Download citation
Download citation
link to html
The title compounds, bis­{μ-N-[(di­phenyl­phosphanyl)methyl]pyridin-4-amine-κ2N1:P}disilver bis­(perchlorate) aceto­nitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis­{μ-N-[(di­phenyl­phosphanyl)methyl]pyridin-4-amine-κ2N1:P}bis­[(nitrato-κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N-[(di­phenyl­phosphanyl)methyl]pyridin-4-amine (DPP) ligands linking two Ag+ cations in a head-to-tail fashion. In (1), the unique Ag+ cation has a near-linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak inter­actions to form a chain extending in the c direction. The half-occupancy aceto­nitrile mol­ecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetra­hedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] mol­ecule acts as a four-node to bridge four adjacent equivalent mol­ecules through N—H...O inter­actions, forming a two-dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = {1 \over 2}, {3 \over 2}, {5 \over 2} etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, {1 \over 2}, 1, {3 \over 2} etc. These two different supra­molecular structures result from the different geometric conformations of the templating anions which direct the self-assembly of the cations and anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614005725/fg3317sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005725/fg33171sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005725/fg33172sup3.hkl
Contains datablock 2

CCDC references: 991653; 991654

Introduction top

The crystal engineering of metallo-supra­molecular architectures involving metallo-organic frameworks as building blocks has been studied extensively due to their structural versatility, unique properties and applications in different areas of science, such as materials and nanotechnology (Li et al., 2012; Liu et al., 2012; Neogi et al., 2013; Ye et al., 2011). Numerous routes have been investigated for supra­molecular architectures, some of which are controlled by the formation of conventional covalent bonds and others by supra­molecular contacts, such as hydrogen bonding, ππ stacking and X—H···π (X = O, N, C) inter­actions etc. (Ji et al., 2010; Wang et al., 2008; Zheng et al., 2010). A variety of molecular architectures, such as multiple helicates, cages, grids, two-dimensional sheets, diamondoid networks and porous frameworks, have been prepared by different inter­actions. Counter-anions sometimes also take a secondary role in directing supra­molecular assembly via weak metal–anion inter­actions and the geometric effects of templating anions, such as NO3-, ClO4-, CF3SO3-, BF4-, PF6- and SbF6-, and this can result in significant structural variation (Kundu et al., 2010; Audhya et al., 2010; Ni et al., 2010; Raehm et al., 2003). Weak metal–anion inter­actions usually take place between `soft' metals (AgI and AuI) and `hard' coordination atoms (O and F), which could tune the linking modes of metal–organic building blocks and endow different properties on the resulting supra­molecular architectures.

We report here the dinuclear macrocycle cation complex [Ag2(DPP)2]2+ constructed from N-[(di­phenyl­phosphanyl)methyl]­pyridin-4-amine (DPP) and the Ag+ cation, which performs as a building block to construct two supra­molecular assemblies with counter-anions of NO3- and ClO4- (see scheme). Weak metal–oxygen inter­actions and the shape of the anions play a key role in determining the supra­molecular structures. [Ag2(DPP)2](ClO4)2.CH3CN, (1), forms a one-dimensional chain but [Ag2(DPP)2](NO3)2, (2), is a two-dimensional sheet.

Experimental top

Synthesis and crystallization top

For the synthesis of complex (1), AgClO4 (0.0207 g, 0.1 mmol) was added to a mixture of CH3CN (2 ml) and CH3COCH3 (2 ml) containing DPP (0.0292 g, 0.10 mmol). The resulting solution was diffused with di­ethyl ether after stirring for 1 h at room temperature. After 2d, colourless block-shaped crystals of (1) were obtained. Analysis, calculated for C38H37Ag2Cl2N5O8P2: C 43.85, H 3.58, N 6.73%; found: C 43.69, H 3.82, N 6.94%. IR ([Medium?, ν, cm-1): 1611, 1579, 1528, 1435, 1225, 1089, 824, 751, 696, 623.

For the synthesis of complex (2), AgNO3 (0.0168 g, 0.1 mmol) was added to a mixture of CH3CN–C6H5CH3–DMF (DMF is di­methyl­formamide; 5 ml, with a volume ratio of 2:2:1) containing DPP (0.0292 g, 0.10 mmol). The resulting solution was diffused with di­ethyl ether after stirring for 1 h at room temperature. After a week, colourless block-shaped crystals of (2) suitable for X-ray analysis were obtained. Analysis, calculated for C36H34Ag2N6O6P2: C 46.75, H 3.68, N 9.09%; found: C 47.34, H 3.87, N 8.76%. IR ([Medium?, ν, cm-1): 1607, 1569, 1524, 1430, 1219, 1060, 820, 758, 692, 623.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were generated geometrically, with C—H = 0.93–0.99 Å, and refined with a riding model, with Uiso(H) = 1.2–1.5Ueq(C). [Please check added text]

Results and discussion top

X-ray diffraction analysis for complex (1) establishes that the asymmetric unit contains one DPP ligand, one Ag+ cation, one ClO4- counter-ion and one half-occupancy aceto­nitrile molecule, lying with its methyl C atom on a twofold axis (Fig. 1). The [Ag2(DPP)2]2+ dimer lies about an inversion centre. The unique Ag+ cation is coordinated by one P atom and one pyridine N atom from two different DPP ligands, exhibiting a nearly linear geometry. There is also a long contact to the aceto­nitrile N atom; see Table 2 for geometric details, which are comparable with those of the reported structures of similar complexes (Wang et al., 2008).

In the solid-state structure of (1), two adjacent [Ag2(DPP)2]2+ cations are doubly bridged by two ClO4- anions to form a one-dimensional supra­molecular chain through weak Ag···O and N—H···O inter­actions (Fig. 2 and Table 3). Each ClO4- anion affords two O atoms to contact with two adjacent cations, one O atom (O3) hydrogen-bonding with atom N2 from a cation, while another O atom (O2) inter­acts weakly with an adjacent Ag1i cation [O2···Ag1i = 3.171 (5) Å; symmetry code: (i) x, -y + 1, z - 1/2]. Each [Ag2(DPP)2]2+ cation bridges four adjacent ClO4- anions via two Ag···O and two N—H···O weak inter­actions (Fig. 2). Thus, the weak Ag—O and N—H···O inter­actions are the primary tools in assembling the [Ag2(DPP)2]2+ cations and ClO4- anions into a chain extending in the c direction. Adjacent cations in the chain are located at 62.2 (3)° to each other (defined by their P···P lines). The aceto­nitrile molecule, lying about a twofold axis, helps to link the centrosymmetric dimers, in addition to the linkage provided by the perchlorate group. A weak C4—H4A···O2ii contact [symmetry code: x, -y + 1, z + 1/2] (see Table 3) is also present in the chain of dimers extending in the c direction. There are only simple van der Waals contacts between these chains.

To study further the influence of the anion as a template for supra­molecular self-assembly, complex (2) was prepared using AgNO3 instead of AgClO4. X-ray diffraction analysis shows there are two crystallographically independent but structurally very similar [Ag2(DPP)2](NO3)2 units (Fig. 3), each lying about independent inversion centres. Two Ag+ cations are bridged by two DPP ligands in a head-to-tail fashion, constructing a dinuclear [Ag2(DPP)2]2+ cation similar to that in complex (1), but the coordination environment around the Ag atom is quite different from that in (1). The bond distances (Table 4) are similar to those in (1), but the N—Ag—P angles are much smaller than those in (1), while the Ag···Ag separations [6.497 (2) and 6.262 (2) Å] in the two independent dimers are also much longer than the corresponding value in (1). Furthermore, the Ag···O distances (see Table 4) are much less than the sum of the van der Waals radii of Ag and O atoms (3.27 Å; Winter, 1993). The NO3- anions could be considered as being in a chelating mode to coordinate weakly to Ag+, and thus the coordination environment of Ag+ in (2) could be described as a distorted tetra­hedral geometry constructed by one P atom from one DPP, one N atom from another DPP and two chelating O atoms from one NO3- anion.

Such a geometric conformation results in longer Ag···Ag separations and smaller N—Ag—P angles in (2), compared with the corresponding values in (1) where the coordination environment of Ag+ is nearly linear. The pyridine ring-centred distances in the cations of (2) are 4.336 (2) and 4.622 (5) Å, similar to that in (1) [4.417 (1) Å].

Each [Ag2(C18H17N2P)2(NO3)2] dimer molecule of (2) performs as a four-node to bridge four adjacent equivalent molecules through N—H···O inter­actions, forming a two-dimensional sheet parallel to the bc plane. Adjacent sheets are constructed by dimers with Ag1 and dimers with Ag2, respectively (Fig. 4). The sheets of dimers with Ag1 all lie near a = 1/2, 3/2, 5/2 etc., while the similar sheets with Ag2 dimers all lie near a = 0, 1, 2 etc. There is only one type of contact between these parallel sheets and that is listed as C24—H24A···O3v in Table 5. Thus, the two independent sheets are arranged in an alternating sequence at a = 0, 1/2, 1, 3/2 etc., with C—H···O contacts and simple van der Waals contacts between the sheets.

In summary, two supra­molecular structures are constructed with different geometric conformations of the anions as template. The tetra­hedrally geometric ClO4- anions link the [Ag2(DPP)2]2+ cations into a one-dimensional chain structure, while trigonal–planar NO3- anions bridge the cations into a two-dimensional supra­molecular structure.

Related literature top

For related literature, see: Audhya et al. (2010); Ji et al. (2010); Kundu et al. (2010); Li et al. (2012); Liu et al. (2012); Neogi et al. (2013); Ni et al. (2010); Raehm et al. (2003); Wang et al. (2008); Winter (1993); Ye et al. (2011); Zheng et al. (2010).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Ag coordination environment in compound (1), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level [Please complete]. The heavy dashed line indicates the Ag···O interaction and the lighter dashed lines indicate hydrogen bonds. [OK?] [Symmetry codes: (a) x, -y + 1, z + 1/2; (b) -x + 1, -y + 1, -z + 2.]
[Figure 2] Fig. 2. The one-dimensional supramolecular chain of (1), extending along the c axis. H atoms attached to C atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds. [OK?] [Symmetry codes: (A) -x + 1, -y + 1, -z + 2; (C) -x + 1, y, -z + 3/2; (D) x, -y + 1, z + 1/2.]
[Figure 3] Fig. 3. Plots of the two complete independent dimers in compound (2). [Symmetry codes: (a) -x + 1, -y + 1, -z; (b) -x + 2, -y + 2, -z + 2.]
[Figure 4] Fig. 4. The two independent two-dimensional supramolecular sheets in (2), parallel to the bc plane. H atoms attached to C atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds. [OK?] [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, y + 1/2, -z + 1/2; (iii) -x + 1, y - 1/2, -z + 1/2; (A) -x + 2, -y + 2, -z + 2; (C) -x + 2, y - 1/2, -z + 3/2; (D) -x + 2, y + 1/2, -z + 3/2.]
(1) Bis{µ-N-[(diphenylphosphanyl)methyl]pyridin-4-amine-κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate top
Crystal data top
[Ag2(C18H17N2P)2](ClO4)2·C2H3NZ = 4
Mr = 1040.31F(000) = 2088
Monoclinic, C2/cDx = 1.675 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 11.928 (2) Åθ = 2.5–28.0°
b = 18.192 (3) ŵ = 1.21 mm1
c = 19.026 (3) ÅT = 293 K
β = 91.988 (3)°Block, colourless
V = 4126.0 (12) Å30.46 × 0.34 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4447 independent reflections
Radiation source: fine-focus sealed tube2995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1015
Tmin = 0.605, Tmax = 0.751k = 2321
10757 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0727P)2 + 4.9016P]
where P = (Fo2 + 2Fc2)/3
4447 reflections(Δ/σ)max = 0.002
267 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ag2(C18H17N2P)2](ClO4)2·C2H3NV = 4126.0 (12) Å3
Mr = 1040.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.928 (2) ŵ = 1.21 mm1
b = 18.192 (3) ÅT = 293 K
c = 19.026 (3) Å0.46 × 0.34 × 0.25 mm
β = 91.988 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4447 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2995 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.751Rint = 0.026
10757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.83 e Å3
4447 reflectionsΔρmin = 0.98 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.65542 (3)0.38326 (2)1.00024 (2)0.07792 (19)
P10.81927 (8)0.36619 (5)0.93652 (5)0.0436 (2)
N10.4939 (3)0.58932 (18)0.94507 (18)0.0519 (8)
N20.7689 (2)0.48847 (17)0.85624 (16)0.0474 (7)
H2B0.76980.48650.81110.057*
C10.4963 (3)0.5728 (2)0.8764 (2)0.0566 (10)
H1A0.43330.58390.84830.068*
C20.5848 (3)0.5409 (2)0.8454 (2)0.0505 (9)
H2A0.58140.53090.79750.061*
C30.6811 (3)0.52304 (19)0.88594 (18)0.0417 (8)
C40.6814 (3)0.5428 (2)0.95672 (19)0.0471 (8)
H4A0.74440.53420.98570.057*
C50.5877 (3)0.5750 (2)0.9832 (2)0.0538 (10)
H5A0.58950.58761.03060.065*
C60.8610 (3)0.4551 (2)0.8964 (2)0.0483 (9)
H6A0.88640.48860.93330.058*
H6B0.92310.44670.86580.058*
C70.8056 (3)0.3006 (2)0.86509 (19)0.0457 (8)
C80.7345 (4)0.2411 (2)0.8741 (2)0.0604 (10)
H8A0.69390.23750.91480.072*
C90.7234 (4)0.1870 (3)0.8229 (3)0.0715 (13)
H9A0.67760.14660.83010.086*
C100.7799 (4)0.1933 (3)0.7619 (3)0.0737 (13)
H10A0.77190.15760.72720.088*
C110.8486 (5)0.2527 (3)0.7522 (3)0.0792 (14)
H11A0.88660.25710.71050.095*
C120.8622 (4)0.3064 (3)0.8038 (2)0.0661 (12)
H12A0.90960.34610.79670.079*
C130.9436 (3)0.3394 (2)0.9874 (2)0.0453 (8)
C141.0117 (3)0.2812 (2)0.9685 (2)0.0570 (10)
H14A0.99670.25560.92690.068*
C151.1023 (4)0.2616 (3)1.0123 (3)0.0736 (13)
H15A1.14880.22320.99930.088*
C161.1240 (4)0.2972 (3)1.0735 (3)0.0756 (14)
H16A1.18400.28231.10260.091*
C171.0581 (4)0.3558 (3)1.0933 (3)0.0695 (12)
H17A1.07390.38051.13520.083*
C180.9684 (4)0.3770 (2)1.0499 (2)0.0586 (10)
H18A0.92430.41671.06250.070*
N30.5292 (8)0.3627 (6)0.8715 (5)0.083 (2)0.50
C190.5133 (7)0.3485 (6)0.8148 (7)0.068 (2)0.50
C200.50000.3286 (7)0.75000.126 (4)
H20A0.43560.35220.72850.189*0.50
H20B0.56560.34150.72490.189*0.50
H20C0.48980.27630.74860.189*0.50
Cl10.79174 (11)0.45084 (8)0.65833 (6)0.0758 (4)
O10.7781 (10)0.3831 (4)0.6219 (3)0.223 (5)
O20.7745 (4)0.5080 (3)0.6096 (2)0.1155 (16)
O30.7095 (4)0.4532 (3)0.7074 (2)0.1212 (17)
O40.8910 (4)0.4521 (6)0.6947 (3)0.233 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0604 (2)0.0745 (3)0.1018 (3)0.01911 (17)0.0444 (2)0.0175 (2)
P10.0351 (5)0.0460 (5)0.0503 (5)0.0053 (4)0.0116 (4)0.0046 (4)
N10.0451 (18)0.0481 (18)0.063 (2)0.0104 (14)0.0149 (15)0.0058 (15)
N20.0455 (16)0.0538 (19)0.0433 (17)0.0104 (14)0.0074 (13)0.0037 (14)
C10.044 (2)0.065 (3)0.062 (3)0.0078 (18)0.0047 (18)0.011 (2)
C20.050 (2)0.057 (2)0.045 (2)0.0070 (17)0.0053 (17)0.0057 (18)
C30.0417 (18)0.0377 (18)0.0461 (19)0.0025 (14)0.0085 (15)0.0059 (15)
C40.046 (2)0.051 (2)0.045 (2)0.0056 (16)0.0054 (16)0.0034 (16)
C50.060 (2)0.054 (2)0.048 (2)0.0042 (18)0.0113 (18)0.0023 (18)
C60.0372 (18)0.049 (2)0.059 (2)0.0056 (15)0.0123 (16)0.0068 (17)
C70.0392 (18)0.048 (2)0.050 (2)0.0039 (15)0.0048 (15)0.0059 (16)
C80.062 (3)0.062 (3)0.057 (2)0.004 (2)0.0051 (19)0.006 (2)
C90.075 (3)0.060 (3)0.080 (3)0.009 (2)0.000 (3)0.005 (2)
C100.080 (3)0.067 (3)0.074 (3)0.010 (3)0.009 (3)0.013 (2)
C110.083 (4)0.093 (4)0.062 (3)0.001 (3)0.020 (2)0.010 (3)
C120.062 (3)0.073 (3)0.064 (3)0.012 (2)0.022 (2)0.007 (2)
C130.0403 (18)0.043 (2)0.053 (2)0.0003 (15)0.0099 (16)0.0077 (16)
C140.045 (2)0.053 (2)0.073 (3)0.0095 (17)0.0005 (19)0.007 (2)
C150.050 (3)0.058 (3)0.112 (4)0.007 (2)0.010 (2)0.002 (3)
C160.057 (3)0.072 (3)0.096 (4)0.004 (2)0.021 (3)0.012 (3)
C170.073 (3)0.070 (3)0.064 (3)0.014 (2)0.011 (2)0.004 (2)
C180.056 (2)0.056 (3)0.065 (3)0.0001 (18)0.006 (2)0.004 (2)
N30.069 (6)0.102 (7)0.077 (6)0.013 (5)0.004 (5)0.006 (5)
C190.047 (5)0.066 (6)0.090 (8)0.000 (4)0.000 (5)0.010 (5)
C200.103 (8)0.149 (10)0.127 (9)0.0000.000 (7)0.000
Cl10.0710 (7)0.1063 (10)0.0511 (6)0.0160 (6)0.0155 (5)0.0151 (6)
O10.422 (15)0.126 (5)0.123 (5)0.102 (7)0.026 (7)0.017 (4)
O20.161 (4)0.110 (3)0.074 (2)0.030 (3)0.016 (3)0.026 (2)
O30.096 (3)0.194 (5)0.075 (2)0.001 (3)0.027 (2)0.004 (3)
O40.065 (3)0.489 (15)0.145 (5)0.020 (5)0.012 (3)0.125 (7)
Geometric parameters (Å, º) top
Ag1—N1i2.152 (3)C9—H9A0.9300
Ag1—P12.3560 (10)C10—C111.373 (7)
Ag1—N32.855 (10)C10—H10A0.9300
Ag1—O2ii3.171 (5)C11—C121.389 (7)
P1—C131.809 (4)C11—H11A0.9300
P1—C71.811 (4)C12—H12A0.9300
P1—C61.863 (4)C13—C141.390 (5)
N1—C51.338 (5)C13—C181.395 (6)
N1—C11.342 (5)C14—C151.388 (6)
N1—Ag1i2.152 (3)C14—H14A0.9300
N2—C31.361 (4)C15—C161.349 (7)
N2—C61.450 (5)C15—H15A0.9300
N2—H2B0.8600C16—C171.384 (7)
C1—C21.357 (6)C16—H16A0.9300
C1—H1A0.9300C17—C181.383 (6)
C2—C31.399 (5)C17—H17A0.9300
C2—H2A0.9300C18—H18A0.9300
C3—C41.393 (5)N3—C191.120 (13)
C4—C51.373 (5)C19—C201.289 (13)
C4—H4A0.9300C20—C19iii1.289 (13)
C5—H5A0.9300C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9599
C7—C121.372 (6)Cl1—O41.351 (5)
C7—C81.389 (6)Cl1—O31.377 (4)
C8—C91.387 (6)Cl1—O21.404 (4)
C8—H8A0.9300Cl1—O11.421 (7)
C9—C101.367 (7)
N1i—Ag1—P1174.00 (9)C9—C10—H10A120.2
C13—P1—C7105.95 (17)C11—C10—H10A120.2
C13—P1—C6103.12 (17)C10—C11—C12120.9 (5)
C7—P1—C6106.42 (18)C10—C11—H11A119.5
C13—P1—Ag1116.05 (12)C12—C11—H11A119.5
C7—P1—Ag1114.73 (12)C7—C12—C11119.9 (4)
C6—P1—Ag1109.56 (12)C7—C12—H12A120.1
C5—N1—C1116.0 (3)C11—C12—H12A120.1
C5—N1—Ag1i118.3 (3)C14—C13—C18119.0 (4)
C1—N1—Ag1i124.7 (3)C14—C13—P1122.9 (3)
C3—N2—C6123.7 (3)C18—C13—P1118.1 (3)
C3—N2—H2B118.1C15—C14—C13119.4 (4)
C6—N2—H2B118.3C15—C14—H14A120.3
N1—C1—C2124.2 (4)C13—C14—H14A120.3
N1—C1—H1A117.9C16—C15—C14121.1 (4)
C2—C1—H1A117.9C16—C15—H15A119.5
C1—C2—C3119.7 (4)C14—C15—H15A119.5
C1—C2—H2A120.1C15—C16—C17120.7 (4)
C3—C2—H2A120.1C15—C16—H16A119.6
N2—C3—C4123.0 (3)C17—C16—H16A119.6
N2—C3—C2120.5 (3)C18—C17—C16119.2 (5)
C4—C3—C2116.6 (3)C18—C17—H17A120.4
C5—C4—C3119.3 (3)C16—C17—H17A120.4
C5—C4—H4A120.3C17—C18—C13120.6 (4)
C3—C4—H4A120.3C17—C18—H18A119.7
N1—C5—C4124.1 (4)C13—C18—H18A119.7
N1—C5—H5A118.0N3—C19—C20176.1 (11)
C4—C5—H5A118.0C19iii—C20—C19147.4 (15)
N2—C6—P1111.8 (3)C19iii—C20—H20A52.8
N2—C6—H6A109.3C19—C20—H20A110.6
P1—C6—H6A109.3C19iii—C20—H20B62.1
N2—C6—H6B109.3C19—C20—H20B109.3
P1—C6—H6B109.3H20A—C20—H20B109.5
H6A—C6—H6B107.9C19iii—C20—H20C103.9
C12—C7—C8119.0 (4)C19—C20—H20C108.5
C12—C7—P1123.6 (3)H20A—C20—H20C109.5
C8—C7—P1117.4 (3)H20B—C20—H20C109.5
C9—C8—C7120.7 (4)O4—Cl1—O3106.5 (3)
C9—C8—H8A119.7O4—Cl1—O2115.6 (4)
C7—C8—H8A119.7O3—Cl1—O2109.4 (3)
C10—C9—C8119.9 (5)O4—Cl1—O1110.3 (6)
C10—C9—H9A120.0O3—Cl1—O1106.6 (5)
C8—C9—H9A120.0O2—Cl1—O1108.0 (3)
C9—C10—C11119.6 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1/2; (iii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.862.162.966 (5)155
C4—H4A···O2ii0.932.493.213 (5)134
Symmetry code: (ii) x, y+1, z+1/2.
(2) bis{µ-N-[(diphenylphosphanyl)methyl]pyridin-4-amine-κ2N1:P}bis[(nitrato-κ2O,O)silver] top
Crystal data top
[Ag2(C18H17N2P)2(NO3)2]Z = 4
Mr = 924.37F(000) = 1856
Monoclinic, P21/cDx = 1.644 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.448 (5) Åθ = 2.6–28.1°
b = 17.498 (6) ŵ = 1.19 mm1
c = 16.006 (5) ÅT = 296 K
β = 97.475 (4)°Block, colourless
V = 3734 (2) Å30.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8472 independent reflections
Radiation source: fine-focus sealed tube6592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1017
Tmin = 0.797, Tmax = 0.891k = 2222
24006 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
8472 reflections(Δ/σ)max = 0.004
469 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Ag2(C18H17N2P)2(NO3)2]V = 3734 (2) Å3
Mr = 924.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.448 (5) ŵ = 1.19 mm1
b = 17.498 (6) ÅT = 296 K
c = 16.006 (5) Å0.20 × 0.10 × 0.10 mm
β = 97.475 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6592 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.891Rint = 0.029
24006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
8472 reflectionsΔρmin = 0.89 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.530647 (15)0.509563 (10)0.204426 (12)0.04690 (7)
P10.51910 (4)0.39222 (3)0.27560 (3)0.03469 (13)
N10.49043 (16)0.41706 (11)0.09121 (12)0.0444 (5)
N20.49198 (15)0.29787 (11)0.13468 (11)0.0429 (5)
H2B0.44750.26250.13390.052*
C10.49460 (17)0.33701 (11)0.06218 (14)0.0373 (5)
C20.4189 (2)0.32552 (13)0.00539 (15)0.0472 (6)
H2A0.36800.29050.00060.057*
C30.4199 (2)0.36564 (14)0.07810 (15)0.0485 (6)
H3A0.36830.35690.12160.058*
C40.56390 (19)0.42666 (13)0.02697 (15)0.0450 (6)
H4A0.61470.46110.03450.054*
C50.56990 (17)0.38968 (13)0.04888 (14)0.0398 (5)
H5A0.62290.39920.09090.048*
C60.55601 (18)0.30921 (13)0.21275 (14)0.0402 (5)
H6A0.62420.31690.20080.048*
H6B0.55530.26320.24650.048*
C70.59728 (16)0.38149 (13)0.37663 (14)0.0374 (5)
C80.60856 (17)0.31144 (13)0.41723 (14)0.0421 (5)
H8A0.58040.26800.39020.051*
C90.66056 (19)0.30513 (16)0.49659 (15)0.0510 (6)
H9A0.66850.25760.52250.061*
C100.7008 (2)0.36917 (19)0.53764 (17)0.0634 (8)
H10A0.73510.36510.59180.076*
C110.6905 (3)0.4384 (2)0.4991 (2)0.0771 (9)
H11A0.71800.48160.52700.092*
C120.6391 (2)0.44519 (16)0.41825 (18)0.0631 (8)
H12A0.63290.49280.39220.076*
C130.39427 (16)0.36832 (11)0.30128 (14)0.0355 (5)
C140.37305 (18)0.36469 (14)0.38424 (15)0.0472 (6)
H14A0.42450.37190.42830.057*
C150.2770 (2)0.35061 (15)0.40192 (17)0.0540 (7)
H15A0.26430.34820.45760.065*
C160.1998 (2)0.34013 (14)0.33739 (18)0.0527 (7)
H16A0.13510.33080.34940.063*
C170.2187 (2)0.34360 (15)0.25528 (18)0.0576 (7)
H17A0.16690.33620.21160.069*
C180.31548 (18)0.35813 (15)0.23730 (15)0.0490 (6)
H18A0.32740.36100.18140.059*
N50.64176 (16)0.63684 (11)0.31203 (13)0.0457 (5)
O10.68227 (15)0.68426 (11)0.36233 (14)0.0714 (6)
O20.54888 (15)0.63702 (12)0.29282 (15)0.0744 (6)
O30.69176 (14)0.58799 (10)0.27911 (13)0.0599 (5)
Ag20.948112 (16)1.031511 (11)0.806690 (12)0.05028 (7)
P20.96514 (5)0.92081 (3)0.72632 (3)0.03697 (13)
N31.01525 (15)0.90435 (10)1.07593 (12)0.0414 (4)
N40.97578 (15)0.80084 (11)0.83938 (11)0.0435 (5)
H4B1.00900.75960.83390.052*
C190.98394 (17)0.83311 (12)0.91674 (13)0.0357 (5)
C201.06046 (19)0.80921 (13)0.97965 (14)0.0451 (6)
H20A1.10180.76850.96970.054*
C211.07377 (19)0.84648 (13)1.05596 (15)0.0453 (6)
H21A1.12610.83081.09600.054*
C220.93888 (18)0.92384 (13)1.01702 (14)0.0414 (5)
H22A0.89610.96261.03010.050*
C230.91964 (17)0.89065 (13)0.93906 (14)0.0386 (5)
H23A0.86470.90600.90140.046*
C240.91577 (18)0.83046 (13)0.76570 (14)0.0428 (5)
H24A0.84820.83930.77870.051*
H24B0.91200.79240.72130.051*
C250.90645 (18)0.92720 (14)0.61701 (14)0.0439 (5)
C260.8839 (3)0.86482 (18)0.56470 (17)0.0724 (9)
H26A0.89460.81570.58610.087*
C270.8462 (3)0.8747 (2)0.48184 (19)0.0935 (12)
H27A0.83090.83220.44770.112*
C280.8310 (3)0.9455 (2)0.44909 (19)0.0823 (10)
H28A0.80640.95150.39240.099*
C290.8515 (3)1.0079 (2)0.4988 (2)0.0848 (11)
H29A0.83981.05670.47660.102*
C300.8900 (3)0.99846 (17)0.58287 (18)0.0667 (8)
H30A0.90491.04130.61660.080*
C311.09599 (17)0.89874 (12)0.71842 (14)0.0375 (5)
C321.1251 (2)0.83544 (15)0.6761 (2)0.0653 (8)
H32A1.07670.80150.65140.078*
C331.2243 (2)0.82208 (18)0.6701 (2)0.0790 (10)
H33A1.24250.77930.64110.095*
C341.2968 (2)0.87061 (17)0.7062 (2)0.0651 (8)
H34A1.36390.86130.70150.078*
C351.2700 (2)0.93291 (17)0.74934 (19)0.0627 (8)
H35A1.31920.96580.77490.075*
C361.1702 (2)0.94759 (14)0.75541 (16)0.0510 (6)
H36A1.15270.99050.78450.061*
O40.79309 (14)1.11428 (11)0.74249 (13)0.0657 (5)
O50.80158 (17)1.20439 (13)0.65210 (14)0.0805 (7)
O60.93558 (15)1.16341 (10)0.72664 (13)0.0633 (5)
N60.84259 (17)1.16112 (11)0.70640 (13)0.0491 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05831 (14)0.03519 (10)0.04811 (12)0.00184 (8)0.01032 (9)0.00993 (7)
P10.0373 (3)0.0311 (3)0.0351 (3)0.0013 (2)0.0027 (2)0.0041 (2)
N10.0577 (13)0.0366 (10)0.0397 (11)0.0034 (9)0.0091 (10)0.0045 (8)
N20.0566 (12)0.0355 (10)0.0369 (10)0.0108 (9)0.0071 (9)0.0011 (8)
C10.0471 (14)0.0276 (10)0.0387 (12)0.0007 (9)0.0114 (10)0.0014 (9)
C20.0543 (15)0.0431 (13)0.0442 (13)0.0147 (11)0.0061 (12)0.0017 (10)
C30.0578 (16)0.0465 (14)0.0392 (13)0.0078 (12)0.0010 (12)0.0005 (10)
C40.0482 (15)0.0386 (12)0.0501 (14)0.0045 (11)0.0134 (12)0.0030 (10)
C50.0403 (13)0.0385 (12)0.0409 (12)0.0020 (10)0.0066 (10)0.0008 (9)
C60.0482 (14)0.0338 (12)0.0389 (12)0.0031 (10)0.0062 (10)0.0037 (9)
C70.0356 (12)0.0386 (12)0.0370 (11)0.0026 (10)0.0015 (10)0.0032 (9)
C80.0396 (13)0.0428 (13)0.0430 (13)0.0021 (11)0.0018 (10)0.0030 (10)
C90.0505 (15)0.0582 (16)0.0432 (14)0.0058 (13)0.0017 (12)0.0107 (12)
C100.0639 (19)0.077 (2)0.0447 (15)0.0014 (16)0.0083 (14)0.0008 (14)
C110.087 (2)0.068 (2)0.069 (2)0.0174 (18)0.0184 (18)0.0148 (17)
C120.076 (2)0.0456 (15)0.0625 (18)0.0130 (14)0.0107 (15)0.0013 (13)
C130.0378 (12)0.0271 (10)0.0414 (12)0.0011 (9)0.0047 (10)0.0028 (9)
C140.0436 (14)0.0559 (15)0.0420 (13)0.0070 (12)0.0053 (11)0.0023 (11)
C150.0569 (17)0.0577 (16)0.0513 (15)0.0070 (13)0.0216 (13)0.0025 (12)
C160.0458 (15)0.0426 (14)0.0736 (18)0.0047 (11)0.0220 (14)0.0042 (12)
C170.0432 (15)0.0631 (17)0.0648 (18)0.0096 (13)0.0006 (13)0.0091 (14)
C180.0435 (14)0.0618 (16)0.0414 (13)0.0065 (12)0.0042 (11)0.0008 (11)
N50.0490 (13)0.0349 (10)0.0524 (12)0.0002 (9)0.0035 (10)0.0004 (9)
O10.0670 (13)0.0566 (12)0.0860 (15)0.0006 (10)0.0077 (11)0.0247 (11)
O20.0462 (12)0.0701 (13)0.1033 (17)0.0098 (10)0.0036 (11)0.0253 (12)
O30.0554 (11)0.0468 (10)0.0789 (13)0.0029 (9)0.0145 (10)0.0116 (9)
Ag20.06975 (15)0.03882 (11)0.04263 (11)0.00932 (9)0.00868 (10)0.00563 (7)
P20.0415 (3)0.0350 (3)0.0331 (3)0.0060 (2)0.0000 (2)0.0023 (2)
N30.0518 (12)0.0370 (10)0.0359 (10)0.0055 (9)0.0080 (9)0.0002 (8)
N40.0549 (12)0.0373 (10)0.0375 (10)0.0090 (9)0.0035 (9)0.0009 (8)
C190.0414 (13)0.0319 (11)0.0351 (11)0.0040 (9)0.0094 (10)0.0015 (8)
C200.0528 (15)0.0391 (12)0.0435 (13)0.0118 (11)0.0069 (11)0.0017 (10)
C210.0531 (15)0.0416 (13)0.0399 (13)0.0102 (11)0.0011 (11)0.0028 (10)
C220.0446 (14)0.0408 (12)0.0413 (12)0.0059 (10)0.0153 (11)0.0006 (10)
C230.0339 (12)0.0446 (13)0.0382 (12)0.0041 (10)0.0080 (10)0.0057 (9)
C240.0429 (14)0.0450 (13)0.0404 (12)0.0036 (11)0.0050 (11)0.0047 (10)
C250.0397 (13)0.0559 (15)0.0355 (12)0.0068 (11)0.0029 (10)0.0023 (10)
C260.106 (3)0.0630 (18)0.0417 (15)0.0123 (18)0.0143 (16)0.0013 (13)
C270.131 (3)0.095 (3)0.0457 (18)0.024 (2)0.022 (2)0.0008 (18)
C280.086 (2)0.116 (3)0.0387 (16)0.011 (2)0.0148 (16)0.0131 (18)
C290.109 (3)0.084 (2)0.059 (2)0.021 (2)0.003 (2)0.0264 (18)
C300.088 (2)0.0589 (18)0.0502 (16)0.0185 (16)0.0011 (16)0.0041 (13)
C310.0379 (12)0.0339 (11)0.0391 (12)0.0012 (9)0.0007 (10)0.0031 (9)
C320.0450 (16)0.0501 (16)0.101 (2)0.0025 (12)0.0124 (15)0.0291 (15)
C330.0511 (18)0.0581 (18)0.131 (3)0.0046 (15)0.0245 (19)0.0241 (19)
C340.0396 (15)0.0589 (18)0.098 (2)0.0030 (13)0.0137 (15)0.0223 (17)
C350.0469 (16)0.0601 (17)0.077 (2)0.0155 (14)0.0066 (14)0.0088 (15)
C360.0521 (16)0.0412 (13)0.0574 (15)0.0056 (12)0.0013 (12)0.0035 (11)
O40.0570 (12)0.0579 (11)0.0846 (14)0.0015 (9)0.0180 (10)0.0247 (10)
O50.0800 (15)0.0818 (15)0.0767 (14)0.0109 (12)0.0008 (11)0.0417 (12)
O60.0508 (12)0.0524 (11)0.0853 (14)0.0042 (9)0.0028 (10)0.0144 (10)
N60.0558 (14)0.0401 (11)0.0516 (12)0.0052 (10)0.0084 (11)0.0075 (9)
Geometric parameters (Å, º) top
Ag1—N1i2.2089 (19)Ag2—N3ii2.1889 (19)
Ag1—P12.3630 (8)Ag2—P22.3528 (8)
Ag1—O22.636 (2)Ag2—O42.635 (2)
Ag1—O32.708 (2)Ag2—O62.634 (2)
P1—C71.820 (2)P2—C311.822 (2)
P1—C131.828 (2)P2—C251.827 (2)
P1—C61.870 (2)P2—C241.856 (2)
N1—C41.341 (3)N3—C221.345 (3)
N1—C31.343 (3)N3—C211.346 (3)
N1—Ag1i2.2089 (19)N3—Ag2ii2.1889 (19)
N2—C11.352 (3)N4—C191.352 (3)
N2—C61.436 (3)N4—C241.436 (3)
N2—H2B0.8601N4—H4B0.8591
C1—C21.400 (3)C19—C231.403 (3)
C1—C51.406 (3)C19—C201.406 (3)
C2—C31.361 (3)C20—C211.376 (3)
C2—H2A0.9300C20—H20A0.9300
C3—H3A0.9300C21—H21A0.9300
C4—C51.369 (3)C22—C231.370 (3)
C4—H4A0.9300C22—H22A0.9300
C5—H5A0.9300C23—H23A0.9300
C6—H6A0.9700C24—H24A0.9700
C6—H6B0.9700C24—H24B0.9700
C7—C121.380 (3)C25—C301.368 (4)
C7—C81.386 (3)C25—C261.385 (4)
C8—C91.372 (3)C26—C271.368 (4)
C8—H8A0.9300C26—H26A0.9300
C9—C101.374 (4)C27—C281.350 (5)
C9—H9A0.9300C27—H27A0.9300
C10—C111.358 (4)C28—C291.359 (5)
C10—H10A0.9300C28—H28A0.9300
C11—C121.391 (4)C29—C301.388 (4)
C11—H11A0.9300C29—H29A0.9300
C12—H12A0.9300C30—H30A0.9300
C13—C181.386 (3)C31—C321.381 (3)
C13—C141.395 (3)C31—C361.387 (3)
C14—C151.380 (3)C32—C331.371 (4)
C14—H14A0.9300C32—H32A0.9300
C15—C161.378 (4)C33—C341.363 (4)
C15—H15A0.9300C33—H33A0.9300
C16—C171.372 (4)C34—C351.364 (4)
C16—H16A0.9300C34—H34A0.9300
C17—C181.392 (4)C35—C361.381 (4)
C17—H17A0.9300C35—H35A0.9300
C18—H18A0.9300C36—H36A0.9300
N5—O11.233 (3)O4—N61.244 (3)
N5—O31.246 (2)O5—N61.228 (3)
N5—O21.247 (3)O6—N61.251 (3)
N1i—Ag1—P1153.01 (5)N3ii—Ag2—P2149.81 (5)
C7—P1—C13102.59 (10)C31—P2—C25104.32 (10)
C7—P1—C6103.57 (10)C31—P2—C24103.55 (10)
C13—P1—C6105.01 (10)C25—P2—C24104.37 (11)
C7—P1—Ag1116.83 (7)C31—P2—Ag2112.09 (7)
C13—P1—Ag1115.28 (7)C25—P2—Ag2114.37 (8)
C6—P1—Ag1112.13 (8)C24—P2—Ag2116.81 (8)
C4—N1—C3115.4 (2)C22—N3—C21116.2 (2)
C4—N1—Ag1i124.02 (16)C22—N3—Ag2ii122.55 (15)
C3—N1—Ag1i119.98 (17)C21—N3—Ag2ii121.07 (16)
C1—N2—C6126.68 (19)C19—N4—C24124.83 (19)
C1—N2—H2B116.7C19—N4—H4B117.6
C6—N2—H2B116.7C24—N4—H4B117.6
N2—C1—C2119.5 (2)N4—C19—C23123.6 (2)
N2—C1—C5124.2 (2)N4—C19—C20119.7 (2)
C2—C1—C5116.3 (2)C23—C19—C20116.7 (2)
C3—C2—C1120.0 (2)C21—C20—C19119.6 (2)
C3—C2—H2A120.0C21—C20—H20A120.2
C1—C2—H2A120.0C19—C20—H20A120.2
N1—C3—C2124.4 (2)N3—C21—C20123.7 (2)
N1—C3—H3A117.8N3—C21—H21A118.2
C2—C3—H3A117.8C20—C21—H21A118.2
N1—C4—C5125.0 (2)N3—C22—C23124.6 (2)
N1—C4—H4A117.5N3—C22—H22A117.7
C5—C4—H4A117.5C23—C22—H22A117.7
C4—C5—C1118.9 (2)C22—C23—C19119.1 (2)
C4—C5—H5A120.5C22—C23—H23A120.5
C1—C5—H5A120.5C19—C23—H23A120.5
N2—C6—P1113.85 (16)N4—C24—P2113.48 (16)
N2—C6—H6A108.8N4—C24—H24A108.9
P1—C6—H6A108.8P2—C24—H24A108.9
N2—C6—H6B108.8N4—C24—H24B108.9
P1—C6—H6B108.8P2—C24—H24B108.9
H6A—C6—H6B107.7H24A—C24—H24B107.7
C12—C7—C8118.3 (2)C30—C25—C26117.8 (2)
C12—C7—P1119.84 (19)C30—C25—P2117.8 (2)
C8—C7—P1121.53 (17)C26—C25—P2124.3 (2)
C9—C8—C7121.1 (2)C27—C26—C25120.7 (3)
C9—C8—H8A119.5C27—C26—H26A119.6
C7—C8—H8A119.5C25—C26—H26A119.6
C8—C9—C10119.9 (3)C28—C27—C26120.7 (3)
C8—C9—H9A120.0C28—C27—H27A119.6
C10—C9—H9A120.0C26—C27—H27A119.6
C11—C10—C9120.0 (3)C27—C28—C29120.1 (3)
C11—C10—H10A120.0C27—C28—H28A120.0
C9—C10—H10A120.0C29—C28—H28A120.0
C10—C11—C12120.5 (3)C28—C29—C30119.6 (3)
C10—C11—H11A119.7C28—C29—H29A120.2
C12—C11—H11A119.7C30—C29—H29A120.2
C7—C12—C11120.1 (3)C25—C30—C29121.1 (3)
C7—C12—H12A119.9C25—C30—H30A119.4
C11—C12—H12A119.9C29—C30—H30A119.4
C18—C13—C14117.8 (2)C32—C31—C36118.0 (2)
C18—C13—P1119.97 (17)C32—C31—P2122.79 (19)
C14—C13—P1122.13 (18)C36—C31—P2119.20 (18)
C15—C14—C13121.1 (2)C33—C32—C31120.8 (3)
C15—C14—H14A119.5C33—C32—H32A119.6
C13—C14—H14A119.5C31—C32—H32A119.6
C16—C15—C14120.3 (2)C34—C33—C32120.9 (3)
C16—C15—H15A119.9C34—C33—H33A119.6
C14—C15—H15A119.9C32—C33—H33A119.6
C17—C16—C15119.7 (2)C33—C34—C35119.4 (3)
C17—C16—H16A120.1C33—C34—H34A120.3
C15—C16—H16A120.1C35—C34—H34A120.3
C16—C17—C18120.1 (3)C34—C35—C36120.5 (3)
C16—C17—H17A120.0C34—C35—H35A119.8
C18—C17—H17A120.0C36—C35—H35A119.8
C13—C18—C17121.1 (2)C35—C36—C31120.5 (2)
C13—C18—H18A119.5C35—C36—H36A119.8
C17—C18—H18A119.5C31—C36—H36A119.8
O1—N5—O3121.4 (2)O5—N6—O4121.1 (2)
O1—N5—O2120.2 (2)O5—N6—O6120.4 (2)
O3—N5—O2118.4 (2)O4—N6—O6118.6 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1iii0.862.223.078 (3)172
N2—H2B···O2iii0.862.493.120 (3)131
N4—H4B···O6iv0.862.122.941 (3)158
C24—H24A···O3v0.972.463.365 (3)155
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x, y+3/2, z+1/2.

Experimental details

(1)(2)
Crystal data
Chemical formula[Ag2(C18H17N2P)2](ClO4)2·C2H3N[Ag2(C18H17N2P)2(NO3)2]
Mr1040.31924.37
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)293296
a, b, c (Å)11.928 (2), 18.192 (3), 19.026 (3)13.448 (5), 17.498 (6), 16.006 (5)
β (°) 91.988 (3) 97.475 (4)
V3)4126.0 (12)3734 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.211.19
Crystal size (mm)0.46 × 0.34 × 0.250.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.605, 0.7510.797, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
10757, 4447, 2995 24006, 8472, 6592
Rint0.0260.029
(sin θ/λ)max1)0.6420.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.04 0.030, 0.081, 1.02
No. of reflections44478472
No. of parameters267469
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.980.38, 0.89

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (1) top
Ag1—N1i2.152 (3)Ag1—N32.855 (10)
Ag1—P12.3560 (10)Ag1—O2ii3.171 (5)
N1i—Ag1—P1174.00 (9)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.862.162.966 (5)155.2
C4—H4A···O2ii0.932.493.213 (5)134.4
Symmetry code: (ii) x, y+1, z+1/2.
Selected geometric parameters (Å, º) for (2) top
Ag1—N1i2.2089 (19)Ag2—N3ii2.1889 (19)
Ag1—P12.3630 (8)Ag2—P22.3528 (8)
Ag1—O22.636 (2)Ag2—O42.635 (2)
Ag1—O32.708 (2)Ag2—O62.634 (2)
N1i—Ag1—P1153.01 (5)N3ii—Ag2—P2149.81 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1iii0.862.223.078 (3)171.7
N2—H2B···O2iii0.862.493.120 (3)131.1
N4—H4B···O6iv0.862.122.941 (3)158.4
C24—H24A···O3v0.972.463.365 (3)155.2
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds