Download citation
Download citation
link to html
The title salts calcium (glycinato-κ2N,O)oxidobis(peroxido-κ2O,O′)vanadate(V) tetra­hydrate, Ca[VO(O2)2(NH2CH2COO)]·4H2O, and strontium (glycinato-κ2N,O)oxidobis(peroxido-κ2O,O′)vanadate(V) tetra­hydrate, Sr[VO(O2)2(NH2CH2COO)]·4H2O, crystallized at pH ca 7.4 with similar lattice parameters. The glycinate anion acts as a bidentate N,O-chelating ligand, and the V atom has a penta­gonal bipyramidal geometry, with two η2-peroxo groups and the glycinate N atom in the equatorial plane, and one terminal oxo and a glycinate O atom at the axial positions. The H atoms of three of the four water mol­ecules in the strontium salt exhibited disorder over three positions for each mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113031181/fg3311sup1.cif
Contains datablocks VX2gly, I.Ca, I.Sr

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031181/fg3311I.Casup4.hkl
Contains datablock I.Ca

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113031181/fg3311I.Srsup5.hkl
Contains datablock I.Sr

CCDC references: 972726; 972727

Introduction top

The chemistry of vanadium complexes is important from the biological point of view. Several vanadium complexes have so far been explored to reveal biological functions, such as insulin-mimetic and enzymic behaviour (Rehder, 2008).

Glycine is the simplest amino acid and may be a good target to investigate the inter­action between vanadium and amino acids. Attempt to isolate a glycinate complex of peroxovanadate at physiological pH range led to crystallization of the entitled mononuclear complex [VO(O2)2(NH2CH2COO)]2-, (I), as a calcium salt tetra­hydrate, (I.Ca), and a strontium salt tetra­hydrate, (I.Sr).

Experimental top

Synthesis and crystallization top

Sodium metavanadate (1.93 g, 15.8 mmol) or ammonium metavanadate (1.85 g, 15.8 mmol) and glycine (2.25 g, 31.6 mmol) were added to water (30 ml). Hydrogen peroxide (30%, 20 ml, 0.20 mol) was added to the suspended solution under stirring. The pH of the solution was adjested by 1.0 M KOH to ca 7.4 immediately. Then the mixture was cooled in an iced bath before a vigorous reaction initiated, and was cooled for several hours in the dark. The volume was then adjusted to 100 ml with water. To the orange clear solution was added 10 ml of 1.0 M calcium chloride [for (I.Ca)] or strontium chloride [for (I.Sr)] aqueous solution.

Ethanol (20 ml) was then added and the resulted mixture was kept in the dark at room temperature. Yellow block-shaped crystals appeared within several hours [yield: 46% for (I.Ca) and 58% for (I.Sr)].

NMR data were collected on Jeol JNM400 spectrometer at 294 K. The 51V chemical shift was referred to external VOCl3 as 0.0 p.p.m. and the signal of [V4O12]4- at -574 p.p.m. was used as an inter­nal standard. Care should be taken to prepare the solution in weakly acidic region to suppress the formation of decavanadate.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms in (I.Ca) and (I.Sr) were found from difference Fourier maps, and were refined with restraints; the isotropic displacement parameters were set at 1.5 times of equivalent parameter of the parent atoms. The O—H distance of the water molecules in both crystals was set at ca 0.82 Å. The H atoms in (I.Ca) were uniquely found, but three of four water molecules in (I.Sr) (O1W, O2W and O4W) exhibited three possible positions. The site occupancies of three H atoms on each O atom were refined so as to be 2.0 in total. Each H atom denoted as A has an occupancy close to 1, those denoted B 0.43 (4)–0.51 (4) and those denoted C 0.54 (4)–0.63 (4). This may indicate that in general, one possible combination is H atoms with A and B, and another one is those with A and C.

Results and discussion top

In the title calcium and strontium salts, (I.Ca) and (I.Sr), respectively, the glycinate anion coordinates to the vanadium centre as a bidentate N,O-chelating ligand. Two peroxide groups ligate on the equatorial plane of the V atom in the side-on mode. The N atom of the glycinate ligand occupies the remaining position of the equatorial plane. One of the O atoms of the glycinate and one terminal O atom are located at the axial positions. The V atom has thus a distorted penta­gonal bipyramidal geometry (Figs. 1 and 2). Due to the trans influence of terminal atom O1, the V—O(glycinate) bond is very long [2.2780 (8) Å in (I.Ca) and 2.2581 (11) Å in (I.Sr)]. The V atom is displaced by 0.3167 (4) Å in (I.Ca) and by 0.2947 (6) Å in (I.Sr) from the equatorial plane defined by atoms N1, O2, O3, O4 and O5 to the terminal O1 atom. The C1—O6 and C1—O7 bond lengths (Å) and the O6—C1—O7 angles (°) in the glycinate (Tables 2 and 3) indicate the resonancee character of the carboxyl­ate groups.

The crystal packing is quite similar in (I.Ca) and (I.Sr), and that of (I.Ca) is illustrated in Fig. 3. The Ca atom has nine close contacts of 2.3644 (9)–2.6682 (8) Å and the Sr atom has ten close contacts of 2.5682 (11)–2.7176 (11) Å with sorrounding O atoms of the complex anions and water molecules to form a zigzag one-dimensional array of cations. The amine H atoms in the glycinate ligand and water molecules take part in two-dimensional hydrogen-bond networks joined at the complex anion to form, as a whole, a three-dimensional network in both crystals (Tables 4 and 5).

Structure determinations of diperoxovanadate complex with N,O-chelating amino acid are surprisingly limited. A search of the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002) provides four complexes with pyridine-2,4-di­carboxyl­ate (Shaver et al., 1995), pyridine-2-carboxyl­ato-3-oxo­acetate (Shaver et al., 1995), pyridine-2-carboxyl­ate (picolinate; Shaver et al., 1993) and 3-hy­droxy­pyridine-2-carboxyl­ate (3-hy­droxy­picolinate) (Shaver et al., 1993). In all cases, the N-donor atom is located on the equatorial plane of the central metal atom.

As a closely related compound, a dinuclear complex of a peroxovanadate with a zwitterionic (i.e. neutral) glycine ligand, [{VO(O2)2}2(H3NCH2COO)]2-, (II), obtained from a weakly acidic aqueous solution, has been reported (Gabriel et al., 2009) The complex has two vanadium centres bearing two peroxo and one oxo groups on each, and the glycine behaves as a µ2-O:O ligand. The dimeric peroxovanadate moiety can be derived from [O{VO(O2)2}2]4- (Svensson et al., 1971), in which V atoms are triply bridged by two peroxo groups and one oxo group, by removing the bridging oxo group to give positions for the coordination of the glycine ligand. The moiety is also related to [V4O4(O2)8(PO4)]7- (Schwendt et al., 1996) and [V2O2(O2)4(PO4)]5- (Schwendt et al., 1994), having so-called Ishii–Venturello and lacunary Ishii–Venturello-type structures, respectively, in which two V atoms are doubly bridged by two η1,η2-peroxo groups. The structure of (II) can be derived by replacing the phosphate group of the latter with glycine.

The difference in composition of the mono- and dinuclear complexes is mainly due to the pH of preparation. Since vanadium is a good nucleus for NMR, the formation of mono- and dinuclear complexes was examined by 51V NMR. The 51V chemical shift of (II) was not given in the literature by Gabriel et al. (2009), and an attempt to get 51V signals under the conditions of pH 4 to 7, glycine/vanadium 0–4 and H2O2/vanadium = 2, indicated that a signal possibly assigned to (II) appeared at -710 p.p.m. at a pH range of 4–6 and glycine/vanadium 1–4. The chemical shift was not sensitive to pH within this pH region. Although the glycine/vanadium ratio in (II) is 1:2, the signal was not very strong at glycine/vanadium = 1, and became larger as the ratio increased. This observation indicates that the stability of the dinuclear complex is not very high. The present mononuclear complex (I) was, however, not observable at such acidic condition, most probably because the protonation of the amino group inhibited the complexation with vanadium. (I) gave a 51V signal at -754 p.p.m. under the preparative condition before adding Ca2+ or Sr2+. The complex was stable in comparison with (II), and ca 60% of vanadium was found to be bound to the complex in sodium-free preparative solution (glycine/vanadium = 2), and ca 50% even if the ratio decreased to 1. The chemical shift was not sensitive to pH in the range of pH 7 to 10, but was sensitive to concentration of Na+. The signal of (I) moved to -758 p.p.m. and the intensity grew significantly if the sodium concentration was raised from 0.15 M of the preparative solution to 1.0 M. This may indicate strong electrostatic inter­action between sodium cation and the complex anion in the solution. The higher solubility of both salts in NaCl solution (50 mg of (I.Ca) and 30 mg of (I.Sr) in 5 ml of 0.30 M NaCl aqueous solution) than in water (25 mg of (I.Ca) and 20 mg of (I.Sr) in 5 ml of ion-exchanged distilled water) may support this ionic inter­action. Such effect was also observed when chemicals of Ca or Sr was added in the preparation process, and the signal of (I) moved to ca -764 p.p.m. The aqueous solution of the crystals showed three signals at ca -626, -762 and -768 p.p.m., most probably assigned to glycinate-free monoperoxomonovanadate, (I), and glycinate-free diperoxomonovanadate, respectively, indicating the dissociation of the complex (Andersson et al., 2000). The intensity ratio of signals at ca -762 p.p.m. to that at ca -768 p.p.m. was about 1.7; the intensity of the signal at ca -626 p.p.m. was less than 10% of the sum of the other two. When the crystals were dissolved in 1.0 M NaCl solution the signal at ca -768 p.p.m. moved downfield and overlapped with the signal of the present complex at -764 p.p.m.

Related literature top

For related literature, see: Andersson et al. (2000); Gabriel et al. (2009); Rehder (2008); Schwendt et al. (1994, 1996); Shaver et al. (1993, 1995); Svensson & Stomberg (1971).

Computing details top

For both compounds, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the Ca salt, (I.Ca). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown with dotted lines. [Symmetry codes: (i) x+1, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z; (iv) -x+1, y+1/2, -z+1/2; (v) -x+1, y-1/2, -z+1/2; (vi) x, -y+1/2, z+1/2; (vii) -x+1, -y+1, -z+1; (viii) -x, -y+1, -z.]
[Figure 2] Fig. 2. Structure of the Sr salt, (I.Sr). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown with dotted lines. [Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, y-1/2, -z+1/2; (v) x, -y+1/2, z+1/2; (vi) -x+1, -y+1, -z+1; (vii) -x, -y+1, -z.]
[Figure 3] Fig. 3. Packing diagram of (I.Ca). with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown with dotted lines.
(I.Ca) Calcium (glycinato-κ2N,O)oxidobis(peroxido-κ2O,O')vanadate(V) tetrahydrate top
Crystal data top
Ca[V(C2H4NO2)(O2)O]]·4H2OF(000) = 648
Mr = 317.15Dx = 2.038 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3954 reflections
a = 9.079 (2) Åθ = 3.1–30.0°
b = 8.564 (2) ŵ = 1.51 mm1
c = 13.833 (4) ÅT = 93 K
β = 106.016 (3)°Prism, yellow
V = 1033.8 (4) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku Saturn724+ (4x4 bin mode)
diffractometer
2951 independent reflections
Radiation source: fine-focus rotating anode2833 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 3.1°
CCD scansh = 1012
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
k = 911
Tmin = 0.810, Tmax = 0.880l = 1919
9037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.4294P]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.49 e Å3
8 restraintsΔρmin = 0.34 e Å3
Crystal data top
Ca[V(C2H4NO2)(O2)O]]·4H2OV = 1033.8 (4) Å3
Mr = 317.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.079 (2) ŵ = 1.51 mm1
b = 8.564 (2) ÅT = 93 K
c = 13.833 (4) Å0.20 × 0.18 × 0.17 mm
β = 106.016 (3)°
Data collection top
Rigaku Saturn724+ (4x4 bin mode)
diffractometer
2951 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
2833 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.880Rint = 0.021
9037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0188 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.49 e Å3
2951 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All hydrogen atoms were found out from dfferential Fourier maps. The cordinates of H atoms were refined freely, and Uiso's were restrained to 1.5 times of the Ueq of the atom bound.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.267405 (17)0.489347 (18)0.099419 (11)0.00567 (5)
O10.20021 (8)0.66573 (8)0.08533 (5)0.00964 (13)
O20.37775 (8)0.51498 (8)0.24168 (5)0.00899 (13)
O30.47413 (8)0.53106 (8)0.17149 (5)0.00869 (12)
O40.32714 (8)0.45143 (9)0.01875 (5)0.01003 (13)
O50.17011 (8)0.39934 (8)0.02766 (5)0.01000 (13)
O60.34102 (8)0.23980 (8)0.14585 (5)0.00841 (12)
O70.24413 (8)0.00095 (8)0.14566 (5)0.00983 (13)
C10.23216 (10)0.14522 (11)0.14178 (6)0.00761 (16)
C20.07380 (10)0.21597 (11)0.12833 (7)0.00959 (16)
H1A0.0113 (17)0.1927 (17)0.0618 (11)0.014*
H1B0.0255 (17)0.1675 (17)0.1747 (11)0.014*
N10.08323 (9)0.38744 (10)0.14280 (6)0.00861 (14)
H2A0.0030 (17)0.4294 (18)0.1083 (11)0.013*
H2B0.0904 (16)0.4069 (17)0.2043 (11)0.013*
Ca10.57064 (2)0.29995 (2)0.276193 (13)0.00694 (5)
O1W0.47354 (9)0.31087 (9)0.41820 (6)0.01328 (14)
HW1A0.4205 (17)0.3817 (18)0.4257 (12)0.020*
HW1B0.4439 (18)0.2364 (17)0.4420 (12)0.020*
O2W0.72250 (9)0.30843 (9)0.16223 (6)0.01322 (14)
HW2A0.7216 (19)0.2264 (17)0.1333 (11)0.020*
HW2B0.7028 (18)0.3774 (17)0.1241 (11)0.020*
O3W0.95780 (9)0.64679 (9)0.65051 (6)0.01458 (14)
HW3A0.9318 (19)0.7264 (17)0.6175 (12)0.022*
HW3B1.0428 (16)0.6240 (19)0.6510 (12)0.022*
O4W0.72534 (9)0.46100 (9)0.56158 (6)0.01408 (14)
HW4A0.8052 (17)0.5155 (17)0.5836 (13)0.021*
HW4B0.7092 (19)0.4449 (19)0.5028 (10)0.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00610 (8)0.00428 (8)0.00623 (8)0.00011 (5)0.00102 (5)0.00002 (5)
O10.0096 (3)0.0072 (3)0.0114 (3)0.0009 (2)0.0017 (2)0.0001 (2)
O20.0101 (3)0.0100 (3)0.0073 (3)0.0002 (2)0.0032 (2)0.0001 (2)
O30.0074 (3)0.0096 (3)0.0092 (3)0.0008 (2)0.0023 (2)0.0003 (2)
O40.0096 (3)0.0109 (3)0.0103 (3)0.0018 (2)0.0039 (2)0.0011 (2)
O50.0086 (3)0.0112 (3)0.0094 (3)0.0027 (2)0.0012 (2)0.0020 (2)
O60.0077 (3)0.0063 (3)0.0103 (3)0.0005 (2)0.0010 (2)0.0001 (2)
O70.0105 (3)0.0055 (3)0.0124 (3)0.0001 (2)0.0014 (2)0.0001 (2)
C10.0088 (4)0.0079 (4)0.0054 (3)0.0000 (3)0.0007 (3)0.0000 (3)
C20.0082 (4)0.0065 (4)0.0139 (4)0.0007 (3)0.0027 (3)0.0003 (3)
N10.0079 (3)0.0070 (4)0.0107 (3)0.0013 (3)0.0023 (3)0.0008 (3)
Ca10.00694 (8)0.00515 (9)0.00816 (8)0.00004 (6)0.00113 (6)0.00061 (5)
O1W0.0169 (3)0.0088 (3)0.0171 (3)0.0023 (3)0.0097 (3)0.0024 (3)
O2W0.0170 (3)0.0092 (4)0.0154 (3)0.0023 (3)0.0078 (3)0.0024 (3)
O3W0.0118 (3)0.0148 (4)0.0174 (3)0.0016 (3)0.0044 (3)0.0056 (3)
O4W0.0150 (3)0.0143 (4)0.0127 (3)0.0005 (3)0.0035 (3)0.0018 (3)
Geometric parameters (Å, º) top
V1—O11.6206 (8)N1—H2B0.852 (15)
V1—O41.8870 (8)Ca1—O22.4949 (8)
V1—O51.8994 (8)Ca1—O32.4663 (8)
V1—O31.9004 (8)Ca1—O62.4059 (8)
V1—O21.9587 (8)Ca1—O2W2.3644 (9)
V1—N12.1146 (9)Ca1—O1W2.3665 (9)
V1—O62.2780 (8)Ca1—O7i2.4291 (8)
O2—O31.4819 (10)Ca1—O3ii2.4807 (9)
O2—Ca1i2.5101 (9)Ca1—O2ii2.5101 (9)
O3—Ca1i2.4807 (9)Ca1—O1ii2.6682 (8)
O4—O51.4663 (10)O1W—HW1A0.799 (13)
C1—O61.2671 (11)O1W—HW1B0.798 (13)
C1—O71.2564 (12)O2W—HW2A0.807 (13)
O7—Ca1ii2.4291 (8)O2W—HW2B0.779 (13)
C1—C21.5236 (13)O3W—HW3A0.819 (13)
C2—N11.4814 (13)O3W—HW3B0.794 (13)
C2—H1A0.959 (15)O4W—HW4A0.845 (14)
C2—H1B0.966 (15)O4W—HW4B0.798 (13)
N1—H2A0.834 (15)
O1—V1—O4104.18 (3)C2—N1—H2A109.9 (10)
O1—V1—O5101.74 (3)V1—N1—H2A107.1 (10)
O4—V1—O545.57 (3)C2—N1—H2B108.3 (10)
O1—V1—O399.92 (3)V1—N1—H2B110.8 (10)
O4—V1—O390.49 (3)H2A—N1—H2B107.6 (14)
O5—V1—O3134.56 (3)O2W—Ca1—O1W166.29 (3)
O1—V1—O295.02 (3)O2W—Ca1—O692.92 (3)
O4—V1—O2134.43 (3)O1W—Ca1—O6100.74 (3)
O5—V1—O2162.49 (3)O2W—Ca1—O7i79.38 (3)
O3—V1—O245.13 (3)O1W—Ca1—O7i88.49 (3)
O1—V1—N196.77 (4)O6—Ca1—O7i146.53 (2)
O4—V1—N1127.85 (3)O2W—Ca1—O376.22 (3)
O5—V1—N183.85 (3)O1W—Ca1—O3107.60 (3)
O3—V1—N1132.26 (3)O6—Ca1—O368.76 (3)
O2—V1—N189.22 (3)O7i—Ca1—O377.77 (3)
O1—V1—O6168.45 (3)O2W—Ca1—O3ii113.30 (3)
O4—V1—O687.17 (3)O1W—Ca1—O3ii70.49 (3)
O5—V1—O684.58 (3)O6—Ca1—O3ii80.91 (2)
O3—V1—O681.84 (3)O7i—Ca1—O3ii132.13 (3)
O2—V1—O678.05 (3)O3—Ca1—O3ii148.870 (13)
N1—V1—O674.12 (3)O2W—Ca1—O2110.94 (3)
V1—O1—Ca1i97.02 (3)O1W—Ca1—O274.16 (3)
O3—O2—V165.35 (4)O6—Ca1—O266.25 (3)
O3—O2—Ca171.57 (4)O7i—Ca1—O286.00 (3)
V1—O2—Ca1104.30 (3)O3—Ca1—O234.75 (2)
O3—O2—Ca1i71.65 (4)O3ii—Ca1—O2125.32 (3)
V1—O2—Ca1i93.88 (3)O2W—Ca1—O2ii78.76 (3)
Ca1—O2—Ca1i126.60 (3)O1W—Ca1—O2ii104.04 (3)
O2—O3—V169.52 (4)O6—Ca1—O2ii82.22 (2)
O2—O3—Ca173.68 (4)O7i—Ca1—O2ii126.95 (3)
V1—O3—Ca1107.26 (3)O3—Ca1—O2ii140.19 (3)
O2—O3—Ca1i73.81 (4)O3ii—Ca1—O2ii34.54 (2)
V1—O3—Ca1i96.31 (3)O2—Ca1—O2ii147.038 (16)
Ca1—O3—Ca1i129.34 (3)O2W—Ca1—O1ii90.53 (3)
O5—O4—V167.66 (4)O1W—Ca1—O1ii79.42 (3)
O4—O5—V166.77 (4)O6—Ca1—O1ii142.05 (3)
C1—O6—V1115.00 (6)O7i—Ca1—O1ii71.10 (3)
C1—O6—Ca1132.39 (6)O3—Ca1—O1ii147.95 (2)
V1—O6—Ca197.85 (3)O3ii—Ca1—O1ii63.17 (2)
C1—O7—Ca1ii139.42 (6)O2—Ca1—O1ii145.33 (2)
O7—C1—O6125.30 (9)O2ii—Ca1—O1ii61.45 (2)
O7—C1—C2117.97 (8)Ca1—O1W—HW1A120.9 (12)
O6—C1—C2116.71 (8)Ca1—O1W—HW1B123.8 (12)
N1—C2—C1111.12 (8)HW1A—O1W—HW1B105.6 (16)
N1—C2—H1A109.4 (9)Ca1—O2W—HW2A112.0 (11)
C1—C2—H1A108.8 (9)Ca1—O2W—HW2B114.0 (12)
N1—C2—H1B110.9 (9)HW2A—O2W—HW2B110.8 (16)
C1—C2—H1B109.5 (9)HW3A—O3W—HW3B109.8 (16)
H1A—C2—H1B106.9 (12)HW4A—O4W—HW4B111.1 (17)
C2—N1—V1113.05 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O5iii0.834 (15)2.213 (15)3.0232 (11)163.8 (14)
N1—H2B···O3Wiv0.852 (15)2.218 (15)2.9979 (14)152.2 (13)
O1W—HW1A···O4Wiv0.80 (1)1.93 (1)2.7266 (12)174 (2)
O1W—HW1B···O4v0.80 (1)2.08 (1)2.8659 (11)169 (2)
O2W—HW2A···O4Wvi0.81 (1)1.89 (1)2.6987 (12)177 (2)
O2W—HW2B···O4vii0.78 (1)2.03 (1)2.8069 (12)173 (2)
O3W—HW3A···O5i0.82 (1)1.99 (1)2.7974 (11)169 (2)
O3W—HW3B···O7viii0.79 (1)2.13 (1)2.9014 (12)164 (2)
O4W—HW4A···O3W0.85 (1)1.83 (1)2.6583 (12)168 (2)
O4W—HW4B···O7i0.80 (1)2.26 (1)2.9732 (13)150 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y+1, z; (viii) x+1, y+1/2, z+1/2.
(I.Sr) Calcium (glycinato-κ2N,O)oxidobis(peroxido-κ2O,O')vanadate(V) tetrahydrate top
Crystal data top
Ca[V(C2H4NO2)(O2)O]]·4H2OF(000) = 720
Mr = 364.69Dx = 2.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3970 reflections
a = 10.156 (3) Åθ = 2.9–30.0°
b = 8.851 (2) ŵ = 6.08 mm1
c = 12.549 (3) ÅT = 93 K
β = 112.818 (3)°Prism, yellow
V = 1039.8 (5) Å30.15 × 0.10 × 0.07 mm
Z = 4
Data collection top
Rigaku Saturn724+ (4x4 bin mode)
diffractometer
2986 independent reflections
Radiation source: fine-focus rotating anode2793 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.027
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 2.9°
CCD scansh = 1314
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
k = 1111
Tmin = 0.593, Tmax = 0.732l = 1717
9315 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.3748P]
where P = (Fo2 + 2Fc2)/3
2986 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
14 restraintsΔρmin = 0.37 e Å3
Crystal data top
Ca[V(C2H4NO2)(O2)O]]·4H2OV = 1039.8 (5) Å3
Mr = 364.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.156 (3) ŵ = 6.08 mm1
b = 8.851 (2) ÅT = 93 K
c = 12.549 (3) Å0.15 × 0.10 × 0.07 mm
β = 112.818 (3)°
Data collection top
Rigaku Saturn724+ (4x4 bin mode)
diffractometer
2986 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
2793 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.732Rint = 0.027
9315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01914 restraints
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.63 e Å3
2986 reflectionsΔρmin = 0.37 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were found out from differential Fourier maps. Atomic coordinates of H atoms were refined freely, and Uiso's were restrained to 1.5 times of the Ueq of the atom bound. Disorder of H atoms in three positions on O1W, O2W and O4W was observed. The site occupancy factors of these H atoms were refined as free variables, so as to fix the sum of occupancies of three H atoms on one water molecule to 2.0 by SUMP command.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.24989 (2)0.49391 (3)0.093694 (19)0.00740 (6)
O10.18438 (11)0.66348 (11)0.06781 (9)0.0111 (2)
O20.39394 (11)0.54067 (12)0.24614 (9)0.0109 (2)
O30.44753 (11)0.53725 (12)0.15195 (9)0.0108 (2)
O40.25648 (11)0.43646 (12)0.04923 (9)0.0116 (2)
O50.12318 (11)0.38945 (12)0.04052 (9)0.0110 (2)
O60.32402 (10)0.25811 (12)0.15772 (9)0.01015 (19)
O70.23392 (11)0.03311 (11)0.17740 (9)0.0113 (2)
C10.22772 (15)0.17372 (16)0.16760 (12)0.0090 (3)
C20.09417 (15)0.25168 (17)0.16661 (13)0.0109 (3)
H1A0.017 (2)0.225 (2)0.0963 (18)0.016*
H1B0.073 (2)0.215 (2)0.2314 (19)0.016*
N10.11095 (13)0.41771 (15)0.17087 (11)0.0103 (2)
H2A0.028 (2)0.459 (2)0.1391 (18)0.015*
H2B0.144 (2)0.453 (2)0.2423 (18)0.015*
Sr10.579673 (13)0.327149 (14)0.307253 (10)0.00733 (4)
O1W0.43161 (13)0.29344 (15)0.44303 (11)0.0150 (2)
HW1A0.374 (2)0.226 (2)0.438 (2)0.023*0.95 (4)
HW1B0.400 (4)0.374 (3)0.451 (4)0.023*0.51 (4)
HW1C0.502 (3)0.274 (5)0.501 (2)0.023*0.54 (4)
O2W0.67378 (16)0.30239 (15)0.14350 (11)0.0200 (3)
HW2A0.707 (3)0.380 (2)0.131 (2)0.030*0.94 (4)
HW2B0.591 (3)0.287 (6)0.098 (4)0.030*0.43 (4)
HW2C0.718 (4)0.231 (3)0.135 (3)0.030*0.63 (4)
O3W0.95799 (12)0.58997 (14)0.61216 (10)0.0156 (2)
HW3A1.0375 (17)0.564 (2)0.6300 (19)0.023*
HW3B0.945 (2)0.6787 (18)0.590 (2)0.023*
O4W0.70203 (13)0.44509 (13)0.52191 (10)0.0137 (2)
HW4A0.7823 (18)0.482 (2)0.5422 (19)0.020*0.93 (4)
HW4B0.713 (5)0.375 (4)0.567 (3)0.020*0.45 (4)
HW4C0.655 (3)0.514 (3)0.533 (3)0.020*0.61 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00699 (11)0.00592 (11)0.00846 (10)0.00008 (8)0.00208 (8)0.00038 (8)
O10.0091 (5)0.0089 (5)0.0131 (5)0.0002 (4)0.0019 (4)0.0001 (4)
O20.0109 (5)0.0115 (5)0.0098 (4)0.0001 (4)0.0035 (4)0.0008 (4)
O30.0094 (4)0.0108 (5)0.0120 (5)0.0008 (4)0.0039 (4)0.0002 (4)
O40.0111 (5)0.0126 (5)0.0125 (5)0.0027 (4)0.0060 (4)0.0010 (4)
O50.0090 (4)0.0118 (5)0.0121 (5)0.0023 (4)0.0038 (4)0.0015 (4)
O60.0087 (4)0.0079 (5)0.0125 (5)0.0003 (4)0.0026 (4)0.0007 (4)
O70.0115 (5)0.0075 (5)0.0142 (5)0.0004 (4)0.0043 (4)0.0004 (4)
C10.0085 (6)0.0103 (7)0.0068 (5)0.0011 (5)0.0015 (5)0.0003 (5)
C20.0109 (6)0.0092 (7)0.0137 (6)0.0012 (5)0.0058 (5)0.0012 (5)
N10.0108 (5)0.0096 (6)0.0114 (5)0.0022 (5)0.0054 (4)0.0005 (4)
Sr10.00712 (7)0.00594 (7)0.00846 (6)0.00035 (4)0.00250 (5)0.00048 (4)
O1W0.0154 (5)0.0125 (5)0.0207 (6)0.0001 (5)0.0109 (5)0.0018 (4)
O2W0.0354 (8)0.0102 (6)0.0237 (6)0.0046 (5)0.0214 (6)0.0030 (5)
O3W0.0133 (5)0.0126 (5)0.0211 (5)0.0019 (4)0.0069 (4)0.0031 (4)
O4W0.0148 (5)0.0113 (5)0.0165 (5)0.0013 (4)0.0078 (4)0.0004 (4)
Geometric parameters (Å, º) top
V1—O11.6227 (11)Sr1—O22.5683 (11)
V1—O31.8901 (12)Sr1—O32.6511 (11)
V1—O41.8902 (11)Sr1—O62.6186 (12)
V1—O51.9147 (11)Sr1—O7i2.5810 (11)
V1—O21.9495 (11)Sr1—O2W2.5899 (13)
V1—N12.1080 (13)Sr1—O3ii2.6518 (12)
V1—O62.2581 (11)Sr1—O2ii2.6626 (12)
O1—Sr1i2.7176 (11)Sr1—O1W2.6908 (13)
O2—O31.4809 (15)Sr1—O4W2.7007 (12)
O2—Sr1i2.6626 (12)Sr1—O1ii2.7175 (11)
O3—Sr1i2.6518 (12)O1W—HW1A0.817 (16)
O4—O51.4602 (14)O1W—HW1B0.809 (19)
O6—C11.2743 (17)O1W—HW1C0.816 (19)
O7—C11.2498 (17)O2W—HW2A0.807 (17)
O7—Sr1ii2.5810 (11)O2W—HW2B0.82 (2)
C1—C21.518 (2)O2W—HW2C0.810 (19)
C2—N11.478 (2)O3W—HW3A0.784 (15)
C2—H1A0.96 (2)O3W—HW3B0.825 (15)
C2—H1B0.97 (2)O4W—HW4A0.822 (16)
N1—H2A0.86 (2)O4W—HW4B0.818 (19)
N1—H2B0.88 (2)O4W—HW4C0.816 (18)
O1—V1—O3100.44 (5)O2W—Sr1—O688.86 (5)
O1—V1—O4102.80 (5)O2—Sr1—O332.92 (3)
O3—V1—O489.92 (5)O7i—Sr1—O372.96 (4)
O1—V1—O5100.78 (5)O2W—Sr1—O373.35 (4)
O3—V1—O5133.54 (5)O6—Sr1—O363.79 (3)
O4—V1—O545.13 (4)O2—Sr1—O3ii130.56 (4)
O1—V1—O295.36 (5)O7i—Sr1—O3ii142.88 (3)
O3—V1—O245.34 (4)O2W—Sr1—O3ii99.75 (4)
O4—V1—O2134.34 (5)O6—Sr1—O3ii76.35 (3)
O5—V1—O2163.38 (5)O3—Sr1—O3ii139.44 (2)
O1—V1—N195.30 (5)O2—Sr1—O2ii139.427 (18)
O3—V1—N1133.38 (5)O7i—Sr1—O2ii123.29 (3)
O4—V1—N1128.77 (5)O2W—Sr1—O2ii67.39 (4)
O5—V1—N184.74 (5)O6—Sr1—O2ii76.47 (3)
O2—V1—N189.91 (5)O3—Sr1—O2ii123.69 (3)
O1—V1—O6168.62 (5)O3ii—Sr1—O2ii32.36 (3)
O3—V1—O683.82 (4)O2—Sr1—O1W75.20 (4)
O4—V1—O687.67 (4)O7i—Sr1—O1W127.22 (4)
O5—V1—O683.36 (4)O2W—Sr1—O1W164.12 (4)
O2—V1—O680.05 (4)O6—Sr1—O1W77.62 (4)
N1—V1—O674.40 (5)O3—Sr1—O1W107.18 (4)
V1—O1—Sr1i100.15 (5)O3ii—Sr1—O1W69.20 (4)
O3—O2—V165.21 (6)O2ii—Sr1—O1W100.91 (4)
O3—O2—Sr176.62 (6)O2—Sr1—O4W90.80 (4)
V1—O2—Sr1108.76 (5)O7i—Sr1—O4W67.18 (3)
O3—O2—Sr1i73.42 (6)O2W—Sr1—O4W130.96 (4)
V1—O2—Sr1i93.77 (4)O6—Sr1—O4W138.57 (3)
Sr1—O2—Sr1i129.94 (4)O3—Sr1—O4W111.59 (4)
O2—O3—V169.45 (6)O3ii—Sr1—O4W102.92 (4)
O2—O3—Sr170.47 (6)O2ii—Sr1—O4W124.53 (3)
V1—O3—Sr1107.51 (5)O1W—Sr1—O4W64.23 (4)
O2—O3—Sr1i74.22 (6)O2—Sr1—O1ii161.04 (3)
V1—O3—Sr1i95.54 (4)O7i—Sr1—O1ii82.89 (4)
Sr1—O3—Sr1i126.71 (4)O2W—Sr1—O1ii84.17 (4)
O5—O4—V168.33 (6)O6—Sr1—O1ii134.14 (3)
O4—O5—V166.54 (6)O3—Sr1—O1ii151.61 (3)
C1—O6—V1114.44 (9)O3ii—Sr1—O1ii60.49 (3)
C1—O6—Sr1130.71 (9)O2ii—Sr1—O1ii59.02 (3)
V1—O6—Sr198.07 (4)O1W—Sr1—O1ii99.20 (4)
C1—O7—Sr1ii135.90 (9)O4W—Sr1—O1ii70.66 (4)
O7—C1—O6125.59 (13)Sr1—O1W—HW1A126.1 (17)
O7—C1—C2117.67 (13)Sr1—O1W—HW1B109 (3)
O6—C1—C2116.74 (12)HW1A—O1W—HW1B110 (3)
N1—C2—C1111.20 (11)Sr1—O1W—HW1C95 (3)
N1—C2—H1A108.6 (12)HW1A—O1W—HW1C105 (3)
C1—C2—H1A108.0 (12)HW1B—O1W—HW1C109 (4)
N1—C2—H1B111.2 (12)Sr1—O2W—HW2A113.2 (18)
C1—C2—H1B109.0 (12)Sr1—O2W—HW2B89 (4)
H1A—C2—H1B108.8 (17)HW2A—O2W—HW2B113 (4)
C2—N1—V1112.95 (9)Sr1—O2W—HW2C125 (3)
C2—N1—H2A109.1 (13)HW2A—O2W—HW2C110 (3)
V1—N1—H2A111.1 (13)HW2B—O2W—HW2C104 (5)
C2—N1—H2B112.2 (13)HW3A—O3W—HW3B113 (2)
V1—N1—H2B107.3 (13)Sr1—O4W—HW4A118.8 (16)
H2A—N1—H2B103.8 (18)Sr1—O4W—HW4B106 (3)
O2—Sr1—O7i86.28 (4)HW4A—O4W—HW4B103 (4)
O2—Sr1—O2W106.24 (4)Sr1—O4W—HW4C112 (2)
O7i—Sr1—O2W68.49 (4)HW4A—O4W—HW4C103 (3)
O2—Sr1—O663.15 (4)HW4B—O4W—HW4C113 (4)
O7i—Sr1—O6135.48 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O5iii0.86 (2)2.05 (2)2.8682 (17)157.8 (18)
O1W—HW1A···O4iv0.82 (2)1.92 (2)2.7291 (17)171 (2)
O2W—HW2A···O4v0.81 (2)2.03 (2)2.8097 (17)162 (2)
O4W—HW4A···O3W0.82 (2)1.91 (2)2.7205 (17)168 (2)
O1W—HW1B···O4Wvi0.81 (2)2.00 (2)2.8026 (18)171 (4)
O2W—HW2B···O1Wvii0.82 (2)2.11 (3)2.881 (2)155 (5)
O3W—HW3B···O5i0.83 (2)2.00 (2)2.8177 (17)169 (2)
O4W—HW4B···O2Wiv0.82 (2)1.96 (2)2.7473 (18)161 (5)
O1W—HW1C···O2Wiv0.82 (2)2.07 (2)2.881 (2)173 (4)
O2W—HW2C···O4Wvii0.81 (2)2.07 (3)2.7473 (18)141 (4)
O4W—HW4C···O1Wvi0.82 (2)2.00 (2)2.8026 (18)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1/2, z1/2.

Experimental details

(I.Ca)(I.Sr)
Crystal data
Chemical formulaCa[V(C2H4NO2)(O2)O]]·4H2OCa[V(C2H4NO2)(O2)O]]·4H2O
Mr317.15364.69
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)9393
a, b, c (Å)9.079 (2), 8.564 (2), 13.833 (4)10.156 (3), 8.851 (2), 12.549 (3)
β (°) 106.016 (3) 112.818 (3)
V3)1033.8 (4)1039.8 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.516.08
Crystal size (mm)0.20 × 0.18 × 0.170.15 × 0.10 × 0.07
Data collection
DiffractometerRigaku Saturn724+ (4x4 bin mode)
diffractometer
Rigaku Saturn724+ (4x4 bin mode)
diffractometer
Absorption correctionNumerical
(CrystalClear; Rigaku, 2008)
Numerical
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.810, 0.8800.593, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
9037, 2951, 2833 9315, 2986, 2793
Rint0.0210.027
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.048, 1.08 0.019, 0.046, 1.08
No. of reflections29512986
No. of parameters181199
No. of restraints814
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.340.63, 0.37

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Selected geometric parameters (Å, º) for (I.Ca) top
V1—O11.6206 (8)Ca1—O22.4949 (8)
V1—O41.8870 (8)Ca1—O32.4663 (8)
V1—O51.8994 (8)Ca1—O62.4059 (8)
V1—O31.9004 (8)Ca1—O2W2.3644 (9)
V1—O21.9587 (8)Ca1—O1W2.3665 (9)
V1—N12.1146 (9)Ca1—O7i2.4291 (8)
V1—O62.2780 (8)Ca1—O3ii2.4807 (9)
C1—O61.2671 (11)Ca1—O2ii2.5101 (9)
C1—O71.2564 (12)Ca1—O1ii2.6682 (8)
O1—V1—N196.77 (4)O7—C1—O6125.30 (9)
O1—V1—O6168.45 (3)O7—C1—C2117.97 (8)
N1—V1—O674.12 (3)O6—C1—C2116.71 (8)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (I.Sr) top
V1—O11.6227 (11)Sr1—O62.6186 (12)
V1—O31.8901 (12)Sr1—O7i2.5810 (11)
V1—O41.8902 (11)Sr1—O2W2.5899 (13)
V1—O51.9147 (11)Sr1—O3ii2.6518 (12)
V1—O21.9495 (11)Sr1—O2ii2.6626 (12)
V1—N12.1080 (13)Sr1—O1W2.6908 (13)
V1—O62.2581 (11)Sr1—O4W2.7007 (12)
Sr1—O22.5683 (11)Sr1—O1ii2.7175 (11)
Sr1—O32.6511 (11)
O1—V1—N195.30 (5)N1—V1—O674.40 (5)
O1—V1—O6168.62 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I.Ca) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O5iii0.834 (15)2.213 (15)3.0232 (11)163.8 (14)
N1—H2B···O3Wiv0.852 (15)2.218 (15)2.9979 (14)152.2 (13)
O1W—HW1A···O4Wiv0.799 (13)1.931 (13)2.7266 (12)174.2 (16)
O1W—HW1B···O4v0.798 (13)2.079 (14)2.8659 (11)168.7 (16)
O2W—HW2A···O4Wvi0.807 (13)1.892 (14)2.6987 (12)177.1 (16)
O2W—HW2B···O4vii0.779 (13)2.032 (13)2.8069 (12)173.1 (16)
O3W—HW3A···O5i0.819 (13)1.989 (14)2.7974 (11)169.0 (17)
O3W—HW3B···O7viii0.794 (13)2.129 (14)2.9014 (12)164.4 (16)
O4W—HW4A···O3W0.845 (14)1.826 (14)2.6583 (12)168.0 (17)
O4W—HW4B···O7i0.798 (13)2.256 (14)2.9732 (13)149.8 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y+1, z; (viii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I.Sr) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O5iii0.86 (2)2.05 (2)2.8682 (17)157.8 (18)
O1W—HW1A···O4iv0.817 (16)1.919 (17)2.7291 (17)171 (2)
O2W—HW2A···O4v0.807 (17)2.031 (18)2.8097 (17)162 (2)
O4W—HW4A···O3W0.822 (16)1.911 (16)2.7205 (17)168 (2)
O1W—HW1B···O4Wvi0.809 (19)2.00 (2)2.8026 (18)171 (4)
O2W—HW2B···O1Wvii0.82 (2)2.11 (3)2.881 (2)155 (5)
O3W—HW3B···O5i0.825 (15)2.003 (16)2.8177 (17)169 (2)
O4W—HW4B···O2Wiv0.818 (19)1.96 (2)2.7473 (18)161 (5)
O1W—HW1C···O2Wiv0.816 (19)2.07 (2)2.881 (2)173 (4)
O2W—HW2C···O4Wvii0.810 (19)2.07 (3)2.7473 (18)141 (4)
O4W—HW4C···O1Wvi0.816 (18)1.995 (19)2.8026 (18)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds