metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(2-methyl-1H-imidazole-κN3)cobalt(II) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 30 September 2011; accepted 29 October 2011; online 5 November 2011)

In the title complex, [Co(C4H6N2)2(H2O)4](C10H6O6S2), the cation and anion both reside on crystallographic inversion centers, such that the asymmetric unit comprises one half cation and one half anion. The central CoII ion is coordinated by four water mol­ecules and two 2-methyl­imidazole ligands, resulting in a trans-octa­hedral coordination geometry. The existence of strong N—H⋯O and O—H⋯O hydrogen-bonding inter­actions gives rise to a three-dimensional structure.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010)[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]; Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H6N2)2(H2O)4](C10H6O6S2)

  • Mr = 581.48

  • Monoclinic, P 21 /n

  • a = 8.0260 (16) Å

  • b = 12.923 (3) Å

  • c = 11.658 (2) Å

  • β = 99.27 (3)°

  • V = 1193.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 12041 measured reflections

  • 2729 independent reflections

  • 2558 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.09

  • 2729 reflections

  • 177 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H4⋯O5i 0.85 (1) 1.97 (1) 2.815 (2) 174 (3)
O2—H5⋯O4ii 0.84 (1) 1.88 (1) 2.7149 (19) 171 (3)
O1—H6⋯O5ii 0.84 (1) 2.21 (1) 3.026 (2) 167 (3)
O1—H7⋯O3iii 0.84 (1) 1.92 (1) 2.7661 (18) 179 (2)
N1—H1B⋯O4 0.86 2.06 2.906 (2) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+2; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, simple molecular-ionic compounds containing inorganic cations and organic anions have attracted great interest owing to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006).

The asymmetric unit of the title compound is shown in Fig1, which consists of one (C10H6O6S2)2- anion and one 2C4H6N2.4H2O.Co(II) molecule-based cation.The title complex crystallizes in monoclinic P 21/n space group, the whole compound shall be stable thanks to the numerous hydrogen bonds formed in molecules, such as the N—H···O and the O—H···O bonds. The length of N—H···O is 2.06 Å, while the length of O—H···O hydrogen bonds ranges from 1.878 to 2.205 Å. Further details about the hydrogen bonds are listed in Table 1.

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Experimental top

Co(CH3COO-)2.4H2O (4.96 g, 20 mmol) mixed with K2CO3 (2.76, 20 mmol) were dissolved into 15 ml distilled water under stirring for 5 minutes, and turbid liquid was filtered,and then CoCO3 was obtained in about 90% yield. CoCO3(1.19, 10 mmol) were dissolved into solution containing 2.88 g 1,5-naphthalene disulfonic acid under stirring for 5 minutes, and then 2-methylimidazole (3.28 g, 40 mmol) were added to the solution.At last, the solution was filtered, then tansparent solution was located in a quiet and clean place, block pink crystals suitable for X-ray diffraction were obtained in about 78% yield after two days and filtered and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å and N—H = 0.86 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N). The hydrogen atoms from water molecules were added from a difference map, and the length of O—H bonds was fixed to 0.84Å with a deviation of 0.01 Å.

Structure description top

In recent years, simple molecular-ionic compounds containing inorganic cations and organic anions have attracted great interest owing to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006).

The asymmetric unit of the title compound is shown in Fig1, which consists of one (C10H6O6S2)2- anion and one 2C4H6N2.4H2O.Co(II) molecule-based cation.The title complex crystallizes in monoclinic P 21/n space group, the whole compound shall be stable thanks to the numerous hydrogen bonds formed in molecules, such as the N—H···O and the O—H···O bonds. The length of N—H···O is 2.06 Å, while the length of O—H···O hydrogen bonds ranges from 1.878 to 2.205 Å. Further details about the hydrogen bonds are listed in Table 1.

For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.
Tetraaquabis(2-methyl-1H-imidazole-κN3)cobalt(II) naphthalene-1,5-disulfonate top
Crystal data top
[Co(C4H6N2)2(H2O)4](C10H6O6S2)F(000) = 602
Mr = 581.48Dx = 1.618 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3450 reflections
a = 8.0260 (16) Åθ = 6.2–55.3°
b = 12.923 (3) ŵ = 0.96 mm1
c = 11.658 (2) ÅT = 293 K
β = 99.27 (3)°Block, pink
V = 1193.5 (4) Å30.3 × 0.3 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2729 independent reflections
Radiation source: fine-focus sealed tube2558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 1616
12041 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.6244P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2729 reflectionsΔρmax = 0.30 e Å3
177 parametersΔρmin = 0.27 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0260 (17)
Crystal data top
[Co(C4H6N2)2(H2O)4](C10H6O6S2)V = 1193.5 (4) Å3
Mr = 581.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.0260 (16) ŵ = 0.96 mm1
b = 12.923 (3) ÅT = 293 K
c = 11.658 (2) Å0.3 × 0.3 × 0.2 mm
β = 99.27 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2729 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2558 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.031
12041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0284 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
2729 reflectionsΔρmin = 0.27 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0422 (2)0.82564 (13)0.59914 (16)0.0329 (4)
H1A1.03200.76420.63890.039*
C20.91065 (19)0.89391 (12)0.58123 (13)0.0237 (3)
C30.92275 (18)0.98928 (11)0.52102 (14)0.0221 (3)
C40.7893 (2)1.06210 (13)0.50084 (16)0.0304 (4)
H4C0.68861.04860.52780.036*
C50.8068 (2)1.15174 (14)0.44245 (18)0.0376 (4)
H5C0.71781.19860.42990.045*
C60.1443 (2)1.11040 (14)0.80184 (15)0.0351 (4)
H6B0.05981.16000.79840.042*
C70.2652 (3)1.10886 (16)0.73404 (17)0.0411 (4)
H7B0.27991.15590.67610.049*
C80.2985 (2)0.97570 (14)0.85354 (17)0.0349 (4)
C90.3757 (3)0.88003 (18)0.9091 (2)0.0561 (6)
H9A0.31240.85730.96770.084*
H9B0.49010.89400.94420.084*
H9C0.37460.82690.85150.084*
Co10.00001.00001.00000.02367 (11)
H40.217 (4)0.8773 (10)1.141 (2)0.074 (9)*
H50.233 (3)0.9781 (17)1.1808 (15)0.058 (8)*
H60.118 (3)1.169 (2)1.1307 (16)0.072 (9)*
H70.006 (2)1.2076 (11)1.0401 (18)0.039 (6)*
N10.3618 (2)1.02391 (14)0.76803 (14)0.0405 (4)
H1B0.44901.00440.73940.049*
N20.16477 (19)1.02694 (11)0.87765 (13)0.0310 (3)
O10.05471 (19)1.15356 (9)1.06915 (12)0.0378 (3)
O20.20133 (17)0.94019 (10)1.12236 (12)0.0356 (3)
O30.60123 (15)0.83245 (10)0.52393 (11)0.0341 (3)
O40.66384 (16)0.94058 (10)0.69426 (11)0.0378 (3)
O50.76184 (17)0.76414 (10)0.70195 (12)0.0396 (3)
S10.72008 (5)0.85486 (3)0.62836 (3)0.02460 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (8)0.0262 (8)0.0442 (10)0.0024 (7)0.0079 (7)0.0075 (7)
C20.0199 (7)0.0238 (7)0.0278 (8)0.0024 (6)0.0052 (6)0.0018 (6)
C30.0178 (7)0.0225 (7)0.0259 (7)0.0013 (5)0.0031 (6)0.0029 (6)
C40.0197 (7)0.0304 (8)0.0426 (9)0.0035 (6)0.0097 (7)0.0026 (7)
C50.0253 (8)0.0317 (9)0.0572 (12)0.0098 (7)0.0111 (8)0.0098 (8)
C60.0412 (10)0.0322 (9)0.0334 (9)0.0028 (7)0.0111 (8)0.0004 (7)
C70.0494 (11)0.0433 (11)0.0333 (9)0.0123 (9)0.0142 (8)0.0024 (8)
C80.0334 (9)0.0347 (9)0.0394 (10)0.0020 (7)0.0148 (8)0.0073 (7)
C90.0531 (13)0.0455 (12)0.0764 (16)0.0166 (10)0.0304 (12)0.0034 (11)
Co10.02407 (17)0.02192 (17)0.02595 (17)0.00133 (11)0.00684 (12)0.00013 (11)
N10.0364 (9)0.0496 (9)0.0405 (9)0.0068 (7)0.0215 (7)0.0112 (7)
N20.0325 (8)0.0285 (7)0.0346 (8)0.0008 (6)0.0134 (6)0.0015 (6)
O10.0499 (8)0.0237 (6)0.0364 (7)0.0016 (5)0.0035 (6)0.0006 (5)
O20.0363 (7)0.0313 (7)0.0365 (7)0.0043 (5)0.0022 (5)0.0040 (5)
O30.0273 (6)0.0388 (7)0.0354 (7)0.0091 (5)0.0028 (5)0.0059 (5)
O40.0373 (7)0.0389 (7)0.0416 (7)0.0062 (5)0.0197 (6)0.0141 (6)
O50.0402 (7)0.0370 (7)0.0431 (7)0.0047 (6)0.0115 (6)0.0119 (6)
S10.0228 (2)0.0253 (2)0.0269 (2)0.00531 (14)0.00757 (15)0.00294 (14)
Geometric parameters (Å, º) top
C1—C21.366 (2)C8—C91.484 (3)
C1—C5i1.406 (2)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.429 (2)C9—H9C0.9600
C2—S11.7795 (16)Co1—O2ii2.1215 (14)
C3—C41.417 (2)Co1—O22.1215 (14)
C3—C3i1.432 (3)Co1—N22.1242 (15)
C4—C51.362 (2)Co1—N2ii2.1242 (15)
C4—H4C0.9300Co1—O1ii2.1603 (13)
C5—C1i1.406 (2)Co1—O12.1603 (13)
C5—H5C0.9300N1—H1B0.8600
C6—C71.347 (3)O1—H60.837 (10)
C6—N21.387 (2)O1—H70.843 (9)
C6—H6B0.9300O2—H40.845 (10)
C7—N11.365 (3)O2—H50.844 (10)
C7—H7B0.9300O3—S11.4498 (13)
C8—N21.329 (2)O4—S11.4605 (12)
C8—N11.343 (2)O5—S11.4596 (13)
C2—C1—C5i120.04 (16)O2—Co1—N291.27 (6)
C2—C1—H1A120.0O2ii—Co1—N2ii91.27 (6)
C5i—C1—H1A120.0O2—Co1—N2ii88.73 (6)
C1—C2—C3121.33 (14)N2—Co1—N2ii180.000 (1)
C1—C2—S1116.83 (12)O2ii—Co1—O1ii89.81 (5)
C3—C2—S1121.73 (11)O2—Co1—O1ii90.19 (5)
C4—C3—C2123.03 (14)N2—Co1—O1ii90.63 (6)
C4—C3—C3i119.19 (17)N2ii—Co1—O1ii89.37 (6)
C2—C3—C3i117.78 (17)O2ii—Co1—O190.19 (5)
C5—C4—C3120.77 (15)O2—Co1—O189.81 (5)
C5—C4—H4C119.6N2—Co1—O189.37 (6)
C3—C4—H4C119.6N2ii—Co1—O190.63 (6)
C4—C5—C1i120.88 (16)O1ii—Co1—O1180.0
C4—C5—H5C119.6C8—N1—C7108.86 (16)
C1i—C5—H5C119.6C8—N1—H1B125.6
C7—C6—N2109.89 (17)C7—N1—H1B125.6
C7—C6—H6B125.1C8—N2—C6105.61 (15)
N2—C6—H6B125.1C8—N2—Co1132.19 (13)
C6—C7—N1105.70 (17)C6—N2—Co1122.19 (12)
C6—C7—H7B127.2Co1—O1—H6127.2 (19)
N1—C7—H7B127.2Co1—O1—H7124.0 (15)
N2—C8—N1109.93 (17)H6—O1—H7109 (2)
N2—C8—C9128.11 (18)Co1—O2—H4126 (2)
N1—C8—C9121.95 (18)Co1—O2—H5115.3 (18)
C8—C9—H9A109.5H4—O2—H5110 (3)
C8—C9—H9B109.5O3—S1—O5113.01 (8)
H9A—C9—H9B109.5O3—S1—O4112.08 (8)
C8—C9—H9C109.5O5—S1—O4111.17 (8)
H9A—C9—H9C109.5O3—S1—C2106.22 (8)
H9B—C9—H9C109.5O5—S1—C2106.38 (8)
O2ii—Co1—O2180.0O4—S1—C2107.53 (7)
O2ii—Co1—N288.73 (6)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O5iii0.85 (1)1.97 (1)2.815 (2)174 (3)
O2—H5···O4iv0.84 (1)1.88 (1)2.7149 (19)171 (3)
O1—H6···O5iv0.84 (1)2.21 (1)3.026 (2)167 (3)
O1—H7···O3v0.84 (1)1.92 (1)2.7661 (18)179 (2)
N1—H1B···O40.862.062.906 (2)170
Symmetry codes: (iii) x1/2, y+3/2, z+1/2; (iv) x+1, y+2, z+2; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C4H6N2)2(H2O)4](C10H6O6S2)
Mr581.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0260 (16), 12.923 (3), 11.658 (2)
β (°) 99.27 (3)
V3)1193.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12041, 2729, 2558
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.09
No. of reflections2729
No. of parameters177
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H4···O5i0.845 (10)1.974 (11)2.815 (2)174 (3)
O2—H5···O4ii0.844 (10)1.878 (11)2.7149 (19)171 (3)
O1—H6···O5ii0.837 (10)2.205 (12)3.026 (2)167 (3)
O1—H7···O3iii0.843 (9)1.923 (10)2.7661 (18)179 (2)
N1—H1B···O40.862.062.906 (2)170
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Center, Southeast University, for its generous financial support.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds