Download citation
Download citation
link to html
Single crystals of La2CuInSe5 were obtained by sinter­ing a La2Se3-Cu2Se-In2Se3 mixture. The crystal structure is similar to the previously reported La2CuInS5. The coordination polyhedron of the Cu atom is a trigonal bipyramid. In contrast to the La2CuInS5 compound, the position of this atom is fully occupied and ordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046041/fi2045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046041/fi2045Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](e-Cu) = 0.001 Å
  • R factor = 0.020
  • wR factor = 0.041
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 2.88 PLAT794_ALERT_5_G Check Predicted Bond Valency for La2 (3) 2.95 PLAT794_ALERT_5_G Check Predicted Bond Valency for In1 (9) 2.17 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 0.86
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Comment top

The formation of quaternary La2CuInSe5 had been established earlier during the investigation of the phase relations in the La2Se3—Cu2Se—In2Se3 system (Huch, Gulay & Olekseyuk, 2007) and the crystal structure of this compound was investigated using X-ray powder diffraction (space group Pnma). The crystal structure of La2CuInSe5 has been reinvestigated by means of X-ray single-crystal diffraction and presented here. Crystal structure of the title compound is similar to previously reported La2CuInS5 (Huch, Gulay, Olekseyuk & Pietraszko, 2007).

The unit cell and the coordination polyhedra of the La, Cu, In and Se atoms in the structure of the La2CuInSe5 compound are shown in Fig. 1. Selenium atoms create bi-capped trigonal prisms, octahedra and tetrahedra around the La, In and Cu atoms, respectively. The coordination polyhedron of the copper atom can be extended to a trigonal bipyramid. In contrast to La2CuInS5, the position of the Cu atom is fully occupied and ordered (Fig. 2). The single-crystal data for La2CuInSe5 agree well with our previous powder diffraction results (Huch, Gulay & Olekseyuk, 2007).

Related literature top

For the related La2CuInS5 structure, see Huch, Gulay, Olekseyuk & Pietraszko (2007). For a previous structure determination of the title compound from powder data, see Huch, Gulay & Olekseyuk (2007). For related literature, see Spek (2003).

Experimental top

The sample with the nominal compositions La2CuInSe5 was prepared by sintering the elemental constituents (purchased from Alfa Aesar) of the purity better than 99.9 wt.% in an evacuated quartz ampoule. The synthesis was realised in a tube furnace. The ampoule was heated with a heating rate of 30 K/h to maximal temperature 1420 K. The samples were kept at this temperature during 3 h. Afterwards they were cooled slowly (10 K/h) to 870 K and annealed at this temperature during 240 h. After annealing the ampoule with the sample was quenched in cold water. An EDAX PV9800 microanalyzer was used for the confirmation of the compositions of the crystals. Calculated for La2CuInSe5 (black crystals) % La: 32.65, Cu: 7.47, In: 13.49, Se: 46.39 and found % La: 31.74, Cu: 7.57, In: 13.65, Se: 47.04.

Refinement top

The crystal structure was solved by Patterson methods (Sheldrick, 1997) and refined by full matrix least squares method using SHELXL97 (Sheldrick, 1997). Space group Pnma was confirmed with PLATON (Spek, 2003) and no additional symmetry elements were found. The highest peak and deepest hole in the Fourier map are found 0.94 Å and 0.65 Å, respectively, from Cu1.

Structure description top

The formation of quaternary La2CuInSe5 had been established earlier during the investigation of the phase relations in the La2Se3—Cu2Se—In2Se3 system (Huch, Gulay & Olekseyuk, 2007) and the crystal structure of this compound was investigated using X-ray powder diffraction (space group Pnma). The crystal structure of La2CuInSe5 has been reinvestigated by means of X-ray single-crystal diffraction and presented here. Crystal structure of the title compound is similar to previously reported La2CuInS5 (Huch, Gulay, Olekseyuk & Pietraszko, 2007).

The unit cell and the coordination polyhedra of the La, Cu, In and Se atoms in the structure of the La2CuInSe5 compound are shown in Fig. 1. Selenium atoms create bi-capped trigonal prisms, octahedra and tetrahedra around the La, In and Cu atoms, respectively. The coordination polyhedron of the copper atom can be extended to a trigonal bipyramid. In contrast to La2CuInS5, the position of the Cu atom is fully occupied and ordered (Fig. 2). The single-crystal data for La2CuInSe5 agree well with our previous powder diffraction results (Huch, Gulay & Olekseyuk, 2007).

For the related La2CuInS5 structure, see Huch, Gulay, Olekseyuk & Pietraszko (2007). For a previous structure determination of the title compound from powder data, see Huch, Gulay & Olekseyuk (2007). For related literature, see Spek (2003).

Computing details top

Data collection: CrysAlis CCD (Mayer, 2006); cell refinement: CrysAlis RED (Mayer, 2006); data reduction: CrysAlis RED (Mayer, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The packing of La2CuInSe5 viewed along the b axis.
[Figure 2] Fig. 2. Trigonal bi-pyramids around the Cu atom in the structures of La2CuInS5 and La2CuInSe5.
dilanthanum copper indium pentaselenide top
Crystal data top
La2CuInSe5F(000) = 1448
Mr = 850.98Dx = 6.472 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1049 reflections
a = 12.051 (2) Åθ = 2.9–27.5°
b = 4.1223 (8) ŵ = 35.34 mm1
c = 17.580 (4) ÅT = 295 K
V = 873.3 (3) Å3Prism, black
Z = 40.13 × 0.07 × 0.03 mm
Data collection top
Kuma KM-4
diffractometer with CCD detector
1134 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 33.133 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 1515
Absorption correction: numerical
(CrysAlis RED; Mayer, 2006)
k = 54
Tmin = 0.076, Tmax = 0.396l = 2222
9371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.12Δρmax = 2.03 e Å3
1134 reflectionsΔρmin = 1.68 e Å3
56 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00141 (8)
Crystal data top
La2CuInSe5V = 873.3 (3) Å3
Mr = 850.98Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.051 (2) ŵ = 35.34 mm1
b = 4.1223 (8) ÅT = 295 K
c = 17.580 (4) Å0.13 × 0.07 × 0.03 mm
Data collection top
Kuma KM-4
diffractometer with CCD detector
1134 independent reflections
Absorption correction: numerical
(CrysAlis RED; Mayer, 2006)
1049 reflections with I > 2σ(I)
Tmin = 0.076, Tmax = 0.396Rint = 0.039
9371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02056 parameters
wR(F2) = 0.0410 restraints
S = 1.12Δρmax = 2.03 e Å3
1134 reflectionsΔρmin = 1.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.47993 (3)0.25000.67902 (2)0.00840 (10)
La20.13680 (3)0.25000.59252 (2)0.00889 (10)
In10.19371 (4)0.25000.35994 (3)0.01362 (12)
Cu10.58400 (8)0.25000.50300 (5)0.0222 (2)
Se10.39751 (5)0.25000.42335 (4)0.00954 (15)
Se20.24095 (5)0.25000.77082 (4)0.01086 (15)
Se30.38864 (5)0.25000.96206 (4)0.00997 (15)
Se40.48589 (5)0.25000.19359 (4)0.00883 (15)
Se50.18170 (5)0.25000.11544 (4)0.00930 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00886 (19)0.00760 (19)0.00873 (19)0.0000.00046 (13)0.000
La20.00796 (19)0.00757 (19)0.0111 (2)0.0000.00015 (14)0.000
In10.0104 (2)0.0147 (2)0.0158 (3)0.0000.00293 (18)0.000
Cu10.0312 (6)0.0196 (5)0.0159 (5)0.0000.0037 (4)0.000
Se10.0082 (3)0.0098 (3)0.0106 (3)0.0000.0007 (2)0.000
Se20.0107 (3)0.0117 (3)0.0101 (3)0.0000.0002 (2)0.000
Se30.0104 (3)0.0102 (3)0.0093 (3)0.0000.0010 (2)0.000
Se40.0093 (3)0.0090 (3)0.0082 (3)0.0000.0004 (2)0.000
Se50.0074 (3)0.0088 (3)0.0118 (3)0.0000.0009 (2)0.000
Geometric parameters (Å, º) top
La1—Se1i3.1094 (7)Cu1—Se1ii2.4443 (7)
La1—Se1ii3.1094 (7)Cu1—Se1i2.4443 (7)
La1—Se23.3013 (9)Cu1—Se5xii2.3920 (12)
La1—Se2iii3.2669 (10)Cu1—Cu1i2.8911 (14)
La1—Se4ii3.0714 (7)Cu1—Cu1ii2.8911 (14)
La1—Se4i3.0714 (7)Se1—Cu1ii2.4443 (7)
La1—Se5iv3.0482 (7)Se1—Cu1i2.4443 (7)
La1—Se5v3.0482 (7)Se1—La1i3.1094 (7)
La1—Cu13.3389 (12)Se1—La1ii3.1094 (7)
La1—La1vi4.1223 (8)Se2—In1v2.7061 (6)
La1—La1vii4.1223 (8)Se2—In1iv2.7061 (6)
La2—Se23.3763 (9)Se2—La1x3.2669 (10)
La2—Se3viii3.0988 (7)Se3—In1iv2.9079 (7)
La2—Se3ix3.0988 (7)Se3—In1v2.9079 (7)
La2—Se3x3.1407 (9)Se3—La2v3.0988 (7)
La2—Se4v3.0969 (7)Se3—La2iv3.0988 (7)
La2—Se4iv3.0969 (6)Se3—La2iii3.1407 (9)
La2—Se5v3.0323 (7)Se4—In1xii2.6754 (9)
La2—Se5iv3.0323 (7)Se4—La1ii3.0714 (7)
La2—La2vi4.1223 (8)Se4—La1i3.0714 (7)
La2—La2vii4.1223 (8)Se4—La2viii3.0969 (6)
In1—Se4xi2.6754 (9)Se4—La2ix3.0969 (6)
In1—Se12.6972 (9)Se5—Cu1xi2.3920 (12)
In1—Se2viii2.7061 (6)Se5—La2ix3.0323 (7)
In1—Se2ix2.7061 (6)Se5—La2viii3.0323 (7)
In1—Se3ix2.9079 (7)Se5—La1viii3.0482 (7)
In1—Se3viii2.9079 (7)Se5—La1ix3.0482 (7)
Cu1—Se12.6479 (13)
Se5iv—La1—Se5v85.09 (2)Se3ix—La2—La2vii131.694 (12)
Se5iv—La1—Se4ii143.79 (2)Se3x—La2—La2vii90.0
Se5v—La1—Se4ii84.221 (18)Se2—La2—La2vii90.0
Se5iv—La1—Se4i84.221 (18)La2vi—La2—La2vii180.00 (2)
Se5v—La1—Se4i143.79 (2)Se4xi—In1—Se1176.18 (3)
Se4ii—La1—Se4i84.30 (2)Se4xi—In1—Se2viii93.94 (2)
Se5iv—La1—Se1i69.09 (2)Se1—In1—Se2viii88.53 (2)
Se5v—La1—Se1i122.65 (2)Se4xi—In1—Se2ix93.94 (2)
Se4ii—La1—Se1i143.43 (2)Se1—In1—Se2ix88.53 (2)
Se4i—La1—Se1i85.03 (2)Se2viii—In1—Se2ix99.22 (3)
Se5iv—La1—Se1ii122.65 (2)Se4xi—In1—Se3ix84.12 (2)
Se5v—La1—Se1ii69.09 (2)Se1—In1—Se3ix93.19 (2)
Se4ii—La1—Se1ii85.03 (2)Se2viii—In1—Se3ix175.27 (2)
Se4i—La1—Se1ii143.43 (2)Se2ix—In1—Se3ix85.23 (2)
Se1i—La1—Se1ii83.04 (2)Se4xi—In1—Se3viii84.12 (2)
Se5iv—La1—Se2iii135.583 (13)Se1—In1—Se3viii93.19 (2)
Se5v—La1—Se2iii135.583 (13)Se2viii—In1—Se3viii85.23 (2)
Se4ii—La1—Se2iii70.975 (16)Se2ix—In1—Se3viii175.27 (2)
Se4i—La1—Se2iii70.975 (16)Se3ix—In1—Se3viii90.28 (3)
Se1i—La1—Se2iii72.473 (18)Se5xii—Cu1—Se1ii114.60 (3)
Se1ii—La1—Se2iii72.473 (18)Se5xii—Cu1—Se1i114.60 (3)
Se5iv—La1—Se267.777 (19)Se1ii—Cu1—Se1i114.97 (5)
Se5v—La1—Se267.777 (19)Se5xii—Cu1—Se187.56 (4)
Se4ii—La1—Se276.149 (19)Se1ii—Cu1—Se1110.95 (3)
Se4i—La1—Se276.149 (19)Se1i—Cu1—Se1110.95 (3)
Se1i—La1—Se2134.211 (13)Se5xii—Cu1—Cu1i108.24 (4)
Se1ii—La1—Se2134.211 (13)Se1ii—Cu1—Cu1i133.18 (6)
Se2iii—La1—Se2135.077 (17)Se1i—Cu1—Cu1i58.80 (2)
Se5iv—La1—Cu184.27 (2)Se1—Cu1—Cu1i52.15 (3)
Se5v—La1—Cu184.27 (2)Se5xii—Cu1—Cu1ii108.24 (4)
Se4ii—La1—Cu1128.709 (18)Se1ii—Cu1—Cu1ii58.80 (2)
Se4i—La1—Cu1128.709 (18)Se1i—Cu1—Cu1ii133.18 (6)
Se1i—La1—Cu144.373 (13)Se1—Cu1—Cu1ii52.15 (3)
Se1ii—La1—Cu144.373 (13)Cu1i—Cu1—Cu1ii90.95 (6)
Se2iii—La1—Cu183.60 (2)Se5xii—Cu1—La1172.58 (4)
Se2—La1—Cu1141.33 (2)Se1ii—Cu1—La162.83 (3)
Se5iv—La1—La1vi132.546 (12)Se1i—Cu1—La162.83 (3)
Se5v—La1—La1vi47.454 (12)Se1—Cu1—La199.86 (4)
Se4ii—La1—La1vi47.849 (12)Cu1i—Cu1—La176.75 (4)
Se4i—La1—La1vi132.151 (12)Cu1ii—Cu1—La176.75 (4)
Se1i—La1—La1vi131.520 (11)Cu1ii—Se1—Cu1i114.97 (5)
Se1ii—La1—La1vi48.480 (11)Cu1ii—Se1—Cu169.05 (3)
Se2iii—La1—La1vi90.0Cu1i—Se1—Cu169.05 (3)
Se2—La1—La1vi90.0Cu1ii—Se1—In1107.57 (3)
Cu1—La1—La1vi90.0Cu1i—Se1—In1107.57 (3)
Se5iv—La1—La1vii47.454 (12)Cu1—Se1—In1172.49 (4)
Se5v—La1—La1vii132.546 (12)Cu1ii—Se1—La1i145.31 (3)
Se4ii—La1—La1vii132.151 (12)Cu1i—Se1—La1i72.80 (3)
Se4i—La1—La1vii47.849 (12)Cu1—Se1—La1i84.43 (2)
Se1i—La1—La1vii48.480 (11)In1—Se1—La1i101.15 (2)
Se1ii—La1—La1vii131.520 (11)Cu1ii—Se1—La1ii72.80 (3)
Se2iii—La1—La1vii90.0Cu1i—Se1—La1ii145.31 (3)
Se2—La1—La1vii90.0Cu1—Se1—La1ii84.43 (2)
Cu1—La1—La1vii90.0In1—Se1—La1ii101.15 (2)
La1vi—La1—La1vii180.00 (2)La1i—Se1—La1ii83.04 (2)
Se5v—La2—Se5iv85.65 (2)In1v—Se2—In1iv99.22 (3)
Se5v—La2—Se4v79.38 (2)In1v—Se2—La1x97.12 (2)
Se5iv—La2—Se4v136.10 (2)In1iv—Se2—La1x97.12 (2)
Se5v—La2—Se4iv136.10 (2)In1v—Se2—La191.67 (2)
Se5iv—La2—Se4iv79.382 (19)In1iv—Se2—La191.67 (2)
Se4v—La2—Se4iv83.45 (2)La1x—Se2—La1166.40 (2)
Se5v—La2—Se3viii128.45 (2)In1v—Se2—La2130.213 (15)
Se5iv—La2—Se3viii73.595 (18)In1iv—Se2—La2130.213 (15)
Se4v—La2—Se3viii145.09 (2)La1x—Se2—La283.84 (2)
Se4iv—La2—Se3viii86.26 (2)La1—Se2—La282.56 (2)
Se5v—La2—Se3ix73.595 (18)In1iv—Se3—In1v90.28 (3)
Se5iv—La2—Se3ix128.45 (2)In1iv—Se3—La2v153.46 (3)
Se4v—La2—Se3ix86.26 (2)In1v—Se3—La2v87.232 (18)
Se4iv—La2—Se3ix145.09 (2)In1iv—Se3—La2iv87.232 (18)
Se3viii—La2—Se3ix83.39 (2)In1v—Se3—La2iv153.46 (3)
Se5v—La2—Se3x136.672 (12)La2v—Se3—La2iv83.39 (2)
Se5iv—La2—Se3x136.672 (12)In1iv—Se3—La2iii97.84 (2)
Se4v—La2—Se3x73.779 (19)In1v—Se3—La2iii97.84 (2)
Se4iv—La2—Se3x73.779 (19)La2v—Se3—La2iii108.680 (18)
Se3viii—La2—Se3x71.320 (18)La2iv—Se3—La2iii108.680 (18)
Se3ix—La2—Se3x71.320 (18)In1xii—Se4—La1ii97.52 (2)
Se5v—La2—Se266.952 (16)In1xii—Se4—La1i97.52 (2)
Se5iv—La2—Se266.952 (16)La1ii—Se4—La1i84.30 (2)
Se4v—La2—Se269.200 (18)In1xii—Se4—La2viii104.19 (2)
Se4iv—La2—Se269.200 (18)La1ii—Se4—La2viii158.28 (3)
Se3viii—La2—Se2136.374 (13)La1i—Se4—La2viii92.046 (16)
Se3ix—La2—Se2136.374 (13)In1xii—Se4—La2ix104.19 (2)
Se3x—La2—Se2129.61 (2)La1ii—Se4—La2ix92.046 (16)
Se5v—La2—La2vi47.177 (12)La1i—Se4—La2ix158.28 (3)
Se5iv—La2—La2vi132.823 (12)La2viii—Se4—La2ix83.45 (2)
Se4v—La2—La2vi48.276 (11)Cu1xi—Se5—La2ix103.85 (3)
Se4iv—La2—La2vi131.724 (11)Cu1xi—Se5—La2viii103.85 (3)
Se3viii—La2—La2vi131.694 (12)La2ix—Se5—La2viii85.65 (2)
Se3ix—La2—La2vi48.306 (12)Cu1xi—Se5—La1viii90.27 (3)
Se3x—La2—La2vi90.0La2ix—Se5—La1viii165.76 (3)
Se2—La2—La2vi90.0La2viii—Se5—La1viii92.868 (17)
Se5v—La2—La2vii132.823 (12)Cu1xi—Se5—La1ix90.27 (3)
Se5iv—La2—La2vii47.177 (12)La2ix—Se5—La1ix92.868 (17)
Se4v—La2—La2vii131.724 (11)La2viii—Se5—La1ix165.76 (3)
Se4iv—La2—La2vii48.276 (11)La1viii—Se5—La1ix85.09 (2)
Se3viii—La2—La2vii48.306 (12)
Se5iv—La1—Cu1—Se1ii151.39 (3)Se2viii—In1—Se1—La1i7.132 (18)
Se5v—La1—Cu1—Se1ii65.77 (3)Se2ix—In1—Se1—La1i92.14 (2)
Se4ii—La1—Cu1—Se1ii12.10 (4)Se3ix—In1—Se1—La1i177.276 (16)
Se4i—La1—Cu1—Se1ii130.74 (3)Se3viii—In1—Se1—La1i92.27 (2)
Se1i—La1—Cu1—Se1ii142.84 (5)Se2viii—In1—Se1—La1ii92.14 (2)
Se2iii—La1—Cu1—Se1ii71.42 (2)Se2ix—In1—Se1—La1ii7.132 (18)
Se2—La1—Cu1—Se1ii108.58 (2)Se3ix—In1—Se1—La1ii92.27 (2)
La1vi—La1—Cu1—Se1ii18.58 (2)Se3viii—In1—Se1—La1ii177.276 (16)
La1vii—La1—Cu1—Se1ii161.42 (2)Se5iv—La1—Se2—In1v177.282 (19)
Se5iv—La1—Cu1—Se1i65.77 (3)Se5v—La1—Se2—In1v83.44 (2)
Se5v—La1—Cu1—Se1i151.39 (3)Se4ii—La1—Se2—In1v5.917 (15)
Se4ii—La1—Cu1—Se1i130.74 (3)Se4i—La1—Se2—In1v93.36 (2)
Se4i—La1—Cu1—Se1i12.10 (4)Se1i—La1—Se2—In1v162.00 (2)
Se1ii—La1—Cu1—Se1i142.84 (5)Se1ii—La1—Se2—In1v62.72 (3)
Se2iii—La1—Cu1—Se1i71.42 (2)Se2iii—La1—Se2—In1v49.641 (15)
Se2—La1—Cu1—Se1i108.58 (2)Cu1—La1—Se2—In1v130.359 (15)
La1vi—La1—Cu1—Se1i161.42 (2)La1vi—La1—Se2—In1v40.359 (15)
La1vii—La1—Cu1—Se1i18.58 (2)La1vii—La1—Se2—In1v139.641 (15)
Se5iv—La1—Cu1—Se142.810 (12)Se5iv—La1—Se2—In1iv83.44 (2)
Se5v—La1—Cu1—Se142.810 (12)Se5v—La1—Se2—In1iv177.282 (19)
Se4ii—La1—Cu1—Se1120.68 (2)Se4ii—La1—Se2—In1iv93.36 (2)
Se4i—La1—Cu1—Se1120.68 (2)Se4i—La1—Se2—In1iv5.917 (15)
Se1i—La1—Cu1—Se1108.58 (2)Se1i—La1—Se2—In1iv62.72 (3)
Se1ii—La1—Cu1—Se1108.58 (2)Se1ii—La1—Se2—In1iv162.00 (2)
Se2iii—La1—Cu1—Se1180.0Se2iii—La1—Se2—In1iv49.641 (15)
Se2—La1—Cu1—Se10.0Cu1—La1—Se2—In1iv130.359 (15)
Se5iv—La1—Cu1—Cu1i4.28 (3)La1vi—La1—Se2—In1iv139.641 (15)
Se5v—La1—Cu1—Cu1i89.90 (3)La1vii—La1—Se2—In1iv40.359 (15)
Se4ii—La1—Cu1—Cu1i167.78 (2)Se5iv—La1—Se2—La1x46.923 (13)
Se4i—La1—Cu1—Cu1i73.59 (4)Se5v—La1—Se2—La1x46.923 (13)
Se1i—La1—Cu1—Cu1i61.49 (2)Se4ii—La1—Se2—La1x136.276 (12)
Se1ii—La1—Cu1—Cu1i155.67 (5)Se4i—La1—Se2—La1x136.276 (12)
Se2iii—La1—Cu1—Cu1i132.91 (3)Se1i—La1—Se2—La1x67.64 (2)
Se2—La1—Cu1—Cu1i47.09 (3)Se1ii—La1—Se2—La1x67.64 (2)
La1vi—La1—Cu1—Cu1i137.09 (3)Se2iii—La1—Se2—La1x180.0
La1vii—La1—Cu1—Cu1i42.91 (3)Cu1—La1—Se2—La1x0.0
Se5iv—La1—Cu1—Cu1ii89.90 (3)Se5iv—La1—Se2—La246.923 (13)
Se5v—La1—Cu1—Cu1ii4.28 (3)Se5v—La1—Se2—La246.923 (13)
Se4ii—La1—Cu1—Cu1ii73.59 (4)Se4ii—La1—Se2—La2136.276 (12)
Se4i—La1—Cu1—Cu1ii167.78 (2)Se4i—La1—Se2—La2136.276 (12)
Se1i—La1—Cu1—Cu1ii155.67 (5)Se1i—La1—Se2—La267.64 (2)
Se1ii—La1—Cu1—Cu1ii61.49 (2)Se1ii—La1—Se2—La267.64 (2)
Se2iii—La1—Cu1—Cu1ii132.91 (3)Se2iii—La1—Se2—La2180.0
Se2—La1—Cu1—Cu1ii47.09 (3)Cu1—La1—Se2—La20.0
La1vi—La1—Cu1—Cu1ii42.91 (3)Se5v—La2—Se2—In1v38.26 (3)
La1vii—La1—Cu1—Cu1ii137.09 (3)Se5iv—La2—Se2—In1v133.50 (4)
Se5xii—Cu1—Se1—Cu1ii115.45 (3)Se4v—La2—Se2—In1v48.73 (3)
Se1ii—Cu1—Se1—Cu1ii0.0Se4iv—La2—Se2—In1v139.52 (4)
Se1i—Cu1—Se1—Cu1ii129.09 (6)Se3viii—La2—Se2—In1v160.47 (3)
Cu1i—Cu1—Se1—Cu1ii129.09 (6)Se3ix—La2—Se2—In1v11.28 (5)
La1—Cu1—Se1—Cu1ii64.55 (3)Se3x—La2—Se2—In1v94.12 (3)
Se5xii—Cu1—Se1—Cu1i115.45 (3)La2vi—La2—Se2—In1v4.12 (3)
Se1ii—Cu1—Se1—Cu1i129.09 (6)La2vii—La2—Se2—In1v175.88 (3)
Se1i—Cu1—Se1—Cu1i0.0Se5v—La2—Se2—In1iv133.50 (4)
Cu1ii—Cu1—Se1—Cu1i129.09 (6)Se5iv—La2—Se2—In1iv38.26 (3)
La1—Cu1—Se1—Cu1i64.55 (3)Se4v—La2—Se2—In1iv139.52 (4)
Se5xii—Cu1—Se1—La1i41.761 (11)Se4iv—La2—Se2—In1iv48.73 (3)
Se1ii—Cu1—Se1—La1i157.22 (3)Se3viii—La2—Se2—In1iv11.28 (5)
Se1i—Cu1—Se1—La1i73.69 (3)Se3ix—La2—Se2—In1iv160.47 (3)
Cu1i—Cu1—Se1—La1i73.69 (3)Se3x—La2—Se2—In1iv94.12 (3)
Cu1ii—Cu1—Se1—La1i157.22 (3)La2vi—La2—Se2—In1iv175.88 (3)
La1—Cu1—Se1—La1i138.239 (11)La2vii—La2—Se2—In1iv4.12 (3)
Se5xii—Cu1—Se1—La1ii41.761 (11)Se5v—La2—Se2—La1x132.380 (13)
Se1ii—Cu1—Se1—La1ii73.69 (3)Se5iv—La2—Se2—La1x132.380 (13)
Se1i—Cu1—Se1—La1ii157.22 (3)Se4v—La2—Se2—La1x45.394 (13)
Cu1i—Cu1—Se1—La1ii157.22 (3)Se4iv—La2—Se2—La1x45.394 (13)
Cu1ii—Cu1—Se1—La1ii73.69 (3)Se3viii—La2—Se2—La1x105.41 (3)
La1—Cu1—Se1—La1ii138.239 (11)Se3ix—La2—Se2—La1x105.41 (3)
Se2viii—In1—Se1—Cu1ii167.44 (3)Se3x—La2—Se2—La1x0.0
Se2ix—In1—Se1—Cu1ii68.17 (3)Se5v—La2—Se2—La147.620 (13)
Se3ix—In1—Se1—Cu1ii16.97 (3)Se5iv—La2—Se2—La147.620 (13)
Se3viii—In1—Se1—Cu1ii107.42 (3)Se4v—La2—Se2—La1134.606 (13)
Se2viii—In1—Se1—Cu1i68.17 (3)Se4iv—La2—Se2—La1134.606 (13)
Se2ix—In1—Se1—Cu1i167.44 (3)Se3viii—La2—Se2—La174.59 (3)
Se3ix—In1—Se1—Cu1i107.42 (3)Se3ix—La2—Se2—La174.59 (3)
Se3viii—In1—Se1—Cu1i16.97 (3)Se3x—La2—Se2—La1180.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y, z+3/2; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1, z+1/2; (vi) x, y+1, z; (vii) x, y1, z; (viii) x+1/2, y, z1/2; (ix) x+1/2, y+1, z1/2; (x) x1/2, y, z+3/2; (xi) x1/2, y, z+1/2; (xii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaLa2CuInSe5
Mr850.98
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)12.051 (2), 4.1223 (8), 17.580 (4)
V3)873.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)35.34
Crystal size (mm)0.13 × 0.07 × 0.03
Data collection
DiffractometerKuma KM-4
diffractometer with CCD detector
Absorption correctionNumerical
(CrysAlis RED; Mayer, 2006)
Tmin, Tmax0.076, 0.396
No. of measured, independent and
observed [I > 2σ(I)] reflections
9371, 1134, 1049
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.041, 1.12
No. of reflections1134
No. of parameters56
Δρmax, Δρmin (e Å3)2.03, 1.68

Computer programs: CrysAlis CCD (Mayer, 2006), CrysAlis RED (Mayer, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2005), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
La1—Se1i3.1094 (7)La2—Se5iv3.0323 (7)
La1—Se23.3013 (9)In1—Se4vii2.6754 (9)
La1—Se2ii3.2669 (10)In1—Se12.6972 (9)
La1—Se4iii3.0714 (7)In1—Se2v2.7061 (6)
La1—Se5iv3.0482 (7)In1—Se3viii2.9079 (7)
La2—Se23.3763 (9)Cu1—Se12.6479 (13)
La2—Se3v3.0988 (7)Cu1—Se1iii2.4443 (7)
La2—Se3vi3.1407 (9)Cu1—Se1i2.4443 (7)
La2—Se4iv3.0969 (6)Cu1—Se5ix2.3920 (12)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y, z+1/2; (v) x+1/2, y, z1/2; (vi) x1/2, y, z+3/2; (vii) x1/2, y, z+1/2; (viii) x+1/2, y+1, z1/2; (ix) x+1/2, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds