Download citation
Download citation
link to html
In the title compound, C31H29N3O2, the reduced pyridine ring adopts a conformation inter­mediate between the envelope and half-chair forms. The aryl rings of the benzyl and phenyl substituents are nearly parallel and overlap, indicative of an intra­molecular π–π stacking inter­action. A combination of two C—H...O hydrogen bonds and one C—H...N hydrogen bond links the mol­ecules into a bilayer having tert-butyl groups on both faces.<!?tpb=19.5pt>

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113017435/fg3298sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113017435/fg3298Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113017435/fg3298Isup3.cml
Supplementary material

CCDC reference: 963266

Introduction top

Compounds with spiro skeletons not only constitute subunits in numerous alkaloids, but are also templates for drug discovery that have been used as scaffolds for combinatorial libraries (Maier & Wuensch, 2002; Shaabani & Bazgir, 2004; Krasnov & Kartsev, 2005; Lang et al., 2005; Kadutskii & Kozlov, 2006; Kuster et al., 2006; Macleod et al., 2006; Naza­renko et al., 2007). The synthesis of spiro compounds can be achieved using conventional methods and procedures based on three-component one-pot reactions (Marti & Carrei, 2003; Rolandsgard et al., 2005; Arya & Dandia, 2007; Rahimizadeh et al., 2007). However, focused microwave irradiation is now emerging as a powerful tool to simplify and improve classic organic reactions, because it often leads to higher yields and cleaner and shorter reactions, with precise control of the reaction parameters (Kappe, 2004; Martins et al., 2009). We have recently developed a route to spiro compounds through the microwave-assisted reactions between pyrazolo­[3,4-b]pyridines, paraformaldehyde and cyclic β-diketones (Quiroga et al., 2010), and we report here the molecular and supra­molecular structure of the title compound, (I) (Fig. 1), as a representative product from this procedure, which was obtained using indan-1,3-dione as the cyclic β-diketone component.

Synthesis and crystallization top

A mixture of N-benzyl-3-tert-butyl-1-phenyl-1H-pyrazol-5-amine (2 mmol), indan-1,3-dione (2 mmol) and an excess of paraformaldehyde (30 mol%) was subjected to microwave radiation for 25 min at 473 K and a maximum power of 300 W. The mixture was then dissolved in hot ethanol and subsequently allowed to cool to ambient temperature. The resulting solid product was collected by filtration and washed successively with ethanol (5 ml) and hexane (2 × 5 ml) to give pale-yellow crystals of (I) suitable for single-crystal X-ray diffraction (yield 52%, m.p. 458–160 K). MS (EI 70 eV) m/z (% relative abundance): 475 (M+, 89), 384 (25), 328 (100); HR–MS, found: 475, 2259; C31H29N3O2 requires 475, 2260. Analysis, found: C 77.3, H 6.2, N 9.3%; C31H29N3O2 requires: C 78.3, H 6.1, N 8.8%.

Refinement top

All H atoms were located in difference maps but were subsequently treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, or 1.2 for all other H atoms.

Results and discussion top

The reduced pyridine ring in (I) is markedly nonplanar, with a ring-puckering amplitude of 0.467 (2) Å; the ring-puckering angles (Cremer & Pople, 1975) calculated for the atom sequence N–C6–C52–C4–C3A–C7A are θ = 128.9 (2)° and ϕ = 283.8 (3)°. These values indicate that this ring adopts a conformation inter­mediate between the half-chair and envelope forms, for which the idealized values (Boeyens, 1978) are θ = 129.2 and 125.3°, respectively, and ϕ = (60k + 30)° and (60k)°, respectively, where k represents an integer.

As expected, the mean planes of the two rings which are linked via atom C52 are almost orthogonal, with a dihedral angle between the mean planes of 88.1 (3)°. The orientation of the tert-butyl group is of some inter­est as one of the methyl C atoms, atom C34, is close to the plane of the adjacent pyrazole ring but displaced from it by 0.081 (2) Å, as indicated by the value of the N2—C3—C31—C34 torsion angle (Table 1). Both of the other hydro­carbyl substituents, at atoms N1 and N7, are twisted well out of the mean plane of the pyrazolo­[3,4-b]pyridine unit, as indicated by the relevant torsion angles (Table 1), but with the result that the two aryl rings (C11–C16 and C71–C76) are themselves very nearly parallel, with a dihedral angle between them of only 9.7 (2)°. The corresponding ring-centroid separation is 3.787 (2) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is ca 3.41 Å, with a ring-centroid offset of ca 1.65 Å. This is indicative of an intra­molecular ππ stacking inter­action (Fig. 2) and is probably significant in determining the overall orientation of these two substituents. The bond lengths (Table 1) indicate some bond fixation in the pyrazole ring and confirm the reduced nature of the pyridine ring, but otherwise the bond lengths present no features of note.

The supra­molecular assembly of (I) is determined by three hydrogen bonds, two of the C—H···O type and one of the C—H···N type (Table 2), but C—H···π(arene) hydrogen bonds and inter­molecular ππ stacking inter­actions are absent. The overall assembly takes the form of a fairly complex bilayer, but the formation of this bilayer is readily analysed in terms of simple substructures (Ferguson et al., 1998a,b; Gregson et al., 2000). Acting alone, the hydrogen bond having atom O51 as the acceptor (Table 2) links molecules related by translation into a C(5) chain (Bernstein et al., 1995) running parallel to the [010] direction, while the hydrogen bond having atom N2 as the acceptor, when acting alone, links molecules related by the c-glide plane at y = 0.25 into a C(10) chain running parallel to the [001] direction. The combination of these two substructural motifs generates a sheet in the form of a (4,4) net lying parallel to (100) and built from R44(28) rings (Fig. 3). This sheet lies in the domain 0 < x < 0.5 and a second sheet, related to the first by inversion, lies in the domain 0.5 < x < 1.0. The final hydrogen bond, having atom O53 as the acceptor, links inversion-related pairs of molecules in a centrosymmetric R22(20) motif (Table 2 and Fig. 4). The two molecules involved in this ring motif lie in different (100) sheets, so that the effect of this final inter­action is to link the sheets in pairs to form a bilayer. The inter­ior of the bilayer contains C—H···O hydrogen bonds, while the tert-butyl groups are all on the outer faces. This probably accounts for the absence of any direction-specific inter­actions between adjacent bilayers.

Related literature top

For related literature, see: Arya & Dandia (2007); Bernstein et al. (1995); Boeyens (1978); Cremer & Pople (1975); Ferguson et al. (1998a, 1998b); Gregson et al. (2000); Kadutskii & Kozlov (2006); Kappe (2004); Krasnov & Kartsev (2005); Kuster et al. (2006); Lang et al. (2005); Macleod et al. (2006); Maier & Wuensch (2002); Marti & Carrei (2003); Martins et al. (2009); Nazarenko et al. (2007); Quiroga et al. (2010); Rahimizadeh et al. (2007); Rolandsgard et al. (2005); Shaabani & Bazgir (2004).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of (I), showing the partial overlap of the C11–C16 and C71–C76 rings, which are nearly parallel. All H atoms have been omitted for the sake of clarity.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet of R44(28) rings lying parallel to (100). Dashed lines indicate hydrogen bonds? For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded R22(20) ring which links pairs of (100) sheets. Dashed lines indicate hydrogen bonds? For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-x + 1, -y + 1, -z + 1).
7-Benzyl-3-tert-butyl-1-phenyl-4,5,6,7-tetrahydro-1H-spiro[pyrazolo[3,4-b]pyridine-5,2'-indan]-1',3'-dione top
Crystal data top
C31H29N3O2F(000) = 1008
Mr = 475.57Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5680 reflections
a = 16.6917 (18) Åθ = 3.0–27.5°
b = 5.9748 (4) ŵ = 0.08 mm1
c = 24.840 (3) ÅT = 120 K
β = 91.841 (10)°Block, pale yellow
V = 2476.0 (4) Å30.34 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5679 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 77
Tmin = 0.973, Tmax = 0.983l = 3232
38299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.1191P]
where P = (Fo2 + 2Fc2)/3
5679 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C31H29N3O2V = 2476.0 (4) Å3
Mr = 475.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6917 (18) ŵ = 0.08 mm1
b = 5.9748 (4) ÅT = 120 K
c = 24.840 (3) Å0.34 × 0.27 × 0.22 mm
β = 91.841 (10)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
5679 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3889 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.983Rint = 0.049
38299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
5679 reflectionsΔρmin = 0.21 e Å3
322 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24247 (8)0.3603 (2)0.63330 (5)0.0228 (3)
N20.16935 (8)0.2808 (2)0.64967 (5)0.0250 (3)
C30.14271 (9)0.1498 (3)0.60944 (6)0.0224 (3)
C3A0.19774 (9)0.1426 (3)0.56725 (6)0.0213 (3)
C40.19455 (10)0.0355 (3)0.51271 (6)0.0224 (3)
H4A0.13880.03760.49780.027*
H4B0.21220.12230.51560.027*
C520.25005 (9)0.1651 (3)0.47469 (6)0.0216 (3)
C60.33166 (9)0.2112 (3)0.50430 (6)0.0234 (3)
H6A0.35790.06620.51260.028*
H6B0.36650.29400.47960.028*
N70.32604 (8)0.3391 (2)0.55438 (5)0.0211 (3)
C7A0.25948 (9)0.2808 (3)0.58353 (6)0.0208 (3)
C510.20610 (9)0.3730 (3)0.45367 (6)0.0225 (3)
O510.18240 (7)0.52709 (19)0.48063 (4)0.0293 (3)
C530.26266 (10)0.0272 (3)0.42381 (6)0.0236 (4)
O530.29945 (7)0.1477 (2)0.42245 (5)0.0308 (3)
C540.22283 (9)0.1434 (3)0.37753 (6)0.0231 (3)
C550.21537 (10)0.0773 (3)0.32371 (6)0.0274 (4)
H550.23670.06110.31200.033*
C560.17571 (10)0.2205 (3)0.28785 (7)0.0317 (4)
H560.16910.17910.25100.038*
C570.14545 (11)0.4244 (3)0.30528 (7)0.0336 (4)
H570.11890.52040.27990.040*
C580.15310 (10)0.4909 (3)0.35875 (7)0.0279 (4)
H580.13250.63050.37030.033*
C590.19181 (9)0.3464 (3)0.39461 (6)0.0226 (3)
C110.29000 (9)0.4909 (3)0.67070 (6)0.0214 (3)
C120.26215 (10)0.6979 (3)0.68680 (6)0.0265 (4)
H120.21320.75540.67200.032*
C130.30642 (11)0.8207 (3)0.72471 (7)0.0309 (4)
H130.28770.96300.73590.037*
C140.37777 (10)0.7363 (3)0.74627 (6)0.0307 (4)
H140.40760.81970.77260.037*
C150.40544 (10)0.5308 (3)0.72946 (6)0.0293 (4)
H150.45480.47410.74390.035*
C160.36168 (10)0.4066 (3)0.69159 (6)0.0249 (4)
H160.38070.26520.68010.030*
C310.05951 (10)0.0486 (3)0.61060 (6)0.0263 (4)
C320.05998 (11)0.1994 (3)0.59411 (8)0.0341 (4)
H32A0.08210.21390.55820.051*
H32B0.00510.25760.59350.051*
H32C0.09310.28470.62010.051*
C330.00517 (10)0.1790 (3)0.57030 (7)0.0305 (4)
H33A0.00390.33720.58070.046*
H33B0.04920.11740.57050.046*
H33C0.02620.16530.53410.046*
C340.02508 (11)0.0698 (4)0.66680 (7)0.0421 (5)
H34A0.05730.02000.69250.063*
H34B0.03040.01590.66590.063*
H34C0.02630.22710.67800.063*
C770.34898 (10)0.5767 (3)0.55292 (6)0.0230 (3)
H77A0.30660.66650.56970.028*
H77B0.35200.62440.51490.028*
C710.42857 (9)0.6264 (3)0.58165 (6)0.0215 (3)
C720.44048 (10)0.8345 (3)0.60595 (6)0.0251 (4)
H720.39950.94470.60340.030*
C730.51192 (10)0.8816 (3)0.63387 (7)0.0293 (4)
H730.51961.02410.65020.035*
C740.57188 (10)0.7225 (3)0.63803 (7)0.0302 (4)
H740.62010.75410.65800.036*
C750.56146 (10)0.5170 (3)0.61303 (7)0.0295 (4)
H750.60300.40820.61520.035*
C760.49021 (10)0.4696 (3)0.58466 (6)0.0251 (4)
H760.48360.32900.56720.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0218 (7)0.0290 (8)0.0176 (6)0.0061 (6)0.0002 (5)0.0029 (6)
N20.0224 (7)0.0319 (8)0.0206 (7)0.0057 (6)0.0001 (5)0.0005 (6)
C30.0230 (8)0.0242 (8)0.0197 (8)0.0012 (7)0.0033 (6)0.0013 (7)
C3A0.0240 (8)0.0207 (8)0.0192 (7)0.0004 (7)0.0023 (6)0.0002 (6)
C40.0250 (8)0.0215 (8)0.0204 (8)0.0007 (7)0.0028 (6)0.0013 (6)
C520.0251 (8)0.0206 (8)0.0191 (7)0.0006 (7)0.0000 (6)0.0017 (6)
C60.0240 (8)0.0262 (9)0.0200 (8)0.0012 (7)0.0000 (6)0.0017 (7)
N70.0224 (7)0.0217 (7)0.0192 (6)0.0030 (6)0.0004 (5)0.0013 (5)
C7A0.0223 (8)0.0218 (8)0.0181 (7)0.0003 (7)0.0011 (6)0.0004 (6)
C510.0234 (8)0.0230 (9)0.0210 (8)0.0029 (7)0.0001 (6)0.0014 (7)
O510.0394 (7)0.0232 (6)0.0252 (6)0.0039 (5)0.0011 (5)0.0052 (5)
C530.0247 (8)0.0227 (9)0.0233 (8)0.0015 (7)0.0025 (6)0.0034 (7)
O530.0361 (7)0.0264 (7)0.0301 (6)0.0052 (6)0.0036 (5)0.0042 (5)
C540.0204 (8)0.0285 (9)0.0204 (8)0.0038 (7)0.0021 (6)0.0025 (7)
C550.0255 (9)0.0347 (10)0.0222 (8)0.0043 (8)0.0034 (7)0.0065 (7)
C560.0280 (9)0.0483 (12)0.0189 (8)0.0058 (8)0.0009 (7)0.0025 (8)
C570.0325 (10)0.0453 (12)0.0226 (8)0.0004 (9)0.0027 (7)0.0086 (8)
C580.0282 (9)0.0300 (9)0.0254 (8)0.0007 (8)0.0002 (7)0.0016 (7)
C590.0206 (8)0.0277 (9)0.0194 (7)0.0026 (7)0.0007 (6)0.0013 (7)
C110.0228 (8)0.0256 (9)0.0159 (7)0.0059 (7)0.0003 (6)0.0015 (6)
C120.0248 (8)0.0288 (9)0.0259 (8)0.0000 (7)0.0005 (7)0.0005 (7)
C130.0370 (10)0.0274 (9)0.0288 (9)0.0055 (8)0.0081 (7)0.0074 (7)
C140.0306 (9)0.0392 (11)0.0222 (8)0.0132 (8)0.0003 (7)0.0075 (8)
C150.0232 (8)0.0414 (11)0.0230 (8)0.0019 (8)0.0036 (7)0.0011 (8)
C160.0251 (8)0.0277 (9)0.0219 (8)0.0002 (7)0.0010 (6)0.0011 (7)
C310.0234 (8)0.0324 (10)0.0231 (8)0.0045 (7)0.0013 (6)0.0015 (7)
C320.0277 (9)0.0314 (10)0.0429 (11)0.0055 (8)0.0042 (8)0.0045 (8)
C330.0246 (9)0.0322 (10)0.0342 (9)0.0006 (8)0.0054 (7)0.0068 (8)
C340.0289 (10)0.0693 (15)0.0283 (9)0.0172 (10)0.0029 (7)0.0027 (9)
C770.0253 (8)0.0222 (8)0.0213 (8)0.0014 (7)0.0022 (6)0.0023 (7)
C710.0239 (8)0.0238 (8)0.0167 (7)0.0035 (7)0.0012 (6)0.0032 (6)
C720.0289 (9)0.0226 (9)0.0235 (8)0.0020 (7)0.0020 (7)0.0027 (7)
C730.0338 (10)0.0271 (9)0.0267 (9)0.0093 (8)0.0029 (7)0.0001 (7)
C740.0235 (9)0.0405 (11)0.0266 (9)0.0082 (8)0.0020 (7)0.0025 (8)
C750.0234 (9)0.0369 (10)0.0284 (9)0.0017 (8)0.0025 (7)0.0034 (8)
C760.0248 (8)0.0256 (9)0.0250 (8)0.0015 (7)0.0033 (7)0.0012 (7)
Geometric parameters (Å, º) top
N1—N21.3830 (18)C12—C131.388 (2)
N1—C111.433 (2)C12—H120.9500
N2—C31.334 (2)C13—C141.385 (2)
C3—C3A1.416 (2)C13—H130.9500
C3—C311.516 (2)C14—C151.381 (3)
C3A—C7A1.371 (2)C14—H140.9500
C7A—N11.3628 (19)C15—C161.387 (2)
C3A—C41.498 (2)C15—H150.9500
C4—C521.551 (2)C16—H160.9500
C4—H4A0.9900C31—C341.532 (2)
C4—H4B0.9900C31—C321.537 (2)
C52—C511.526 (2)C31—C331.541 (2)
C52—C531.529 (2)C32—H32A0.9800
C52—C61.552 (2)C32—H32B0.9800
C6—N71.4656 (19)C32—H32C0.9800
C6—H6A0.9900C33—H33A0.9800
C6—H6B0.9900C33—H33B0.9800
N7—C7A1.3900 (19)C33—H33C0.9800
N7—C771.471 (2)C34—H34A0.9800
C51—O511.2124 (19)C34—H34B0.9800
C51—C591.487 (2)C34—H34C0.9800
C53—O531.2135 (19)C77—C711.517 (2)
C53—C541.482 (2)C77—H77A0.9900
C54—C591.391 (2)C77—H77B0.9900
C54—C551.396 (2)C71—C761.392 (2)
C55—C561.388 (2)C71—C721.393 (2)
C55—H550.9500C72—C731.389 (2)
C56—C571.393 (3)C72—H720.9500
C56—H560.9500C73—C741.382 (3)
C57—C581.388 (2)C73—H730.9500
C57—H570.9500C74—C751.385 (3)
C58—C591.386 (2)C74—H740.9500
C58—H580.9500C75—C761.392 (2)
C11—C161.384 (2)C75—H750.9500
C11—C121.385 (2)C76—H760.9500
C7A—N1—N2111.00 (12)C11—C12—H12120.3
C7A—N1—C11130.59 (13)C13—C12—H12120.3
N2—N1—C11118.16 (12)C14—C13—C12120.15 (16)
C3—N2—N1104.91 (12)C14—C13—H13119.9
N2—C3—C3A111.32 (14)C12—C13—H13119.9
N2—C3—C31120.21 (14)C15—C14—C13119.90 (16)
C3A—C3—C31128.20 (14)C15—C14—H14120.0
C7A—C3A—C3105.22 (13)C13—C14—H14120.0
C7A—C3A—C4121.91 (14)C14—C15—C16120.43 (16)
C3—C3A—C4132.64 (14)C14—C15—H15119.8
C3A—C4—C52109.45 (13)C16—C15—H15119.8
C3A—C4—H4A109.8C11—C16—C15119.33 (16)
C52—C4—H4A109.8C11—C16—H16120.3
C3A—C4—H4B109.8C15—C16—H16120.3
C52—C4—H4B109.8C3—C31—C34110.80 (13)
H4A—C4—H4B108.2C3—C31—C32111.51 (14)
C51—C52—C53103.48 (12)C34—C31—C32109.14 (15)
C51—C52—C4108.94 (13)C3—C31—C33107.86 (14)
C53—C52—C4109.59 (13)C34—C31—C33108.67 (15)
C51—C52—C6115.01 (13)C32—C31—C33108.80 (14)
C53—C52—C6110.21 (13)C31—C32—H32A109.5
C4—C52—C6109.42 (12)C31—C32—H32B109.5
N7—C6—C52114.57 (13)H32A—C32—H32B109.5
N7—C6—H6A108.6C31—C32—H32C109.5
C52—C6—H6A108.6H32A—C32—H32C109.5
N7—C6—H6B108.6H32B—C32—H32C109.5
C52—C6—H6B108.6C31—C33—H33A109.5
H6A—C6—H6B107.6C31—C33—H33B109.5
C7A—N7—C6112.68 (12)H33A—C33—H33B109.5
C7A—N7—C77117.90 (13)C31—C33—H33C109.5
C6—N7—C77117.28 (12)H33A—C33—H33C109.5
N1—C7A—C3A107.52 (13)H33B—C33—H33C109.5
N1—C7A—N7125.35 (14)C31—C34—H34A109.5
C3A—C7A—N7127.08 (14)C31—C34—H34B109.5
O51—C51—C59125.52 (15)H34A—C34—H34B109.5
O51—C51—C52126.22 (14)C31—C34—H34C109.5
C59—C51—C52108.12 (13)H34A—C34—H34C109.5
O53—C53—C54126.63 (15)H34B—C34—H34C109.5
O53—C53—C52124.78 (15)N7—C77—C71113.70 (13)
C54—C53—C52108.58 (13)N7—C77—H77A108.8
C59—C54—C55121.08 (15)C71—C77—H77A108.8
C59—C54—C53109.52 (13)N7—C77—H77B108.8
C55—C54—C53129.39 (16)C71—C77—H77B108.8
C56—C55—C54117.81 (16)H77A—C77—H77B107.7
C56—C55—H55121.1C76—C71—C72118.84 (15)
C54—C55—H55121.1C76—C71—C77121.88 (15)
C55—C56—C57120.65 (16)C72—C71—C77119.28 (14)
C55—C56—H56119.7C73—C72—C71120.36 (16)
C57—C56—H56119.7C73—C72—H72119.8
C58—C57—C56121.63 (16)C71—C72—H72119.8
C58—C57—H57119.2C74—C73—C72120.39 (16)
C56—C57—H57119.2C74—C73—H73119.8
C59—C58—C57117.61 (17)C72—C73—H73119.8
C59—C58—H58121.2C73—C74—C75119.77 (16)
C57—C58—H58121.2C73—C74—H74120.1
C58—C59—C54121.20 (15)C75—C74—H74120.1
C58—C59—C51128.65 (15)C74—C75—C76120.03 (16)
C54—C59—C51110.15 (14)C74—C75—H75120.0
C16—C11—C12120.72 (15)C76—C75—H75120.0
C16—C11—N1119.94 (15)C71—C76—C75120.56 (16)
C12—C11—N1119.30 (14)C71—C76—H76119.7
C11—C12—C13119.45 (16)C75—C76—H76119.7
C7A—N1—N2—C30.73 (17)C59—C54—C55—C560.3 (2)
C11—N1—N2—C3174.20 (14)C53—C54—C55—C56179.00 (16)
N1—N2—C3—C3A0.22 (18)C54—C55—C56—C570.8 (2)
N1—N2—C3—C31174.25 (14)C55—C56—C57—C580.5 (3)
N2—C3—C3A—C7A1.06 (18)C56—C57—C58—C590.3 (3)
C31—C3—C3A—C7A172.86 (16)C57—C58—C59—C540.8 (2)
N2—C3—C3A—C4175.40 (16)C57—C58—C59—C51178.19 (16)
C31—C3—C3A—C41.5 (3)C55—C54—C59—C580.6 (2)
C7A—C3A—C4—C5219.4 (2)C53—C54—C59—C58178.40 (15)
C3—C3A—C4—C52154.13 (17)C55—C54—C59—C51178.61 (14)
C3A—C4—C52—C5180.74 (15)C53—C54—C59—C512.42 (18)
C3A—C4—C52—C53166.70 (13)O51—C51—C59—C583.1 (3)
C3A—C4—C52—C645.76 (17)C52—C51—C59—C58178.98 (16)
C51—C52—C6—N764.66 (17)O51—C51—C59—C54176.01 (16)
C53—C52—C6—N7178.87 (13)C52—C51—C59—C540.13 (17)
C4—C52—C6—N758.31 (17)C7A—N1—C11—C1661.5 (2)
C52—C6—N7—C7A37.90 (18)N2—N1—C11—C16112.29 (17)
C52—C6—N7—C77103.91 (16)C7A—N1—C11—C12120.54 (19)
N2—N1—C7A—C3A1.41 (18)C16—C11—C12—C130.6 (2)
C11—N1—C7A—C3A172.71 (15)N1—C11—C12—C13177.32 (14)
N2—N1—C7A—N7176.11 (14)C11—C12—C13—C140.1 (2)
C11—N1—C7A—N79.8 (3)C12—C13—C14—C150.9 (3)
C3—C3A—C7A—N11.45 (17)C13—C14—C15—C160.9 (3)
C4—C3A—C7A—N1176.55 (14)C12—C11—C16—C150.6 (2)
C3—C3A—C7A—N7176.01 (15)N1—C11—C16—C15177.31 (14)
C4—C3A—C7A—N70.9 (3)C14—C15—C16—C110.1 (2)
C6—N7—C7A—N1174.92 (15)N2—C3—C31—C32135.75 (16)
C77—N7—C7A—N143.5 (2)C3A—C3—C31—C3250.8 (2)
C6—N7—C7A—C3A8.1 (2)N2—C3—C31—C33104.85 (17)
C77—N7—C7A—C3A133.50 (17)N2—C3—C31—C3414.0 (2)
C53—C52—C51—O51178.31 (15)C3A—C3—C31—C34172.58 (17)
C4—C52—C51—O5161.8 (2)C3A—C3—C31—C3368.6 (2)
C6—C52—C51—O5161.4 (2)N2—N1—C11—C1265.69 (19)
C53—C52—C51—C592.47 (16)C7A—N7—C77—C71113.17 (15)
C4—C52—C51—C59114.06 (14)C6—N7—C77—C71107.03 (15)
C6—C52—C51—C59122.71 (14)N7—C77—C71—C7630.4 (2)
C51—C52—C53—O53176.06 (15)N7—C77—C71—C72149.38 (14)
C4—C52—C53—O5367.9 (2)C76—C71—C72—C731.7 (2)
C6—C52—C53—O5352.6 (2)C77—C71—C72—C73178.07 (15)
C51—C52—C53—C543.88 (16)C71—C72—C73—C740.2 (2)
C4—C52—C53—C54112.20 (14)C72—C73—C74—C751.7 (3)
C6—C52—C53—C54127.34 (14)C73—C74—C75—C761.2 (2)
O53—C53—C54—C59175.90 (16)C72—C71—C76—C752.2 (2)
C52—C53—C54—C594.04 (18)C77—C71—C76—C75177.57 (15)
O53—C53—C54—C553.0 (3)C74—C75—C76—C710.8 (2)
C52—C53—C54—C55177.10 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O51i0.992.323.145 (2)141
C56—H56···N2ii0.952.533.431 (2)158
C75—H75···O53iii0.952.463.342 (2)154
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC31H29N3O2
Mr475.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)16.6917 (18), 5.9748 (4), 24.840 (3)
β (°) 91.841 (10)
V3)2476.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.27 × 0.22
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.973, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
38299, 5679, 3889
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.04
No. of reflections5679
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N1—N21.3830 (18)C3A—C41.498 (2)
N2—C31.334 (2)C4—C521.551 (2)
C3—C3A1.416 (2)C52—C61.552 (2)
C3A—C7A1.371 (2)C6—N71.4656 (19)
C7A—N11.3628 (19)N7—C7A1.3900 (19)
N2—C3—C31—C32135.75 (16)N2—N1—C11—C1265.69 (19)
N2—C3—C31—C33104.85 (17)C7A—N7—C77—C71113.17 (15)
N2—C3—C31—C3414.0 (2)N7—C77—C71—C72149.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O51i0.992.323.145 (2)141
C56—H56···N2ii0.952.533.431 (2)158
C75—H75···O53iii0.952.463.342 (2)154
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds