Download citation
Download citation
link to html
The title compound, C16H14O, crystallizes with two independent mol­ecules in the asymmetric unit, one of which lies on a crystallographic mirror plane. Inter­molecular C—H...O hydrogen bonds link the mol­ecules into infinite one-dimensional chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052324/fj2058sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052324/fj2058Isup2.hkl
Contains datablock I

CCDC reference: 667446

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.037
  • wR factor = 0.102
  • Data-to-parameter ratio = 7.3

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.854 0.982 Tmin(prime) and Tmax expected: 0.970 0.981 RR(prime) = 0.880 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.88 PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.31 PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.05 From the CIF: _reflns_number_total 1746 Count of symmetry unique reflns 1751 Completeness (_total/calc) 99.71% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Many organic substances possess the property of fluorescence, when exposed to light of a suitable wavelength, and they emit light of a different wavelength. Anthracene itself fluoresces both as solid and vapor as well as in solution (Stevenson, 1911). This phenomenon has been of interest to the chemist. In order to establish some relation between the structure and the fluorescence of the substances, new series of anthracene derivatives have been prepared (Park et al., 2007; Zimmermann et al., 1999). In this paper, an anthracene derivative has been synthesized, and its structure (I) is reported.

The title compound, C16H14O, crystallizes with two independent molecules in the asymmetric unit. As shown in Fig. 1, the dihedral angle between the two methylanthracene plane is 74.8°. Each C16H14O molecule consists of a methyl group linked to an anthracene moiety through an ether linkage. The C—C bonds and C—C—C angles in the anthracene fragment are comparable with reported values (Ramos Silva et al., 2000). The C15—O1, C16–O1, C25—O2 and C26—O2 bond lengths are 1.406 (4), 1.427 (4), 1.420 (6) and 1.408 (6) Å, respectively, which are typical of ether bonds. Intermolecular C—H···O hydrogen bonds link the molecules into infinite one-dimensional chains.

Previous studies (Desiraju, 1996) have revealed that the C···O distances in C—H···O hydrogen bonds are in the range of 3.0–4.0 Å. The C—H···O angles θ in the range of 110–180° are acceptable. As shown in Fig. 2, the C(15)···O(1) distance of 3.436 Å and C(15)—H(15a)···O(1) angle of 147.7° indicate a weak C—H···O hydrogen bond, which links the molecules into an infinite one-dimensional chain. All the chains are parallel along the c axis in the crystal.

Related literature top

For related literature, see: Stevenson (1911); Park et al. (2007); Zimmermann et al. (1999); Ramos Silva et al. (2000); Desiraju (1996).

Experimental top

The title compound was prepared according to the reported procedure (Zimmermann et al., 1999). Crystals suitable for X-ray analysis were obtained by recrystallization from methanol solution of the compound.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms. The absolute structure could not be determined from the diffraction data. Friedel pairs have been merged, and the configuration shown is arbitary.

Structure description top

Many organic substances possess the property of fluorescence, when exposed to light of a suitable wavelength, and they emit light of a different wavelength. Anthracene itself fluoresces both as solid and vapor as well as in solution (Stevenson, 1911). This phenomenon has been of interest to the chemist. In order to establish some relation between the structure and the fluorescence of the substances, new series of anthracene derivatives have been prepared (Park et al., 2007; Zimmermann et al., 1999). In this paper, an anthracene derivative has been synthesized, and its structure (I) is reported.

The title compound, C16H14O, crystallizes with two independent molecules in the asymmetric unit. As shown in Fig. 1, the dihedral angle between the two methylanthracene plane is 74.8°. Each C16H14O molecule consists of a methyl group linked to an anthracene moiety through an ether linkage. The C—C bonds and C—C—C angles in the anthracene fragment are comparable with reported values (Ramos Silva et al., 2000). The C15—O1, C16–O1, C25—O2 and C26—O2 bond lengths are 1.406 (4), 1.427 (4), 1.420 (6) and 1.408 (6) Å, respectively, which are typical of ether bonds. Intermolecular C—H···O hydrogen bonds link the molecules into infinite one-dimensional chains.

Previous studies (Desiraju, 1996) have revealed that the C···O distances in C—H···O hydrogen bonds are in the range of 3.0–4.0 Å. The C—H···O angles θ in the range of 110–180° are acceptable. As shown in Fig. 2, the C(15)···O(1) distance of 3.436 Å and C(15)—H(15a)···O(1) angle of 147.7° indicate a weak C—H···O hydrogen bond, which links the molecules into an infinite one-dimensional chain. All the chains are parallel along the c axis in the crystal.

For related literature, see: Stevenson (1911); Park et al. (2007); Zimmermann et al. (1999); Ramos Silva et al. (2000); Desiraju (1996).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram showing the C—H···O hydrogen bonds.
9-(Methoxymethyl)anthracene top
Crystal data top
C16H14OF(000) = 1416
Mr = 222.27Dx = 1.222 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1313 reflections
a = 41.2360 (16) Åθ = 1.0–25.0°
b = 10.1110 (8) ŵ = 0.08 mm1
c = 8.6930 (6) ÅT = 293 K
V = 3624.4 (4) Å3Block, yellow
Z = 120.40 × 0.30 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1746 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.1°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4648
Tmin = 0.854, Tmax = 0.982k = 129
8859 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.5696P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1746 reflectionsΔρmax = 0.14 e Å3
239 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (5)
Crystal data top
C16H14OV = 3624.4 (4) Å3
Mr = 222.27Z = 12
Orthorhombic, Cmc21Mo Kα radiation
a = 41.2360 (16) ŵ = 0.08 mm1
b = 10.1110 (8) ÅT = 293 K
c = 8.6930 (6) Å0.40 × 0.30 × 0.25 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1746 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1313 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.982Rint = 0.034
8859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
1746 reflectionsΔρmin = 0.15 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.78219 (8)0.7300 (3)0.5267 (4)0.0695 (9)
H10.77590.64620.55940.083*
C20.76281 (8)0.7976 (4)0.4294 (5)0.0794 (11)
H20.74330.76010.39780.095*
C30.77155 (8)0.9240 (4)0.3749 (5)0.0813 (10)
H30.75790.96910.30770.098*
C40.79948 (7)0.9787 (4)0.4200 (4)0.0694 (9)
H40.80511.06180.38260.083*
C50.82076 (7)0.9132 (3)0.5239 (4)0.0552 (7)
C60.84968 (7)0.9698 (3)0.5729 (4)0.0577 (8)
H60.85541.05270.53530.069*
C70.87030 (7)0.9072 (3)0.6757 (3)0.0526 (7)
C80.89975 (7)0.9686 (3)0.7243 (4)0.0622 (8)
H80.90501.05230.68760.075*
C90.92012 (8)0.9072 (3)0.8225 (4)0.0690 (9)
H90.93920.94830.85280.083*
C100.91236 (8)0.7810 (3)0.8789 (4)0.0712 (9)
H100.92660.73910.94620.085*
C110.88455 (8)0.7190 (3)0.8374 (4)0.0663 (9)
H110.87990.63600.87810.080*
C120.86212 (7)0.7782 (3)0.7323 (3)0.0531 (7)
C130.83312 (8)0.7169 (3)0.6835 (3)0.0544 (8)
C140.81206 (7)0.7842 (3)0.5805 (3)0.0549 (7)
C150.82409 (8)0.5802 (3)0.7375 (4)0.0626 (8)
H15A0.83560.55960.83190.075*
H15B0.80100.57610.75800.075*
C160.82168 (10)0.3581 (3)0.6614 (5)0.0868 (12)
H16A0.82740.29810.58030.130*
H16B0.79860.35820.67440.130*
H16C0.83190.33060.75540.130*
C170.93912 (9)0.7459 (3)0.4267 (4)0.0703 (9)
H170.93810.81110.50200.084*
C180.91127 (9)0.6979 (3)0.3669 (5)0.0777 (10)
H180.89150.73010.40230.093*
C190.91169 (9)0.5998 (3)0.2517 (5)0.0788 (10)
H190.89240.56900.20950.095*
C200.94047 (8)0.5509 (3)0.2030 (5)0.0761 (10)
H200.94060.48450.12890.091*
C210.97045 (8)0.5984 (3)0.2621 (4)0.0610 (8)
C221.00000.5506 (4)0.2086 (6)0.0689 (13)
H221.00000.48440.13440.083*
C230.97033 (8)0.6990 (3)0.3772 (3)0.0570 (7)
C241.00000.7484 (4)0.4348 (5)0.0594 (11)
C251.00000.8575 (4)0.5519 (5)0.0709 (13)
H25A0.98090.85100.61660.085*0.50
H25B1.01910.85100.61660.085*0.50
C261.00001.0899 (5)0.5704 (7)0.098 (2)
H26A1.00001.16970.51040.147*
H26B1.01901.08760.63410.147*0.50
H26C0.98101.08760.63410.147*0.50
O10.83235 (5)0.4882 (2)0.6226 (3)0.0661 (6)
O21.00000.9797 (3)0.4714 (4)0.0749 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.069 (2)0.068 (2)0.0136 (18)0.0117 (19)0.0047 (18)
C20.061 (2)0.093 (3)0.084 (3)0.0089 (19)0.0028 (19)0.006 (2)
C30.072 (2)0.087 (2)0.085 (3)0.0065 (19)0.014 (2)0.007 (2)
C40.073 (2)0.067 (2)0.068 (2)0.0038 (17)0.0019 (18)0.0076 (18)
C50.0606 (18)0.0549 (17)0.0503 (17)0.0017 (15)0.0070 (15)0.0016 (14)
C60.0679 (18)0.0496 (17)0.0555 (19)0.0034 (15)0.0098 (15)0.0028 (15)
C70.0614 (17)0.0498 (16)0.0466 (16)0.0032 (14)0.0054 (14)0.0039 (13)
C80.0687 (18)0.0616 (19)0.0563 (19)0.0041 (15)0.0070 (18)0.0049 (17)
C90.0639 (19)0.080 (2)0.063 (2)0.0002 (17)0.0013 (17)0.0102 (19)
C100.077 (2)0.075 (2)0.062 (2)0.0132 (18)0.006 (2)0.0040 (19)
C110.084 (2)0.0537 (18)0.061 (2)0.0091 (17)0.0070 (18)0.0006 (16)
C120.0672 (18)0.0486 (16)0.0434 (16)0.0065 (13)0.0070 (15)0.0039 (14)
C130.0705 (19)0.0474 (16)0.0454 (17)0.0012 (15)0.0124 (15)0.0031 (13)
C140.0637 (17)0.0543 (17)0.0466 (17)0.0039 (14)0.0119 (15)0.0052 (14)
C150.081 (2)0.0584 (18)0.0481 (17)0.0064 (15)0.0123 (17)0.0001 (16)
C160.120 (3)0.055 (2)0.085 (3)0.022 (2)0.020 (2)0.0004 (19)
C170.097 (3)0.0559 (19)0.058 (2)0.0103 (19)0.0110 (19)0.0044 (16)
C180.085 (2)0.072 (2)0.077 (2)0.005 (2)0.011 (2)0.017 (2)
C190.080 (2)0.067 (2)0.089 (3)0.0058 (18)0.001 (2)0.011 (2)
C200.092 (3)0.055 (2)0.082 (2)0.0099 (18)0.008 (2)0.0077 (19)
C210.082 (2)0.0411 (15)0.0599 (19)0.0034 (15)0.0012 (18)0.0001 (14)
C220.089 (3)0.045 (2)0.072 (3)0.0000.0000.014 (2)
C230.086 (2)0.0409 (14)0.0437 (16)0.0030 (15)0.0037 (18)0.0062 (13)
C240.094 (3)0.043 (2)0.041 (2)0.0000.0000.0061 (18)
C250.101 (4)0.065 (3)0.047 (3)0.0000.0000.008 (2)
C260.126 (5)0.070 (3)0.096 (5)0.0000.0000.039 (3)
O10.0944 (14)0.0447 (10)0.0593 (12)0.0068 (11)0.0160 (12)0.0000 (10)
O20.109 (2)0.0506 (18)0.065 (2)0.0000.0000.0179 (16)
Geometric parameters (Å, º) top
C1—C21.349 (5)C15—H15B0.9700
C1—C141.427 (4)C16—O11.427 (4)
C1—H10.9300C16—H16A0.9600
C2—C31.410 (5)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.337 (4)C17—C181.351 (5)
C3—H30.9300C17—C231.438 (4)
C4—C51.423 (4)C17—H170.9300
C4—H40.9300C18—C191.411 (5)
C5—C61.389 (4)C18—H180.9300
C5—C141.440 (4)C19—C201.353 (5)
C6—C71.387 (4)C19—H190.9300
C6—H60.9300C20—C211.423 (4)
C7—C81.428 (4)C20—H200.9300
C7—C121.434 (4)C21—C221.391 (4)
C8—C91.349 (4)C21—C231.427 (4)
C8—H80.9300C22—C21i1.391 (4)
C9—C101.404 (5)C22—H220.9300
C9—H90.9300C23—C241.413 (4)
C10—C111.356 (4)C24—C23i1.413 (4)
C10—H100.9300C24—C251.501 (6)
C11—C121.431 (4)C25—O21.420 (6)
C11—H110.9300C25—H25A0.9700
C12—C131.412 (4)C25—H25B0.9700
C13—C141.421 (4)C26—O21.408 (6)
C13—C151.506 (4)C26—H26A0.9600
C15—O11.406 (4)C26—H26B0.9600
C15—H15A0.9700C26—H26C0.9600
C2—C1—C14121.5 (3)C13—C15—H15B109.9
C2—C1—H1119.3H15A—C15—H15B108.3
C14—C1—H1119.3O1—C16—H16A109.5
C1—C2—C3121.2 (3)O1—C16—H16B109.5
C1—C2—H2119.4H16A—C16—H16B109.5
C3—C2—H2119.4O1—C16—H16C109.5
C4—C3—C2119.8 (3)H16A—C16—H16C109.5
C4—C3—H3120.1H16B—C16—H16C109.5
C2—C3—H3120.1C18—C17—C23121.8 (3)
C3—C4—C5121.6 (3)C18—C17—H17119.1
C3—C4—H4119.2C23—C17—H17119.1
C5—C4—H4119.2C17—C18—C19121.1 (4)
C6—C5—C4122.1 (3)C17—C18—H18119.5
C6—C5—C14118.8 (3)C19—C18—H18119.5
C4—C5—C14119.0 (3)C20—C19—C18119.3 (4)
C7—C6—C5122.4 (3)C20—C19—H19120.3
C7—C6—H6118.8C18—C19—H19120.3
C5—C6—H6118.8C19—C20—C21121.7 (3)
C6—C7—C8120.9 (3)C19—C20—H20119.1
C6—C7—C12119.5 (3)C21—C20—H20119.1
C8—C7—C12119.6 (3)C22—C21—C20121.6 (3)
C9—C8—C7121.1 (3)C22—C21—C23119.0 (3)
C9—C8—H8119.4C20—C21—C23119.4 (3)
C7—C8—H8119.4C21i—C22—C21122.3 (4)
C8—C9—C10119.8 (3)C21i—C22—H22118.8
C8—C9—H9120.1C21—C22—H22118.8
C10—C9—H9120.1C24—C23—C21119.8 (3)
C11—C10—C9121.3 (3)C24—C23—C17123.5 (3)
C11—C10—H10119.3C21—C23—C17116.6 (3)
C9—C10—H10119.3C23i—C24—C23120.0 (4)
C10—C11—C12121.5 (3)C23i—C24—C25120.0 (2)
C10—C11—H11119.2C23—C24—C25120.0 (2)
C12—C11—H11119.2O2—C25—C24107.8 (3)
C13—C12—C11123.7 (3)O2—C25—H25A110.1
C13—C12—C7119.7 (3)C24—C25—H25A110.1
C11—C12—C7116.6 (3)O2—C25—H25B110.1
C12—C13—C14119.8 (3)C24—C25—H25B110.1
C12—C13—C15121.2 (3)H25A—C25—H25B108.5
C14—C13—C15119.0 (3)O2—C26—H26A109.5
C13—C14—C1123.4 (3)O2—C26—H26B109.5
C13—C14—C5119.8 (3)H26A—C26—H26B109.5
C1—C14—C5116.8 (3)O2—C26—H26C109.5
O1—C15—C13109.0 (2)H26A—C26—H26C109.5
O1—C15—H15A109.9H26B—C26—H26C109.5
C13—C15—H15A109.9C15—O1—C16111.6 (2)
O1—C15—H15B109.9C26—O2—C25112.8 (4)
C14—C1—C2—C31.0 (5)C2—C1—C14—C51.1 (5)
C1—C2—C3—C40.2 (6)C6—C5—C14—C130.5 (4)
C2—C3—C4—C50.6 (6)C4—C5—C14—C13179.6 (3)
C3—C4—C5—C6179.3 (3)C6—C5—C14—C1179.9 (3)
C3—C4—C5—C140.6 (5)C4—C5—C14—C10.3 (4)
C4—C5—C6—C7179.1 (3)C12—C13—C15—O199.2 (3)
C14—C5—C6—C70.8 (4)C14—C13—C15—O180.2 (3)
C5—C6—C7—C8179.6 (3)C23—C17—C18—C190.5 (5)
C5—C6—C7—C121.2 (4)C17—C18—C19—C201.6 (5)
C6—C7—C8—C9179.0 (3)C18—C19—C20—C211.7 (5)
C12—C7—C8—C90.2 (4)C19—C20—C21—C22178.1 (4)
C7—C8—C9—C100.2 (5)C19—C20—C21—C230.8 (5)
C8—C9—C10—C110.4 (5)C20—C21—C22—C21i178.3 (3)
C9—C10—C11—C121.0 (5)C23—C21—C22—C21i0.7 (7)
C10—C11—C12—C13178.9 (3)C22—C21—C23—C240.0 (5)
C10—C11—C12—C71.1 (4)C20—C21—C23—C24178.9 (3)
C6—C7—C12—C130.4 (4)C22—C21—C23—C17179.2 (3)
C8—C7—C12—C13179.5 (3)C20—C21—C23—C170.2 (4)
C6—C7—C12—C11179.7 (3)C18—C17—C23—C24178.8 (3)
C8—C7—C12—C110.5 (4)C18—C17—C23—C210.4 (4)
C11—C12—C13—C14179.1 (3)C21—C23—C24—C23i0.6 (5)
C7—C12—C13—C140.9 (4)C17—C23—C24—C23i178.5 (2)
C11—C12—C13—C151.5 (4)C21—C23—C24—C25177.9 (3)
C7—C12—C13—C15178.5 (3)C17—C23—C24—C251.2 (5)
C12—C13—C14—C1179.4 (3)C23i—C24—C25—O288.7 (3)
C15—C13—C14—C11.2 (4)C23—C24—C25—O288.7 (3)
C12—C13—C14—C51.4 (4)C13—C15—O1—C16174.7 (3)
C15—C13—C14—C5178.1 (3)C24—C25—O2—C26180.000 (2)
C2—C1—C14—C13179.6 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1ii0.972.583.436 (5)148
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14O
Mr222.27
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)41.2360 (16), 10.1110 (8), 8.6930 (6)
V3)3624.4 (4)
Z12
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.854, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8859, 1746, 1313
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.08
No. of reflections1746
No. of parameters239
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1i0.972.583.436 (5)148
Symmetry code: (i) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds