.9900
C5—H5A0.9800B1—F31.375 (4)
C5—H5B0.9800B1—F1ii1.384 (2)
C5—H5C0.9800B1—F11.384 (2)
C6—H6A0.9800B1—F21.388 (4)
C6—H6B0.9800Fe1—C7i1.791 (2)
C6—H6C0.9800Fe1—N12.069 (2)
C7—O11.131 (2)Fe1—C3i2.1038 (17)
C7—Fe11.791 (2)Fe1—C2i2.1199 (18)
C8—N21.455 (2)N1—C8i1.516 (2)
C8—N11.516 (2)N3—C10i1.473 (2)
C8—H8A0.9900
C2—C1—C2i108.2 (2)H10A—C10—H10B108.0
C2—C1—C4125.70 (11)N2—C11—N2i112.4 (2)
C2i—C1—C4125.70 (11)N2—C11—H11A109.1
C2—C1—Fe168.18 (12)N2i—C11—H11A109.1
C2i—C1—Fe168.18 (12)N2—C11—H11B109.1
C4—C1—Fe1135.09 (18)N2i—C11—H11B109.1
C1—C2—C3107.69 (16)H11A—C11—H11B107.8
C1—C2—C5126.29 (17)F3—B1—F1ii109.5 (2)
C3—C2—C5125.70 (16)F3—B1—F1109.5 (2)
C1—C2—Fe173.19 (12)F1ii—B1—F1111.1 (3)
C3—C2—Fe169.55 (10)F3—B1—F2107.1 (3)
C5—C2—Fe1127.73 (13)F1ii—B1—F2109.8 (2)
C3i—C3—C2108.09 (10)F1—B1—F2109.8 (2)
C3i—C3—C6125.52 (11)C7—Fe1—C7i98.58 (12)
C2—C3—C6126.05 (16)C7—Fe1—N193.00 (7)
C3i—C3—Fe170.30 (5)C7i—Fe1—N193.00 (7)
C2—C3—Fe170.76 (10)C7—Fe1—C3i85.25 (8)
C6—C3—Fe1129.76 (13)C7i—Fe1—C3i115.35 (8)
C1—C4—H4A110.1N1—Fe1—C3i151.56 (6)
C1—C4—H4B110.2C7—Fe1—C3115.35 (8)
H4A—C4—H4B108.8C7i—Fe1—C385.25 (8)
C1—C4—H4C110.1N1—Fe1—C3151.56 (6)
H4A—C4—H4C108.8C3i—Fe1—C339.40 (10)
H4B—C4—H4C108.8C7—Fe1—C2i93.05 (8)
C2—C5—H5A109.5C7i—Fe1—C2i151.50 (8)
C2—C5—H5B109.5N1—Fe1—C2i112.37 (7)
H5A—C5—H5B109.5C3i—Fe1—C2i39.69 (7)
C2—C5—H5C109.5C3—Fe1—C2i66.27 (7)
H5A—C5—H5C109.5C7—Fe1—C2151.50 (8)
H5B—C5—H5C109.5C7i—Fe1—C293.05 (8)
C3—C6—H6A109.5N1—Fe1—C2112.37 (7)
C3—C6—H6B109.5C3i—Fe1—C266.27 (7)
H6A—C6—H6B109.5C3—Fe1—C239.69 (7)
C3—C6—H6C109.5C2i—Fe1—C265.99 (10)
H6A—C6—H6C109.5C7—Fe1—C1129.93 (6)
H6B—C6—H6C109.5C7i—Fe1—C1129.93 (6)
O1—C7—Fe1172.94 (17)N1—Fe1—C195.65 (9)
N2—C8—N1112.36 (14)C3i—Fe1—C165.09 (8)
N2—C8—H8A109.1C3—Fe1—C165.09 (8)
N1—C8—H8A109.1C2i—Fe1—C138.62 (6)
N2—C8—H8B109.1C2—Fe1—C138.62 (6)
N1—C8—H8B109.1C8i—N1—C8108.09 (18)
H8A—C8—H8B107.9C8i—N1—C9105.83 (12)
N3—C9—N1112.7 (2)C8—N1—C9105.83 (12)
N3—C9—H9A109.1C8i—N1—Fe1112.22 (10)
N1—C9—H9A109.1C8—N1—Fe1112.22 (10)
N3—C9—H9B109.1C9—N1—Fe1112.21 (14)
N1—C9—H9B109.1C8—N2—C11108.61 (16)
H9A—C9—H9B107.8C8—N2—C10108.47 (14)
N3—C10—N2111.61 (15)C11—N2—C10108.45 (16)
N3—C10—H10A109.3C9—N3—C10i108.77 (13)
N2—C10—H10A109.3C9—N3—C10108.77 (13)
N3—C10—H10B109.3C10i—N3—C10108.5 (2)
N2—C10—H10B109.3
C2i—C1—C2—C34.9 (3)C2i—C1—Fe1—C720.56 (17)
C4—C1—C2—C3168.0 (2)C4—C1—Fe1—C798.70 (10)
Fe1—C1—C2—C361.35 (13)C2—C1—Fe1—C7i20.56 (17)
C2i—C1—C2—C5178.72 (12)C2i—C1—Fe1—C7i142.04 (11)
C4—C1—C2—C55.8 (4)C4—C1—Fe1—C7i98.70 (10)
Fe1—C1—C2—C5124.84 (19)C2—C1—Fe1—N1119.26 (11)
C2i—C1—C2—Fe156.44 (17)C2i—C1—Fe1—N1119.26 (11)
C4—C1—C2—Fe1130.7 (2)C4—C1—Fe1—N10.0
C1—C2—C3—C3i3.03 (16)C2—C1—Fe1—C3i82.56 (13)
C5—C2—C3—C3i176.89 (15)C2i—C1—Fe1—C3i38.92 (11)
Fe1—C2—C3—C3i60.69 (12)C4—C1—Fe1—C3i158.18 (5)
C1—C2—C3—C6170.56 (18)C2—C1—Fe1—C338.92 (11)
C5—C2—C3—C63.3 (3)C2i—C1—Fe1—C382.56 (13)
Fe1—C2—C3—C6125.73 (18)C4—C1—Fe1—C3158.18 (5)
C1—C2—C3—Fe163.71 (14)C2—C1—Fe1—C2i121.5 (2)
C5—C2—C3—Fe1122.43 (19)C4—C1—Fe1—C2i119.26 (11)
C3i—C3—Fe1—C743.83 (7)C2i—C1—Fe1—C2121.5 (2)
C2—C3—Fe1—C7162.15 (11)C4—C1—Fe1—C2119.26 (11)
C6—C3—Fe1—C776.48 (19)N2—C8—N1—C8i55.2 (2)
C3i—C3—Fe1—C7i141.10 (6)N2—C8—N1—C957.82 (19)
C2—C3—Fe1—C7i100.59 (12)N2—C8—N1—Fe1179.48 (11)
C6—C3—Fe1—C7i20.78 (18)N3—C9—N1—C8i57.29 (11)
C3i—C3—Fe1—N1131.39 (13)N3—C9—N1—C857.29 (11)
C2—C3—Fe1—N113.07 (18)N3—C9—N1—Fe1180.0
C6—C3—Fe1—N1108.29 (19)C7—Fe1—N1—C8i168.40 (13)
C2—C3—Fe1—C3i118.32 (9)C7i—Fe1—N1—C8i69.64 (13)
C6—C3—Fe1—C3i120.32 (16)C3i—Fe1—N1—C8i106.04 (13)
C3i—C3—Fe1—C2i37.89 (6)C3—Fe1—N1—C8i15.9 (2)
C2—C3—Fe1—C2i80.43 (14)C2i—Fe1—N1—C8i97.06 (12)
C6—C3—Fe1—C2i158.20 (19)C2—Fe1—N1—C8i24.90 (14)
C3i—C3—Fe1—C2118.32 (9)C1—Fe1—N1—C8i60.98 (12)
C6—C3—Fe1—C2121.4 (2)C7—Fe1—N1—C869.64 (13)
C3i—C3—Fe1—C180.43 (9)C7i—Fe1—N1—C8168.40 (13)
C2—C3—Fe1—C137.89 (9)C3i—Fe1—N1—C815.9 (2)
C6—C3—Fe1—C1159.25 (19)C3—Fe1—N1—C8106.04 (13)
C1—C2—Fe1—C781.4 (2)C2i—Fe1—N1—C824.90 (14)
C3—C2—Fe1—C735.5 (2)C2—Fe1—N1—C897.06 (12)
C5—C2—Fe1—C7155.42 (17)C1—Fe1—N1—C860.98 (12)
C1—C2—Fe1—C7i164.35 (13)C7—Fe1—N1—C949.38 (6)
C3—C2—Fe1—C7i78.81 (12)C7i—Fe1—N1—C949.38 (6)
C5—C2—Fe1—C7i41.12 (17)C3i—Fe1—N1—C9134.94 (12)
C1—C2—Fe1—N169.85 (12)C3—Fe1—N1—C9134.94 (12)
C3—C2—Fe1—N1173.31 (9)C2i—Fe1—N1—C9143.92 (6)
C5—C2—Fe1—N153.38 (17)C2—Fe1—N1—C9143.92 (6)
C1—C2—Fe1—C3i79.22 (12)C1—Fe1—N1—C9180.0
C3—C2—Fe1—C3i37.62 (11)N1—C8—N2—C1157.6 (2)
C5—C2—Fe1—C3i157.54 (18)N1—C8—N2—C1060.06 (18)
C1—C2—Fe1—C3116.84 (16)N2i—C11—N2—C860.0 (3)
C5—C2—Fe1—C3119.9 (2)N2i—C11—N2—C1057.7 (2)
C1—C2—Fe1—C2i35.65 (13)N3—C10—N2—C859.72 (18)
C3—C2—Fe1—C2i81.19 (10)N3—C10—N2—C1158.1 (2)
C5—C2—Fe1—C2i158.88 (14)N1—C9—N3—C10i59.01 (14)
C3—C2—Fe1—C1116.84 (16)N1—C9—N3—C1059.01 (14)
C5—C2—Fe1—C1123.2 (2)N2—C10—N3—C959.2 (2)
C2—C1—Fe1—C7142.04 (11)N2—C10—N3—C10i59.0 (2)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C10H15)(C6H12N4)(CO)2]BF4
Mr474.10
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)13.8388 (6), 9.1771 (4), 16.4365 (8)
V3)2087.44 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 2005)
Tmin, Tmax0.746, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16663, 2671, 2065
Rint0.050
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.04
No. of reflections2671
No. of parameters153
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

Our acknowledgement goes to the University of KwaZulu-Natal for resources and financial support.

References

First citationAllan, J. R., Brown, D. H. & Lappin, M. (1970). J. Inorg. Nucl. Chem. 32, 2287–2292.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Phelps, A. L., Adams, M. J. & Yarbrough, J. C. (2003). J. Organomet. Chem. 666, 49–53.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcia, B. B., Liu, D., Sepehri, S., Candelaria, S., Beckham, D. M., Savage, L. W. & Cao, G. (2010). J. Non-Cryst. Solids, 356, 1620–1625.  CAS Google Scholar
First citationGreenwood, S. D. (1981). Infection, 9, 223–227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLu, S., Qin, S., Ke, Y., Li, J., Pei, H., Zhou, S., Wu, X. & Du, W. (2004). Cryst. Res. Technol. 39, 89–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatos, R. M. & Verkade, J. G. (2003). J. Braz. Chem. Soc. 14, 71–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012a). Inorg. Chim. Acta, 390, 83–94.  CAS Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012b). Inorg. Chim. Acta, 382, 27–34.  CAS Google Scholar
First citationShafiq, F., Szalda, D. J., Creutz, C. & Bullock, R. M. (2000). Organometallics, 19, 824–833.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrom, J. G. J. & Jun, H. W. (1986). J. Pharm. Sci. 75, 416–420.  CAS PubMed Web of Science Google Scholar
First citationXue, M., Zhu, G., Ding, H., Wu, L., Zhao, X., Jin, Z. & Qiu, S. (2009). Cryst. Growth Des. 9, 1481–1488.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, G., Zhang, H., Song, S., Li, Y. & Guo, H. (2008). Eur. J. Inorg. Chem. pp. 1756–1759.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds