Download citation
Download citation
link to html
In order to study the preferred hydrogen-bonding pattern of 6-amino-2-thio­uracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethyl­formamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethyl­acetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethyl­acetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1-methyl­pyrrolidin-2-one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen-bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen-bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2-thio­uracil derivatives form homodimers stabilized by an R22(8) hydrogen-bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011204930X/fg3285sup1.cif
Contains datablocks Ia, Ib, Ic, Id, Ie, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204930X/fg3285Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204930X/fg3285Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204930X/fg3285Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204930X/fg3285Idsup5.hkl
Contains datablock Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011204930X/fg3285Iesup6.hkl
Contains datablock Ie

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S010827011204930X/fg3285sup7.pdf
Supplementary material

CCDC references: 925273; 925274; 925275; 925276; 925277

Comment top

Thioanalogues of the nucleobases play an important role in biological processes. For example, 2-thiouracil was found to be part of the anticodon of transfer RNAs. For six-membered cyclic compounds with hydrogen-bonding sites similar to 2-thiouracil, the R22(8) hydrogen-bonding pattern (Bernstein et al., 1995) turned out to be preferred for N—H···O or N—H···S interactions (Tutughamiarso & Egert, 2011). Moreover, a Cambridge Structural Database substructure search (CSD, Version 5.33, November 2011 plus four updates; Allen, 2002) revealed that for 2-thiouracil derivatives, N—H···S hydrogen bonds are solely observed within R22(8) motifs. Prompted by these results, we decided to crystallize 6-amino-2-thiouracil, (I), in order to analyse the effect of an additional NH2 donor group on the hydrogen-bonding pattern formed. 6-Amino-2-thiouracil shows anticorrosion and antifouling properties and can be used as an additive in marine anticorrosion paint (Tadros & Abd El Nabey, 2000). It exhibits antiviral activity (Romero et al., 1993) and is also an important precursor for the synthesis of compounds with various pharmacological properties, including anti-analgesic, anti-inflammatory (Alagarsamy et al., 2007; Youssif & Mohamed, 2008; Abu-Hashem & Youssef, 2011), antibacterial, antifungal, antitumour and diuretic activity (Mohamed et al., 2007; El-Gazzar & Hafez, 2009). Furthermore, it is used as a precursor for the synthesis of A3 adenosine receptor antagonists (Cosimelli et al., 2008), as well as for inhibitors of DNA III polymerase (Wright & Brown, 1976).

Crystallization experiments from different solvents yielded five new pseudopolymorphs of (I), i.e. the dimethylformamide (DMF) disolvate, (Ia), the dimethylacetamide (DMAC) monosolvate, (Ib), the dimethylacetamide sesquisolvate, (Ic), and two different 1-methylpyrrolidin-2-one (NMP) sesquisolvates, (Id and Ie).

Compound (Ia) crystallized in the triclinic space group P1 with two planar 6-amino-2-thiouracil molecules, A and B [r.m.s. deviations for all non-H atoms = 0.027 (A) and 0.024 Å (B)], and four DMF molecules, denoted W, X, Y, and Z, in the asymmetric unit (Fig. 1). All molecules in the asymmetric unit lie in a common plane parallel to (111) (r.m.s. deviation for all non-H atoms = 0.086 Å). The molecules of (I) are connected by N—H···O hydrogen bonds in an R21(6) pattern, forming chains running along [110] (Fig. 2). Linked by N—H···O hydrogen bonds to (I), the DMF molecules are located on both sides of the chains, respectively, with molecule A connected to the DMF molecules W and X and molecule B to DMF molecules Y and Z.

The DMAC solvate (Ib) crystallized in the monoclinic space group P21/n. The asymmetric unit consists of one 6-amino-2-thiouracil (r.m.s. deviation for all non-H atoms = 0.017 Å) and one disordered DMAC molecule. The two molecules are connected by an R21(6) pattern of N—H···O hydrogen bonds and are almost coplanar with each other (r.m.s. deviation = 0.088 Å for all non-H atoms; Fig. 3). In the crystal packing, the 6-amino-2-thiouracil molecules show R22(8) motifs of N—H···O hydrogen-bonded homodimers. Connected by further N—H···O hydrogen bonds, these dimers assemble to a three-dimensional network with adjacent dimers enclosing a dihedral angle of 48.26 (3)° (Fig. 4).

The two compounds (Ic) and (Id) are isomorphous and crystallized in the orthorhombic space group Pca21. The asymmetric unit consists of two 6-amino-2-thiouracil molecules, A and B [r.m.s. deviations for all non-H atoms = 0.024 (A) and 0.013 Å (B) in (Ic), and 0.022 (A) and 0.011 Å (B) in (Id)], and three solvent molecules, denoted X, Y and Z (Figs. 5 and 6). The DMAC molecules X and Y in (Ic), as well as the NMP molecules Y and Z in (Id), are disordered over two positions. The 6-amino-2-thiouracil molecules are connected to homodimers stabilized by an R22(8) pattern of N—H···O hydrogen bonds. Adjacent dimers are connected by further N—H···O hydrogen bonds and enclose a dihedral angle of 47.3 (1)° in (Ic) and 50.7 (7)° in (Id). In addition, the molecules of (I) show R21(6) N—H···O interactions with the solvent molecules whereby molecule A is connected to X and molecule B to Z, respectively (Fig. 7). Molecule B also forms an N—H···O hydrogen bond with solvent molecule Y. The crystal packing consists of zigzag-like chains of AB homodimers running along the a axis.

Pseudopolymorph (Ie) crystallized in the orthorhombic space group Pbca. The asymmetric unit consists of two 6-amino-2-thiouracil molecules, A and B [r.m.s. deviations for all non-H atoms = 0.020 (A) and 0.011 Å (B)], and three NMP molecules, denoted X, Y and Z (Fig. 8). The molecules of (I) form homodimers stabilized by R22(8) N—H···O hydrogen bonds. Adjacent dimers are connected by N—H···O hydrogen bonds and enclose a dihedral angle of 51.6 (6)°. Both molecules A and B show additional R21(6) N—H···O interactions with molecule A connected to molecule X and molecule B to Z, respectively (Fig. 9). Molecule B also forms one N—H···O hydrogen bond with the NMP molecule Y. In the crystal packing, the AB homodimers are arranged in a herringbone structure (Fig. 10).

In the structures of these five pseudopolymorphs, two different types of N—H···O hydrogen-bonding patterns are observed. In all structures, R21(6) motifs are present, which are either formed between two molecules of (I) in (Ia) or between one molecule of (I) and one solvent molecule in (Ib), (Ic), (Id) and (Ie), respectively. In the latter, four structures additional R22(8) patterns between molecules of (I) are formed. In these five structures, the S atoms do not participate in any hydrogen-bonding interactions.

The hydrogen-bonding pattern formed by (I) was compared with other 2-thiouracil derivatives retrieved from the CSD. This search yielded a total number of 39 hits whereby 29 structures contain R22(8) motifs. Nine of these structures show R22(8) motifs with two N—H···O hydrogen bonds [refcodes FAJWES (Brewer et al., 1987), FICBEY (Delage, H'Naifi & Goursolle, 1986), HEPMIY (Pastor et al., 1994), MUYTIK (Ivanova & Spiteller, 2010), HAFLAC (Antoniadis et al., 2003), LACJIJ (Tashkhodzhaev et al., 2002), EBAQOP (Balas et al., 2011), EBAQOP01 and DAYGUH (Kubicki et al., 2012)] and 11 structures contain R22(8) motifs characterized by two N—H···S hydrogen bonds [FALWOF (Orzeszko et al., 2004), FUWBOP (Medda et al., 2009), LOFDAL (Fonar et al., 1999), MUGMIK (Matković-Čalogović et al., 2002), PABNAJ, PABNIR (Chierotti et al., 2010), QAYCID (Van Hecke et al., 2005), QEHSEB (Tiekink, 2001), ZZZGEO01 (Delage, H'Naifi, Goursolle & Carpy 1986), CALFUS and CALGAZ (Tutughamiarso & Egert, 2011)]. In nine structures, two different R22(8) motifs with either two N—H···O or two N—H···S hydrogen bonds can be observed [CASPUI (Hu et al., 2005), GEMCAC (Read et al., 1988), PABPAL (Chierotti et al., 2010), RAPNAY (Long et al., 2005), TURCIL01 (Tiekink, 1989), TURCIL02 (Munshi & Row, 2006), UXIXUV (Ferreira et al., 2011), UXIXUV01 (Tutughamiarso & Egert, 2011) and LANZIL (Al-Deeb et al., 2012)].

The CSD search also yielded the crystal structure of the monohydrate of (I) [CSD refcodes AMTURM (Swaminathan & Chacko, 1978), AMTURM01 (Raper et al., 1985) and YEJKUV00 (Hützler & Bolte, 2012)], in which the molecules of (I) are connected by R21(6) motifs of N—H···O hydrogen bonds building chains that are cross-linked via the water molecules resulting in a three-dimensional network. Hydrogen bonds involving S atoms as an acceptor are only present between molecules of (I) and water (O—H···S).

In summary, the additional NH2 hydrogen-bond donor group at C6 (next to the N—H group) of 2-thiouracil seems to favour the formation of an R21(6) N—H···O hydrogen-bonding pattern since this motif is present in all crystal structures of (I). The S atom of (I) participates in hydrogen bonds exclusively in the presence of water which is the only incorporated solvent containing hydrogen bond donor groups. In four pseudopolymorphs of (I), the formation of R22(8) dimers is observed. This is in agreement with the results of a CSD substructure search, which revealed the R22(8) motif to be the most frequent hydrogen bonding pattern in crystal structures of 2-thiouracil derivatives.

Related literature top

For related literature, see: Abu-Hashem & Youssef (2011); Al-Deeb, El-Emam, Al-Turkistani, Ng & Tiekink (2012); Alagarsamy et al. (2007); Allen (2002); Antoniadis et al. (2003); Balas et al. (2011); Bernstein et al. (1995); Brewer et al. (1987); Chierotti et al. (2010); Cosimelli et al. (2008); Delage, H'Naifi & Goursolle (1986); Delage, H'Naifi, Goursolle & Carpy (1986); El-Gazzar & Hafez (2009); Ferreira et al. (2011); Fonar et al. (1999); Hützler & Bolte (2012); Hu et al. (2005); Ivanova & Spiteller (2010); Kubicki et al. (2012); Long et al. (2005); Matković-Čalogović, Bešić & Sanković (2002); Medda et al. (2009); Mohamed et al. (2007); Munshi & Row (2006); Orzeszko et al. (2004); Pastor et al. (1994); Raper et al. (1985); Read et al. (1988); Romero et al. (1993); Swaminathan & Chacko (1978); Tadros & Abd El Nabey (2000); Tashkhodzhaev et al. (2002); Tiekink (1989, 2001); Tutughamiarso & Egert (2011); Van Hecke, Nockemann & Van Meervelt (2005); Wright & Brown (1976); Youssif & Mohamed (2008).

Experimental top

Solvent evaporation experiments with the commercially available monohydrate of 6-amino-2-thiouracil under different conditions yielded compounds (Ia)–(Ie) (Table 6).

Refinement top

All H atoms except those of the disordered solvent molecules were initially located by difference Fourier syntheses. Subsequently, all H atoms in (Ia) and (Id), the H atoms bonded to C atoms in (Ib), (Ic) and (Ie), and the H atoms of the imide groups in (Ic) and (Ie) were refined using a riding model, with methyl C—H = 0.98 Å, secondary C—H = 0.99 Å, aromatic C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for secondary and aromatic H atoms, and Uiso(H) = 1.2Ueq(N). In (Ib), all H atoms bonded to N atoms were refined isotropically and the N—H bond lengths were restrained to 0.88 (2) Å. In (Ic) and (Ie), the isotropic refinement of the H atoms of the amino groups resulted in isotropic displacement parameters being smaller than the equivalent isotropic displacement parameters of the parent N atoms. Therefore, they were coupled to those of the N atoms with Uiso(H) = 1.2Ueq(N) and the N—H distances were restrained to 0.88 (2) Å. For all methyl groups except those of the disordered solvent molecules, free rotation about their local threefold axis was allowed.

The DMAC molecule in (Ib) and the DMAC molecules X and Y in (Ic), respectively, show disorder over a pseudo-mirror plane along atoms O21(X/Y) and C32(X/Y) [site-occupation factor for the major occupied orientation = 0.629 (8) in (Ib), and 0.712 (11) for X and 0.630 (11) for Y in (Ic)].

In (Id), NMP molecules Y and Z show disorder over a pseudo-mirror plane, respectively [site-occupation factor for the major occupied orientation = 0.600 (14) for Y and 0.688 (11) for Z]. In molecule Y, the pseudo-mirror plane intersects the bonds N1Y—C2Y and C4Y—C5Y; thus all atom positions are different for both orientations. In molecule Z, the pseudo-mirror plane intersects O21Z and the bonds N1Y—C2Y and C4Y—C5Y; hence, the positions of O21Z coincide in both orientations.

Similarity restraints for the 1,2 and 1,3 distances were applied for all solvent molecules in (Ib), (Id) and (Ie) and for solvent molecules X and Y in (Ic).

The isotropic restraint (ISOR), similar-ADP restraint (SIMU) and rigid-bond restraint (DELU) were applied for all solvent molecules in (Ie) and for the disordered DMAC molecules X and Y in (Ic). In (Id), SIMU and DELU were applied for the disordered NMP molecules Y and Z.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
A perspective view of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate N—H···O hydrogen bonds.

A partial packing diagram for (Ia) with chains of (I) running parallel [110]. N—H···O hydrogen bonds are shown as dashed lines. [Symmetry code: (i) x -1, y+1, z.]

A perspective view of (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate N—H···O hydrogen bonds. Only the major occupied site of the disordered dimethylacetamide molecule is shown.

A partial packing diagram for (Ib). N—H···O hydrogen bonds are shown as dashed lines. Only the major occupied site of the disordered dimethylacetamide molecules is shown. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1/2, y+1/2, -z+1/2.]

A perspective view of (Ic), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate N—H···O hydrogen bonds. Dimethylacetamide molecules X and Y are disordered and only the major occupied sites are shown.

A perspective view of (Id), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate N—H···O hydrogen bonds. Only the major occupied sites of the disordered NMP molecules Y and Z are shown.

A partial packing diagram for (Ic). N—H···O hydrogen bonds are shown as dashed lines. Dimethylacetamide molecule Y is not displayed. Only the major occupied site of the disordered DMAC molecule X is shown. [Symmetry code: (i) x+1/2, -y+1, z.] A view of the packing of the isomorphous compound (Id) is with the Supplementary materials.

A perspective view of (Ie), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate N—H···O hydrogen bonds.

A partial packing diagram for (Ie). N—H···O hydrogen bonds are shown as dashed lines. The N-methyl-2-pyrrolidone molecule Y is not displayed. [Symmetry code: (i) -x+1/2, y-1/2, z.]

Packing diagram for (Ie). N—H···O hydrogen bonds are shown as dashed lines.
(Ia) 6-Amino-2-thiouracil dimethylformamide disolvate top
Crystal data top
C4H5N3OS·2C3H7NOZ = 4
Mr = 289.36F(000) = 616
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0894 (16) ÅCell parameters from 3717 reflections
b = 12.037 (3) Åθ = 3.4–25.6°
c = 15.390 (3) ŵ = 0.23 mm1
α = 89.774 (19)°T = 173 K
β = 89.466 (17)°Needle, colourless
γ = 76.691 (17)°0.30 × 0.15 × 0.10 mm
V = 1458.2 (5) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
5428 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source1966 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.105
ω scansθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 99
Tmin = 0.933, Tmax = 0.977k = 1414
11063 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
5428 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C4H5N3OS·2C3H7NOγ = 76.691 (17)°
Mr = 289.36V = 1458.2 (5) Å3
Triclinic, P1Z = 4
a = 8.0894 (16) ÅMo Kα radiation
b = 12.037 (3) ŵ = 0.23 mm1
c = 15.390 (3) ÅT = 173 K
α = 89.774 (19)°0.30 × 0.15 × 0.10 mm
β = 89.466 (17)°
Data collection top
Stoe IPDS II two-circle
diffractometer
5428 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
1966 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.977Rint = 0.105
11063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 0.90Δρmax = 0.21 e Å3
5428 reflectionsΔρmin = 0.40 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.6207 (8)0.3706 (5)0.2390 (4)0.0619 (15)
H1A0.55760.44060.24280.074*
C2A0.6119 (10)0.3098 (6)0.1637 (5)0.067 (2)
S21A0.4830 (3)0.36552 (18)0.08513 (14)0.0722 (6)
N3A0.7130 (8)0.2038 (5)0.1634 (4)0.0632 (16)
H3A0.71520.16370.11550.076*
C4A0.8130 (10)0.1521 (6)0.2306 (5)0.067 (2)
O41A0.8954 (7)0.0520 (4)0.2175 (3)0.0719 (15)
C5A0.8172 (10)0.2165 (6)0.3059 (5)0.0629 (18)
H5A0.88370.18410.35420.076*
C6A0.7233 (9)0.3275 (6)0.3088 (5)0.0615 (17)
N61A0.7177 (8)0.4003 (5)0.3751 (4)0.0713 (18)
H61A0.77770.37840.42210.086*
H61B0.65400.47010.37160.086*
N1B0.1386 (8)0.8772 (5)0.2615 (4)0.0640 (16)
H1B0.06540.94360.25830.077*
C2B0.2364 (10)0.8545 (6)0.3330 (4)0.0636 (18)
S21B0.2231 (3)0.95078 (18)0.41132 (14)0.0740 (6)
N3B0.3436 (8)0.7511 (5)0.3356 (4)0.0649 (16)
H3B0.40270.73200.38330.078*
C4B0.3679 (9)0.6714 (6)0.2679 (5)0.0619 (18)
O41B0.4763 (7)0.5793 (4)0.2823 (4)0.0737 (15)
C5B0.2648 (10)0.6986 (6)0.1953 (5)0.0639 (19)
H5B0.27600.64670.14810.077*
C6B0.1471 (11)0.8008 (6)0.1921 (5)0.0675 (19)
N61B0.0401 (8)0.8374 (5)0.1262 (4)0.0693 (18)
H61C0.04190.79430.07990.083*
H61D0.03190.90430.12930.083*
C1W1.0400 (11)0.2311 (7)0.5340 (5)0.071 (2)
H1W1.04480.16820.49620.085*
O11W0.9387 (8)0.3215 (5)0.5153 (4)0.0842 (17)
N2W1.1423 (9)0.2137 (5)0.6018 (4)0.0685 (17)
C3W1.1433 (11)0.3082 (7)0.6621 (5)0.077 (2)
H3W11.25500.32670.66030.116*
H3W21.11930.28540.72120.116*
H3W31.05610.37540.64490.116*
C4W1.2571 (12)0.1054 (7)0.6196 (5)0.083 (3)
H4W11.24530.05020.57480.125*
H4W21.22980.07740.67670.125*
H4W31.37420.11500.61960.125*
C1X0.6257 (12)0.0847 (7)0.0346 (6)0.078 (2)
H1X0.54810.15710.03170.093*
O11X0.7257 (8)0.0565 (5)0.0255 (4)0.0790 (16)
N2X0.6202 (9)0.0182 (5)0.1047 (4)0.0724 (18)
C3X0.7311 (14)0.0945 (8)0.1101 (6)0.091 (3)
H3X10.81480.10410.06340.137*
H3X20.79000.10350.16640.137*
H3X30.66370.15210.10400.137*
C4X0.4977 (13)0.0559 (9)0.1725 (6)0.092 (3)
H4X10.43770.13510.16170.138*
H4X20.41580.00720.17300.138*
H4X30.55640.05080.22890.138*
C1Y0.5633 (12)0.7282 (8)0.5370 (6)0.080 (2)
H1Y0.49680.80430.53910.096*
O11Y0.5486 (8)0.6677 (5)0.4728 (4)0.0881 (19)
N2Y0.6683 (9)0.6904 (6)0.6026 (4)0.0738 (18)
C3Y0.7693 (12)0.5757 (7)0.6038 (6)0.086 (3)
H3Y10.73190.53160.55760.128*
H3Y20.75610.54060.66020.128*
H3Y30.88900.57660.59430.128*
C4Y0.6885 (14)0.7645 (8)0.6737 (6)0.091 (3)
H4Y10.61740.84110.66370.137*
H4Y20.80780.76880.67720.137*
H4Y30.65410.73390.72830.137*
C1Z0.1333 (11)0.5901 (7)0.0315 (5)0.069 (2)
H1Z0.22390.55940.00670.083*
O11Z0.0410 (8)0.6853 (5)0.0145 (4)0.0794 (16)
N2Z0.1114 (8)0.5285 (5)0.1012 (4)0.0656 (16)
C3Z0.0206 (12)0.5717 (8)0.1636 (5)0.081 (2)
H3Z10.08890.64540.14370.122*
H3Z20.09350.51740.16930.122*
H3Z30.03120.58140.22010.122*
C4Z0.2233 (12)0.4162 (7)0.1166 (5)0.077 (2)
H4Z10.31690.40320.07510.116*
H4Z20.26920.41290.17590.116*
H4Z30.15870.35710.10910.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.056 (4)0.060 (3)0.065 (3)0.004 (3)0.008 (3)0.000 (2)
C2A0.065 (5)0.080 (4)0.054 (3)0.011 (4)0.002 (3)0.000 (3)
S21A0.0642 (12)0.0743 (10)0.0750 (11)0.0094 (9)0.0123 (10)0.0019 (8)
N3A0.053 (4)0.070 (3)0.063 (3)0.005 (3)0.010 (3)0.002 (3)
C4A0.059 (5)0.065 (4)0.071 (4)0.003 (3)0.006 (4)0.006 (3)
O41A0.073 (4)0.065 (3)0.069 (3)0.002 (3)0.007 (3)0.000 (2)
C5A0.061 (4)0.058 (3)0.066 (4)0.008 (3)0.003 (3)0.003 (3)
C6A0.049 (4)0.071 (4)0.064 (4)0.013 (3)0.006 (3)0.004 (3)
N61A0.067 (4)0.077 (3)0.066 (3)0.009 (3)0.010 (3)0.010 (3)
N1B0.059 (4)0.064 (3)0.065 (3)0.004 (3)0.001 (3)0.011 (2)
C2B0.061 (4)0.074 (4)0.056 (3)0.013 (3)0.001 (3)0.002 (3)
S21B0.0723 (13)0.0719 (10)0.0749 (12)0.0104 (10)0.0014 (10)0.0105 (9)
N3B0.056 (4)0.065 (3)0.067 (3)0.001 (3)0.002 (3)0.003 (3)
C4B0.049 (4)0.059 (4)0.075 (4)0.008 (3)0.009 (3)0.008 (3)
O41B0.068 (3)0.069 (3)0.076 (3)0.001 (3)0.000 (3)0.008 (2)
C5B0.059 (4)0.065 (4)0.064 (4)0.005 (3)0.000 (3)0.004 (3)
C6B0.065 (5)0.067 (4)0.071 (4)0.017 (3)0.002 (4)0.008 (3)
N61B0.062 (4)0.071 (3)0.070 (3)0.007 (3)0.010 (3)0.008 (3)
C1W0.057 (4)0.087 (5)0.067 (4)0.012 (4)0.010 (4)0.001 (4)
O11W0.070 (4)0.090 (4)0.092 (4)0.016 (3)0.011 (3)0.002 (3)
N2W0.065 (4)0.070 (3)0.072 (4)0.017 (3)0.009 (3)0.004 (3)
C3W0.077 (5)0.092 (5)0.076 (5)0.047 (5)0.005 (4)0.014 (4)
C4W0.083 (6)0.093 (5)0.069 (4)0.010 (5)0.011 (4)0.011 (4)
C1X0.077 (6)0.075 (4)0.081 (5)0.018 (4)0.009 (5)0.009 (4)
O11X0.074 (4)0.090 (3)0.075 (3)0.023 (3)0.005 (3)0.005 (3)
N2X0.073 (5)0.081 (4)0.065 (3)0.022 (3)0.002 (3)0.000 (3)
C3X0.104 (8)0.085 (5)0.085 (6)0.023 (5)0.009 (5)0.011 (4)
C4X0.078 (6)0.122 (7)0.086 (6)0.041 (6)0.016 (5)0.009 (5)
C1Y0.072 (6)0.085 (5)0.080 (5)0.010 (4)0.000 (4)0.005 (4)
O11Y0.090 (5)0.094 (4)0.078 (4)0.016 (3)0.005 (3)0.005 (3)
N2Y0.074 (5)0.082 (4)0.067 (4)0.020 (3)0.004 (3)0.002 (3)
C3Y0.074 (6)0.088 (5)0.085 (5)0.002 (5)0.006 (5)0.008 (4)
C4Y0.097 (7)0.106 (6)0.081 (6)0.042 (6)0.011 (5)0.013 (5)
C1Z0.063 (5)0.084 (4)0.062 (4)0.021 (4)0.004 (4)0.015 (3)
O11Z0.073 (4)0.081 (3)0.082 (3)0.013 (3)0.005 (3)0.012 (3)
N2Z0.060 (4)0.076 (3)0.061 (3)0.016 (3)0.004 (3)0.008 (3)
C3Z0.075 (6)0.108 (6)0.067 (5)0.034 (5)0.002 (4)0.006 (4)
C4Z0.081 (6)0.077 (5)0.070 (4)0.012 (4)0.008 (4)0.010 (4)
Geometric parameters (Å, º) top
N1A—C2A1.384 (8)C4W—H4W10.9800
N1A—C6A1.389 (9)C4W—H4W20.9800
N1A—H1A0.8800C4W—H4W30.9800
C2A—N3A1.348 (8)C1X—O11X1.229 (10)
C2A—S21A1.641 (7)C1X—N2X1.353 (9)
N3A—C4A1.374 (8)C1X—H1X0.9500
N3A—H3A0.8800N2X—C4X1.444 (10)
C4A—O41A1.252 (7)N2X—C3X1.446 (10)
C4A—C5A1.402 (9)C3X—H3X10.9800
C5A—C6A1.377 (9)C3X—H3X20.9800
C5A—H5A0.9500C3X—H3X30.9800
C6A—N61A1.341 (8)C4X—H4X10.9800
N61A—H61A0.8800C4X—H4X20.9800
N61A—H61B0.8800C4X—H4X30.9800
N1B—C2B1.351 (9)C1Y—O11Y1.252 (10)
N1B—C6B1.403 (8)C1Y—N2Y1.335 (10)
N1B—H1B0.8800C1Y—H1Y0.9500
C2B—N3B1.344 (8)N2Y—C3Y1.433 (9)
C2B—S21B1.661 (7)N2Y—C4Y1.448 (9)
N3B—C4B1.400 (8)C3Y—H3Y10.9800
N3B—H3B0.8800C3Y—H3Y20.9800
C4B—O41B1.266 (8)C3Y—H3Y30.9800
C4B—C5B1.394 (10)C4Y—H4Y10.9800
C5B—C6B1.372 (9)C4Y—H4Y20.9800
C5B—H5B0.9500C4Y—H4Y30.9800
C6B—N61B1.346 (9)C1Z—O11Z1.242 (8)
N61B—H61C0.8800C1Z—N2Z1.343 (8)
N61B—H61D0.8800C1Z—H1Z0.9500
C1W—O11W1.237 (9)N2Z—C3Z1.445 (10)
C1W—N2W1.323 (9)N2Z—C4Z1.463 (9)
C1W—H1W0.9500C3Z—H3Z10.9800
N2W—C4W1.443 (9)C3Z—H3Z20.9800
N2W—C3W1.472 (8)C3Z—H3Z30.9800
C3W—H3W10.9800C4Z—H4Z10.9800
C3W—H3W20.9800C4Z—H4Z20.9800
C3W—H3W30.9800C4Z—H4Z30.9800
C2A—N1A—C6A123.7 (6)N2W—C4W—H4W3109.5
C2A—N1A—H1A118.2H4W1—C4W—H4W3109.5
C6A—N1A—H1A118.2H4W2—C4W—H4W3109.5
N3A—C2A—N1A114.1 (6)O11X—C1X—N2X123.5 (8)
N3A—C2A—S21A125.2 (5)O11X—C1X—H1X118.2
N1A—C2A—S21A120.7 (5)N2X—C1X—H1X118.2
C4A—N3A—C2A126.4 (6)C1X—N2X—C4X120.7 (8)
C4A—N3A—H3A116.8C1X—N2X—C3X120.1 (7)
C2A—N3A—H3A116.8C4X—N2X—C3X119.2 (7)
O41A—C4A—N3A116.3 (6)N2X—C3X—H3X1109.5
O41A—C4A—C5A126.1 (7)N2X—C3X—H3X2109.5
N3A—C4A—C5A117.6 (6)H3X1—C3X—H3X2109.5
C6A—C5A—C4A119.0 (7)N2X—C3X—H3X3109.5
C6A—C5A—H5A120.5H3X1—C3X—H3X3109.5
C4A—C5A—H5A120.5H3X2—C3X—H3X3109.5
N61A—C6A—C5A125.9 (6)N2X—C4X—H4X1109.5
N61A—C6A—N1A115.0 (6)N2X—C4X—H4X2109.5
C5A—C6A—N1A119.1 (6)H4X1—C4X—H4X2109.5
C6A—N61A—H61A120.0N2X—C4X—H4X3109.5
C6A—N61A—H61B120.0H4X1—C4X—H4X3109.5
H61A—N61A—H61B120.0H4X2—C4X—H4X3109.5
C2B—N1B—C6B123.7 (6)O11Y—C1Y—N2Y122.9 (8)
C2B—N1B—H1B118.2O11Y—C1Y—H1Y118.6
C6B—N1B—H1B118.2N2Y—C1Y—H1Y118.6
N1B—C2B—N3B115.9 (6)C1Y—N2Y—C3Y121.0 (7)
N1B—C2B—S21B120.9 (5)C1Y—N2Y—C4Y121.4 (8)
N3B—C2B—S21B123.2 (5)C3Y—N2Y—C4Y117.5 (7)
C2B—N3B—C4B124.7 (6)N2Y—C3Y—H3Y1109.5
C2B—N3B—H3B117.6N2Y—C3Y—H3Y2109.5
C4B—N3B—H3B117.6H3Y1—C3Y—H3Y2109.5
O41B—C4B—C5B127.3 (6)N2Y—C3Y—H3Y3109.5
O41B—C4B—N3B115.3 (6)H3Y1—C3Y—H3Y3109.5
C5B—C4B—N3B117.3 (6)H3Y2—C3Y—H3Y3109.5
C6B—C5B—C4B119.7 (6)N2Y—C4Y—H4Y1109.5
C6B—C5B—H5B120.1N2Y—C4Y—H4Y2109.5
C4B—C5B—H5B120.1H4Y1—C4Y—H4Y2109.5
N61B—C6B—C5B125.7 (6)N2Y—C4Y—H4Y3109.5
N61B—C6B—N1B115.7 (6)H4Y1—C4Y—H4Y3109.5
C5B—C6B—N1B118.5 (7)H4Y2—C4Y—H4Y3109.5
C6B—N61B—H61C120.0O11Z—C1Z—N2Z123.3 (8)
C6B—N61B—H61D120.0O11Z—C1Z—H1Z118.4
H61C—N61B—H61D120.0N2Z—C1Z—H1Z118.4
O11W—C1W—N2W126.1 (8)C1Z—N2Z—C3Z121.3 (7)
O11W—C1W—H1W116.9C1Z—N2Z—C4Z120.4 (6)
N2W—C1W—H1W116.9C3Z—N2Z—C4Z118.3 (6)
C1W—N2W—C4W123.0 (6)N2Z—C3Z—H3Z1109.5
C1W—N2W—C3W119.6 (7)N2Z—C3Z—H3Z2109.5
C4W—N2W—C3W117.3 (7)H3Z1—C3Z—H3Z2109.5
N2W—C3W—H3W1109.5N2Z—C3Z—H3Z3109.5
N2W—C3W—H3W2109.5H3Z1—C3Z—H3Z3109.5
H3W1—C3W—H3W2109.5H3Z2—C3Z—H3Z3109.5
N2W—C3W—H3W3109.5N2Z—C4Z—H4Z1109.5
H3W1—C3W—H3W3109.5N2Z—C4Z—H4Z2109.5
H3W2—C3W—H3W3109.5H4Z1—C4Z—H4Z2109.5
N2W—C4W—H4W1109.5N2Z—C4Z—H4Z3109.5
N2W—C4W—H4W2109.5H4Z1—C4Z—H4Z3109.5
H4W1—C4W—H4W2109.5H4Z2—C4Z—H4Z3109.5
C6A—N1A—C2A—N3A0.2 (12)C2B—N3B—C4B—O41B179.0 (8)
C6A—N1A—C2A—S21A178.1 (7)C2B—N3B—C4B—C5B4.6 (12)
N1A—C2A—N3A—C4A3.2 (12)O41B—C4B—C5B—C6B176.6 (9)
S21A—C2A—N3A—C4A175.1 (8)N3B—C4B—C5B—C6B0.8 (12)
C2A—N3A—C4A—O41A178.8 (8)C4B—C5B—C6B—N61B179.9 (9)
C2A—N3A—C4A—C5A2.9 (13)C4B—C5B—C6B—N1B2.4 (12)
O41A—C4A—C5A—C6A177.6 (9)C2B—N1B—C6B—N61B179.9 (8)
N3A—C4A—C5A—C6A0.5 (12)C2B—N1B—C6B—C5B2.2 (13)
C4A—C5A—C6A—N61A178.2 (9)O11W—C1W—N2W—C4W179.8 (9)
C4A—C5A—C6A—N1A3.2 (12)O11W—C1W—N2W—C3W1.1 (14)
C2A—N1A—C6A—N61A178.4 (8)O11X—C1X—N2X—C4X179.0 (10)
C2A—N1A—C6A—C5A2.9 (13)O11X—C1X—N2X—C3X2.6 (14)
C6B—N1B—C2B—N3B1.3 (12)O11Y—C1Y—N2Y—C3Y1.2 (15)
C6B—N1B—C2B—S21B178.2 (7)O11Y—C1Y—N2Y—C4Y176.8 (9)
N1B—C2B—N3B—C4B4.8 (12)O11Z—C1Z—N2Z—C3Z2.0 (14)
S21B—C2B—N3B—C4B174.7 (7)O11Z—C1Z—N2Z—C4Z179.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O41B0.881.762.601 (7)160
N3A—H3A···O11X0.881.882.756 (7)170
N61A—H61A···O11W0.881.962.834 (9)172
N61A—H61B···O41B0.882.202.929 (8)140
N1B—H1B···O41Ai0.881.782.620 (7)159
N3B—H3B···O11Y0.881.872.738 (9)169
N61B—H61C···O11Z0.881.962.840 (8)174
N61B—H61D···O41Ai0.882.212.937 (7)140
Symmetry code: (i) x1, y+1, z.
(Ib) 6-Amino-2-thiouracil dimethylacetamide monosolvate top
Crystal data top
C4H5N3OS·C4H9NOF(000) = 488
Mr = 230.29Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11701 reflections
a = 9.4615 (9) Åθ = 3.3–26.0°
b = 9.2679 (11) ŵ = 0.27 mm1
c = 13.4208 (12) ÅT = 173 K
β = 101.801 (7)°Needle, colourless
V = 1152.0 (2) Å30.50 × 0.30 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2163 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source1968 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.058
ω scansθmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1111
Tmin = 0.877, Tmax = 0.936k = 1111
9565 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
2163 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.24 e Å3
132 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H5N3OS·C4H9NOV = 1152.0 (2) Å3
Mr = 230.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4615 (9) ŵ = 0.27 mm1
b = 9.2679 (11) ÅT = 173 K
c = 13.4208 (12) Å0.50 × 0.30 × 0.25 mm
β = 101.801 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
1968 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.936Rint = 0.058
9565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040132 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
2163 reflectionsΔρmin = 0.19 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.55570 (16)0.59050 (16)0.39081 (11)0.0342 (3)
H1A0.600 (2)0.506 (2)0.3933 (18)0.055 (7)*
C2A0.61035 (19)0.68598 (19)0.46532 (12)0.0335 (4)
S21A0.75963 (5)0.65062 (5)0.55106 (4)0.0449 (2)
N3A0.53623 (16)0.81059 (16)0.46367 (11)0.0346 (3)
H3A0.569 (2)0.877 (2)0.5102 (14)0.042 (5)*
C4A0.41399 (19)0.84740 (18)0.39141 (12)0.0338 (4)
O41A0.35918 (14)0.96886 (13)0.39965 (10)0.0413 (3)
C5A0.36411 (19)0.74546 (18)0.31586 (13)0.0351 (4)
H5A0.28110.76500.26460.042*
C6A0.43590 (18)0.61661 (19)0.31617 (12)0.0322 (4)
N61A0.40076 (18)0.51289 (17)0.24713 (12)0.0393 (4)
H61A0.452 (3)0.436 (2)0.2591 (19)0.056 (7)*
H62A0.319 (2)0.517 (3)0.2028 (16)0.052 (6)*
C1X0.8435 (3)0.2498 (3)0.4686 (2)0.0647 (6)
H1XA0.89750.15970.48490.097*0.610 (7)
H1XB0.80260.27930.52690.097*0.610 (7)
H1XC0.90840.32530.45340.097*0.610 (7)
H1XD0.84390.17570.53580.097*0.390 (7)
H1XE0.82090.34450.48350.097*0.390 (7)
H1XF0.94850.24680.45040.097*0.390 (7)
O21X0.6310 (2)0.32120 (16)0.33470 (14)0.0642 (5)
C31X0.5965 (3)0.0773 (3)0.2431 (2)0.0705 (7)
H31A0.59780.02220.21860.106*0.610 (7)
H31B0.61300.14380.18980.106*0.610 (7)
H31C0.50250.09780.25990.106*0.610 (7)
H31D0.55400.01810.26440.106*0.390 (7)
H31E0.50920.15230.20670.106*0.390 (7)
H31F0.66860.06010.19850.106*0.390 (7)
C32X0.8167 (4)0.0136 (3)0.3849 (3)0.0918 (11)
H32A0.79930.10550.34840.138*0.610 (7)
H32B0.80570.02690.45540.138*0.610 (7)
H32C0.91490.01970.38450.138*0.610 (7)
H32D0.89990.03650.43920.138*0.390 (7)
H32E0.84200.03000.31860.138*0.390 (7)
H32F0.73520.07560.39150.138*0.390 (7)
C2X0.7227 (4)0.2266 (4)0.3768 (3)0.0499 (11)0.610 (7)
N3X0.7104 (4)0.0960 (4)0.3339 (3)0.0572 (11)0.610 (7)
C2X'0.6633 (6)0.1892 (6)0.3245 (4)0.0499 (16)0.390 (7)
N3X'0.7736 (6)0.1440 (5)0.3928 (4)0.0529 (16)0.390 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0335 (7)0.0310 (7)0.0339 (7)0.0017 (6)0.0032 (6)0.0001 (6)
C2A0.0337 (9)0.0353 (8)0.0288 (8)0.0011 (7)0.0006 (7)0.0021 (7)
S21A0.0404 (3)0.0457 (3)0.0394 (3)0.0058 (2)0.0134 (2)0.00078 (19)
N3A0.0344 (8)0.0348 (8)0.0294 (7)0.0019 (6)0.0056 (6)0.0035 (6)
C4A0.0325 (8)0.0361 (9)0.0296 (8)0.0014 (7)0.0014 (7)0.0004 (7)
O41A0.0405 (7)0.0364 (7)0.0396 (7)0.0077 (5)0.0094 (5)0.0072 (5)
C5A0.0323 (8)0.0354 (9)0.0322 (8)0.0026 (7)0.0060 (7)0.0015 (7)
C6A0.0313 (8)0.0337 (8)0.0289 (8)0.0025 (7)0.0000 (6)0.0008 (6)
N61A0.0385 (8)0.0344 (8)0.0389 (8)0.0019 (7)0.0061 (7)0.0065 (6)
C1X0.0534 (13)0.0629 (15)0.0759 (16)0.0081 (11)0.0089 (12)0.0090 (12)
O21X0.0694 (11)0.0403 (8)0.0792 (11)0.0183 (7)0.0062 (9)0.0029 (7)
C31X0.094 (2)0.0541 (14)0.0690 (16)0.0075 (13)0.0294 (14)0.0104 (12)
C32X0.108 (2)0.0596 (15)0.128 (3)0.0453 (16)0.070 (2)0.0368 (16)
C2X0.052 (2)0.041 (2)0.059 (2)0.0054 (18)0.0185 (19)0.0067 (18)
N3X0.076 (3)0.0396 (19)0.064 (2)0.0117 (17)0.0335 (19)0.0064 (15)
C2X'0.059 (4)0.039 (3)0.058 (4)0.004 (3)0.024 (3)0.006 (3)
N3X'0.057 (3)0.042 (3)0.063 (3)0.018 (2)0.020 (2)0.014 (2)
Geometric parameters (Å, º) top
N1A—C2A1.356 (2)C1X—H1XF1.0705
N1A—C6A1.372 (2)O21X—C2X'1.275 (5)
N1A—H1A0.883 (17)O21X—C2X1.280 (4)
C2A—N3A1.349 (2)C31X—N3X1.462 (5)
C2A—S21A1.6618 (17)C31X—C2X'1.545 (6)
N3A—C4A1.391 (2)C31X—H31A0.9800
N3A—H3A0.889 (16)C31X—H31B0.9800
C4A—O41A1.254 (2)C31X—H31C0.9800
C4A—C5A1.396 (2)C31X—H31D1.0354
C5A—C6A1.373 (2)C31X—H31E1.1135
C5A—H5A0.9500C31X—H31F1.0075
C6A—N61A1.329 (2)C32X—N3X1.494 (4)
N61A—H61A0.854 (17)C32X—N3X'1.526 (5)
N61A—H62A0.875 (17)C32X—H32A0.9800
C1X—N3X'1.469 (6)C32X—H32B0.9800
C1X—C2X1.514 (5)C32X—H32C0.9800
C1X—H1XA0.9800C32X—H32D0.9800
C1X—H1XB0.9800C32X—H32E0.9800
C1X—H1XC0.9800C32X—H32F0.9801
C1X—H1XD1.1336C2X—N3X1.335 (5)
C1X—H1XE0.9346C2X'—N3X'1.309 (7)
C2A—N1A—C6A123.84 (15)N3X—C31X—H31D97.6
C2A—N1A—H1A116.3 (16)C2X'—C31X—H31D120.3
C6A—N1A—H1A119.9 (16)H31A—C31X—H31D47.2
N3A—C2A—N1A115.35 (15)H31B—C31X—H31D150.1
N3A—C2A—S21A123.06 (13)H31C—C31X—H31D71.3
N1A—C2A—S21A121.59 (13)N3X—C31X—H31E130.2
C2A—N3A—C4A125.21 (15)C2X'—C31X—H31E92.9
C2A—N3A—H3A118.5 (14)H31A—C31X—H31E120.0
C4A—N3A—H3A116.2 (14)H31B—C31X—H31E60.1
O41A—C4A—N3A117.30 (15)H31C—C31X—H31E49.7
O41A—C4A—C5A125.98 (16)H31D—C31X—H31E111.0
N3A—C4A—C5A116.73 (15)N3X—C31X—H31F92.3
C6A—C5A—C4A119.53 (16)C2X'—C31X—H31F107.3
C6A—C5A—H5A120.2H31A—C31X—H31F66.2
C4A—C5A—H5A120.2H31B—C31X—H31F55.9
N61A—C6A—N1A115.65 (16)H31C—C31X—H31F157.5
N61A—C6A—C5A125.00 (16)H31D—C31X—H31F112.2
N1A—C6A—C5A119.33 (15)H31E—C31X—H31F111.7
C6A—N61A—H61A114.8 (17)N3X—C32X—H32A109.5
C6A—N61A—H62A120.3 (16)N3X'—C32X—H32A147.9
H61A—N61A—H62A123 (2)N3X—C32X—H32B109.5
N3X'—C1X—H1XA74.1N3X'—C32X—H32B88.3
C2X—C1X—H1XA109.5H32A—C32X—H32B109.5
N3X'—C1X—H1XB122.9N3X—C32X—H32C109.5
C2X—C1X—H1XB109.5N3X'—C32X—H32C88.1
H1XA—C1X—H1XB109.5H32A—C32X—H32C109.5
N3X'—C1X—H1XC123.1H32B—C32X—H32C109.5
C2X—C1X—H1XC109.5N3X—C32X—H32D148.4
H1XA—C1X—H1XC109.5N3X'—C32X—H32D110.0
H1XB—C1X—H1XC109.5H32A—C32X—H32D102.2
N3X'—C1X—H1XD94.3H32B—C32X—H32D58.9
C2X—C1X—H1XD116.1H32C—C32X—H32D57.0
H1XA—C1X—H1XD52.4N3X—C32X—H32E87.4
H1XB—C1X—H1XD58.1N3X'—C32X—H32E109.3
H1XC—C1X—H1XD134.3H32A—C32X—H32E57.2
N3X'—C1X—H1XE133.2H32B—C32X—H32E162.0
C2X—C1X—H1XE98.0H32C—C32X—H32E68.6
H1XA—C1X—H1XE152.1H32D—C32X—H32E109.5
H1XB—C1X—H1XE54.6N3X—C32X—H32F88.4
H1XC—C1X—H1XE63.6N3X'—C32X—H32F109.2
H1XD—C1X—H1XE111.2H32A—C32X—H32F58.7
N3X'—C1X—H1XF97.6H32B—C32X—H32F66.4
C2X—C1X—H1XF113.1H32C—C32X—H32F161.7
H1XA—C1X—H1XF64.0H32D—C32X—H32F109.5
H1XB—C1X—H1XF136.5H32E—C32X—H32F109.5
H1XC—C1X—H1XF47.2O21X—C2X—N3X116.0 (4)
H1XD—C1X—H1XF108.2O21X—C2X—C1X126.3 (3)
H1XE—C1X—H1XF109.7N3X—C2X—C1X117.6 (4)
N3X—C31X—H31A109.5C2X—N3X—C31X116.8 (3)
C2X'—C31X—H31A146.9C2X—N3X—C32X115.3 (4)
N3X—C31X—H31B109.5C31X—N3X—C32X127.9 (3)
C2X'—C31X—H31B89.4O21X—C2X'—N3X'113.9 (5)
H31A—C31X—H31B109.5O21X—C2X'—C31X130.4 (5)
N3X—C31X—H31C109.5N3X'—C2X'—C31X115.6 (5)
C2X'—C31X—H31C88.1C2X'—N3X'—C1X116.9 (5)
H31A—C31X—H31C109.5C2X'—N3X'—C32X116.3 (5)
H31B—C31X—H31C109.5C1X—N3X'—C32X126.7 (4)
C6A—N1A—C2A—N3A1.7 (2)O21X—C2X—N3X—C32X179.1 (3)
C6A—N1A—C2A—S21A177.59 (13)C1X—C2X—N3X—C32X1.8 (4)
N1A—C2A—N3A—C4A1.7 (3)C2X'—C31X—N3X—C2X1.2 (4)
S21A—C2A—N3A—C4A177.50 (13)C2X'—C31X—N3X—C32X179.3 (6)
C2A—N3A—C4A—O41A178.73 (16)N3X'—C32X—N3X—C2X0.4 (4)
C2A—N3A—C4A—C5A0.9 (3)N3X'—C32X—N3X—C31X179.1 (5)
O41A—C4A—C5A—C6A179.67 (17)C2X—O21X—C2X'—N3X'0.1 (4)
N3A—C4A—C5A—C6A0.0 (3)C2X—O21X—C2X'—C31X177.7 (9)
C2A—N1A—C6A—N61A177.63 (16)N3X—C31X—C2X'—O21X178.7 (8)
C2A—N1A—C6A—C5A0.8 (3)N3X—C31X—C2X'—N3X'0.9 (4)
C4A—C5A—C6A—N61A178.37 (17)O21X—C2X'—N3X'—C1X0.8 (7)
C4A—C5A—C6A—N1A0.1 (3)C31X—C2X'—N3X'—C1X177.4 (4)
C2X'—O21X—C2X—N3X0.4 (4)O21X—C2X'—N3X'—C32X179.6 (4)
C2X'—O21X—C2X—C1X179.4 (7)C31X—C2X'—N3X'—C32X2.2 (6)
N3X'—C1X—C2X—O21X180.0 (6)C2X—C1X—N3X'—C2X'0.4 (4)
N3X'—C1X—C2X—N3X1.0 (4)C2X—C1X—N3X'—C32X180.0 (7)
O21X—C2X—N3X—C31X1.3 (5)N3X—C32X—N3X'—C2X'0.9 (4)
C1X—C2X—N3X—C31X177.8 (3)N3X—C32X—N3X'—C1X178.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.88 (2)1.94 (2)2.743 (2)151 (2)
N3A—H3A···O41Ai0.89 (2)1.90 (2)2.7892 (19)175 (2)
N61A—H61A···O21X0.85 (2)2.08 (2)2.870 (2)153 (2)
N61A—H62A···O41Aii0.88 (2)2.00 (2)2.848 (2)165 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z+1/2.
(Ic) 6-Amino-2-thiouracil dimethylacetamide sesquisolvate top
Crystal data top
2C4H5N3OS·3C4H9NOF(000) = 1168
Mr = 547.71Dx = 1.316 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 10108 reflections
a = 15.2133 (7) Åθ = 3.3–25.5°
b = 7.4335 (13) ŵ = 0.24 mm1
c = 24.445 (3) ÅT = 173 K
V = 2764.4 (6) Å3Block, colourless
Z = 40.27 × 0.20 × 0.15 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5184 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source3323 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.149
ω scansθmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1818
Tmin = 0.938, Tmax = 0.965k = 89
33090 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.002
5184 reflectionsΔρmax = 0.32 e Å3
378 parametersΔρmin = 0.23 e Å3
357 restraintsAbsolute structure: Flack (1983), 2517 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (14)
Crystal data top
2C4H5N3OS·3C4H9NOV = 2764.4 (6) Å3
Mr = 547.71Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.2133 (7) ŵ = 0.24 mm1
b = 7.4335 (13) ÅT = 173 K
c = 24.445 (3) Å0.27 × 0.20 × 0.15 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5184 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3323 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.965Rint = 0.149
33090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.32 e Å3
S = 0.93Δρmin = 0.23 e Å3
5184 reflectionsAbsolute structure: Flack (1983), 2517 Friedel pairs
378 parametersAbsolute structure parameter: 0.04 (14)
357 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.6459 (2)0.4701 (6)0.50963 (18)0.0288 (10)
H1A0.65910.48240.54450.035*
C2A0.5682 (3)0.3950 (7)0.4973 (2)0.0285 (12)
S21A0.49462 (9)0.3386 (2)0.54470 (6)0.0381 (4)
N3A0.5543 (3)0.3711 (5)0.44364 (19)0.0255 (10)
H3A0.50510.31700.43440.031*
C4A0.6103 (3)0.4234 (7)0.4003 (2)0.0265 (11)
O41A0.5875 (2)0.3919 (5)0.35275 (16)0.0332 (8)
C5A0.6887 (3)0.5081 (7)0.4177 (2)0.0271 (11)
H5A0.72930.55070.39120.033*
C6A0.7067 (3)0.5293 (6)0.4720 (2)0.0228 (11)
N61A0.7783 (3)0.6033 (7)0.49197 (19)0.0351 (12)
H61A0.790 (3)0.610 (7)0.5276 (9)0.042*
H62A0.817 (3)0.648 (7)0.4698 (19)0.042*
N1B0.3412 (3)0.0983 (5)0.25494 (18)0.0281 (10)
H1B0.32970.07310.22050.034*
C2B0.4232 (3)0.1642 (7)0.2678 (2)0.0267 (12)
S21B0.49996 (10)0.1915 (2)0.22023 (6)0.0374 (3)
N3B0.4338 (3)0.2075 (5)0.32048 (18)0.0245 (10)
H3B0.48430.25690.32960.029*
C4B0.3726 (3)0.1822 (7)0.3627 (2)0.0247 (11)
O41B0.3932 (2)0.2292 (5)0.40996 (14)0.0308 (9)
C5B0.2923 (3)0.1114 (7)0.3467 (2)0.0283 (12)
H5B0.24770.09160.37320.034*
C6B0.2766 (3)0.0698 (7)0.2932 (2)0.0275 (12)
N61B0.2011 (3)0.0005 (7)0.2736 (2)0.0376 (12)
H61B0.196 (4)0.016 (8)0.2382 (9)0.045*
H62B0.158 (3)0.009 (8)0.2965 (19)0.045*
C1Z0.3625 (4)0.0639 (9)0.0882 (3)0.0470 (17)
H1Z10.39890.10640.11870.070*
H1Z20.35340.16240.06220.070*
H1Z30.39230.03600.06980.070*
O21Z0.2574 (3)0.0004 (7)0.16145 (18)0.0441 (10)
C2Z0.2747 (4)0.0007 (9)0.1098 (4)0.0516 (18)
N3Z0.2151 (4)0.0592 (8)0.0771 (3)0.0566 (16)
C31Z0.1306 (4)0.1228 (9)0.0950 (3)0.0494 (18)
H31A0.12870.12390.13510.074*
H31B0.12090.24490.08120.074*
H31C0.08460.04280.08100.074*
C32Z0.2311 (5)0.0701 (10)0.0162 (3)0.064 (2)
H32A0.28900.01990.00770.095*
H32B0.18570.00150.00310.095*
H32C0.22890.19620.00450.095*
C1X0.6418 (4)0.4062 (9)0.6774 (3)0.0440 (16)
H1XA0.64880.38420.71670.066*0.712 (11)
H1XB0.63180.29170.65850.066*0.712 (11)
H1XC0.59150.48600.67140.066*0.712 (11)
H1XD0.60880.36490.70950.066*0.288 (11)
H1XE0.65110.30510.65230.066*0.288 (11)
H1XF0.60860.50090.65870.066*0.288 (11)
O21X0.7347 (3)0.5321 (6)0.60636 (18)0.0472 (11)
C2X0.7240 (5)0.4935 (11)0.6553 (3)0.0267 (18)0.712 (11)
N3X0.7880 (4)0.5295 (9)0.6904 (3)0.0281 (17)0.712 (11)
C2X'0.7757 (9)0.538 (3)0.6535 (6)0.039 (5)0.288 (11)
N3X'0.7280 (9)0.482 (3)0.6962 (5)0.047 (4)0.288 (11)
C31X0.8683 (4)0.6132 (9)0.6691 (3)0.0468 (16)
H3XA0.90970.63320.69920.070*0.712 (11)
H3XB0.85370.72860.65200.070*0.712 (11)
H3XC0.89520.53360.64180.070*0.712 (11)
H3XD0.87890.59210.70810.070*0.288 (11)
H3XE0.87160.74240.66140.070*0.288 (11)
H3XF0.91290.54970.64750.070*0.288 (11)
C32X0.7796 (5)0.4840 (10)0.7493 (3)0.0557 (18)
H4XA0.83280.52160.76870.084*0.712 (11)
H4XB0.77170.35380.75330.084*0.712 (11)
H4XC0.72850.54650.76470.084*0.712 (11)
H4XD0.74210.44040.77910.084*0.288 (11)
H4XE0.79800.60770.75700.084*0.288 (11)
H4XF0.83160.40690.74620.084*0.288 (11)
C1Y0.0148 (4)0.2465 (8)0.3066 (2)0.0486 (15)
H1YA0.06520.32320.31550.073*0.630 (10)
H1YB0.03360.15010.28190.073*0.630 (10)
H1YC0.03080.31880.28880.073*0.630 (10)
H1YD0.06020.32340.29060.073*0.370 (10)
H1YE0.01750.12670.28990.073*0.370 (10)
H1YF0.04320.29950.29990.073*0.370 (10)
O21Y0.0864 (2)0.0569 (5)0.36316 (19)0.0492 (11)
C2Y0.0215 (5)0.1654 (12)0.3584 (4)0.032 (2)0.630 (10)
N3Y0.0192 (4)0.2080 (9)0.4056 (3)0.035 (2)0.630 (10)
C2Y'0.0290 (7)0.1299 (16)0.3929 (5)0.024 (3)0.370 (10)
N3Y'0.0288 (8)0.2307 (15)0.3655 (5)0.032 (3)0.370 (10)
C31Y0.0150 (4)0.1291 (8)0.4555 (2)0.0472 (15)
H3YA0.01950.17170.48680.071*0.630 (10)
H3YB0.07660.16460.46020.071*0.630 (10)
H3YC0.01110.00230.45320.071*0.630 (10)
H3YD0.03810.19730.46470.071*0.370 (10)
H3YE0.06610.18530.47300.071*0.370 (10)
H3YF0.00890.00520.46860.071*0.370 (10)
C32Y0.1010 (4)0.3118 (9)0.4018 (4)0.073 (2)
H4YA0.12350.33550.43870.110*0.630 (10)
H4YB0.14460.24300.38100.110*0.630 (10)
H4YC0.08940.42610.38320.110*0.630 (10)
H4YD0.14070.38460.37940.110*0.370 (10)
H4YE0.07430.38760.43010.110*0.370 (10)
H4YF0.13410.21420.41920.110*0.370 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.025 (2)0.040 (3)0.021 (2)0.0017 (19)0.0053 (18)0.003 (2)
C2A0.025 (2)0.033 (3)0.027 (3)0.007 (2)0.003 (2)0.003 (2)
S21A0.0247 (7)0.0582 (9)0.0316 (9)0.0056 (7)0.0050 (7)0.0069 (7)
N3A0.019 (2)0.030 (2)0.027 (3)0.0040 (17)0.0015 (17)0.0005 (19)
C4A0.022 (2)0.025 (3)0.033 (3)0.004 (2)0.002 (2)0.002 (2)
O41A0.0306 (18)0.043 (2)0.026 (2)0.0072 (16)0.0003 (16)0.0023 (18)
C5A0.028 (2)0.031 (3)0.022 (3)0.002 (2)0.008 (2)0.000 (2)
C6A0.017 (2)0.022 (3)0.030 (3)0.001 (2)0.003 (2)0.002 (2)
N61A0.021 (2)0.061 (3)0.024 (3)0.010 (2)0.0027 (19)0.005 (3)
N1B0.029 (2)0.034 (3)0.022 (2)0.0034 (19)0.0024 (18)0.003 (2)
C2B0.024 (2)0.021 (3)0.035 (3)0.002 (2)0.003 (2)0.004 (2)
S21B0.0290 (7)0.0534 (9)0.0299 (8)0.0019 (7)0.0055 (7)0.0043 (7)
N3B0.023 (2)0.026 (2)0.024 (3)0.0036 (17)0.0006 (18)0.0032 (18)
C4B0.022 (2)0.029 (3)0.024 (3)0.009 (2)0.005 (2)0.002 (2)
O41B0.0219 (16)0.050 (2)0.021 (2)0.0019 (15)0.0006 (14)0.0005 (18)
C5B0.023 (2)0.031 (3)0.030 (3)0.001 (2)0.008 (2)0.003 (2)
C6B0.025 (2)0.025 (3)0.033 (3)0.008 (2)0.003 (2)0.001 (2)
N61B0.024 (2)0.052 (3)0.036 (3)0.007 (2)0.003 (2)0.013 (3)
C1Z0.044 (3)0.053 (4)0.045 (4)0.001 (3)0.003 (3)0.007 (3)
O21Z0.043 (2)0.065 (3)0.025 (2)0.0127 (19)0.003 (2)0.007 (2)
C2Z0.046 (4)0.032 (4)0.077 (6)0.017 (3)0.014 (4)0.006 (4)
N3Z0.061 (4)0.059 (4)0.050 (4)0.006 (3)0.008 (3)0.008 (3)
C31Z0.047 (4)0.057 (5)0.044 (4)0.024 (3)0.012 (3)0.001 (3)
C32Z0.098 (5)0.068 (5)0.025 (4)0.015 (4)0.015 (4)0.009 (3)
C1X0.034 (3)0.057 (4)0.041 (4)0.006 (3)0.003 (3)0.007 (3)
O21X0.043 (2)0.074 (3)0.025 (2)0.004 (2)0.0035 (19)0.000 (2)
C2X0.028 (4)0.038 (5)0.014 (4)0.009 (3)0.004 (3)0.002 (3)
N3X0.028 (3)0.036 (4)0.020 (3)0.001 (3)0.007 (3)0.002 (3)
C2X'0.023 (7)0.078 (13)0.017 (7)0.001 (8)0.005 (6)0.002 (9)
N3X'0.049 (8)0.072 (11)0.020 (6)0.008 (8)0.007 (6)0.003 (8)
C31X0.035 (3)0.055 (4)0.050 (4)0.006 (3)0.009 (3)0.010 (3)
C32X0.079 (4)0.062 (4)0.027 (3)0.019 (4)0.006 (3)0.001 (3)
C1Y0.054 (4)0.040 (3)0.052 (3)0.010 (3)0.011 (3)0.003 (3)
O21Y0.0283 (19)0.054 (3)0.066 (3)0.0030 (18)0.0065 (18)0.021 (2)
C2Y0.027 (4)0.033 (5)0.035 (4)0.013 (4)0.000 (4)0.015 (4)
N3Y0.033 (4)0.029 (4)0.043 (4)0.002 (3)0.011 (3)0.013 (4)
C2Y'0.019 (6)0.017 (7)0.035 (6)0.015 (4)0.007 (5)0.000 (6)
N3Y'0.034 (6)0.015 (6)0.046 (6)0.005 (5)0.002 (5)0.008 (6)
C31Y0.052 (4)0.056 (4)0.034 (3)0.017 (3)0.007 (3)0.002 (3)
C32Y0.040 (3)0.048 (4)0.133 (7)0.008 (3)0.019 (4)0.018 (5)
Geometric parameters (Å, º) top
N1A—C2A1.342 (6)C1X—H1XF0.9801
N1A—C6A1.377 (6)O21X—C2X1.241 (8)
N1A—H1A0.8800O21X—C2X'1.311 (13)
C2A—N3A1.341 (7)C2X—N3X1.325 (9)
C2A—S21A1.664 (5)N3X—C31X1.467 (8)
N3A—C4A1.412 (6)N3X—C32X1.485 (8)
N3A—H3A0.8800C2X'—N3X'1.337 (16)
C4A—O41A1.236 (7)C2X'—C31X1.563 (13)
C4A—C5A1.414 (7)N3X'—C32X1.517 (12)
C5A—C6A1.364 (7)C31X—H3XA0.9800
C5A—H5A0.9500C31X—H3XB0.9800
C6A—N61A1.315 (6)C31X—H3XC0.9800
N61A—H61A0.891 (19)C31X—H3XD0.9799
N61A—H62A0.87 (2)C31X—H3XE0.9800
N1B—C6B1.374 (7)C31X—H3XF0.9798
N1B—C2B1.376 (6)C32X—H4XA0.9800
N1B—H1B0.8800C32X—H4XB0.9800
C2B—N3B1.337 (7)C32X—H4XC0.9800
C2B—S21B1.661 (5)C32X—H4XD0.9800
N3B—C4B1.403 (6)C32X—H4XE0.9800
N3B—H3B0.8800C32X—H4XF0.9801
C4B—O41B1.247 (6)C1Y—N3Y'1.459 (12)
C4B—C5B1.387 (6)C1Y—C2Y1.507 (10)
C5B—C6B1.365 (8)C1Y—H1YA0.9800
C5B—H5B0.9500C1Y—H1YB0.9800
C6B—N61B1.347 (6)C1Y—H1YC0.9800
N61B—H61B0.879 (19)C1Y—H1YD0.9799
N61B—H62B0.869 (19)C1Y—H1YE0.9800
C1Z—C2Z1.512 (9)C1Y—H1YF0.9801
C1Z—H1Z10.9800O21Y—C2Y'1.260 (11)
C1Z—H1Z20.9800O21Y—C2Y1.281 (9)
C1Z—H1Z30.9800C2Y—N3Y1.347 (10)
O21Z—C2Z1.289 (9)N3Y—C31Y1.450 (9)
C2Z—N3Z1.288 (9)N3Y—C32Y1.466 (8)
N3Z—C31Z1.439 (8)C2Y'—N3Y'1.335 (14)
N3Z—C32Z1.512 (8)C2Y'—C31Y1.546 (12)
C31Z—H31A0.9800N3Y'—C32Y1.535 (11)
C31Z—H31B0.9800C31Y—H3YA0.9800
C31Z—H31C0.9800C31Y—H3YB0.9800
C32Z—H32A0.9800C31Y—H3YC0.9800
C32Z—H32B0.9800C31Y—H3YD0.9800
C32Z—H32C0.9800C31Y—H3YE0.9800
C1X—N3X'1.499 (13)C31Y—H3YF0.9801
C1X—C2X1.509 (9)C32Y—H4YA0.9800
C1X—H1XA0.9800C32Y—H4YB0.9800
C1X—H1XB0.9800C32Y—H4YC0.9800
C1X—H1XC0.9800C32Y—H4YD0.9800
C1X—H1XD0.9801C32Y—H4YE0.9801
C1X—H1XE0.9800C32Y—H4YF0.9800
C2A—N1A—C6A125.1 (5)C2X'—C31X—H3XF108.7
C2A—N1A—H1A117.4H3XA—C31X—H3XF91.9
C6A—N1A—H1A117.4H3XB—C31X—H3XF110.4
N1A—C2A—N3A114.4 (5)H3XD—C31X—H3XF109.5
N1A—C2A—S21A122.8 (4)H3XE—C31X—H3XF109.5
N3A—C2A—S21A122.8 (4)N3X—C32X—H4XA109.5
C2A—N3A—C4A127.0 (4)N3X'—C32X—H4XA147.7
C2A—N3A—H3A116.5N3X—C32X—H4XB109.5
C4A—N3A—H3A116.5N3X'—C32X—H4XB90.8
O41A—C4A—N3A119.0 (4)H4XA—C32X—H4XB109.5
O41A—C4A—C5A127.1 (5)N3X—C32X—H4XC109.5
N3A—C4A—C5A113.9 (5)N3X'—C32X—H4XC85.6
C6A—C5A—C4A120.9 (4)H4XA—C32X—H4XC109.5
C6A—C5A—H5A119.5H4XB—C32X—H4XC109.5
C4A—C5A—H5A119.5N3X—C32X—H4XD147.8
N61A—C6A—C5A125.2 (5)N3X'—C32X—H4XD109.4
N61A—C6A—N1A116.2 (5)H4XA—C32X—H4XD102.4
C5A—C6A—N1A118.5 (4)H4XB—C32X—H4XD61.9
C6A—N61A—H61A124 (4)H4XC—C32X—H4XD53.8
C6A—N61A—H62A119 (4)N3X—C32X—H4XE87.0
H61A—N61A—H62A117 (5)N3X'—C32X—H4XE108.7
C6B—N1B—C2B123.2 (4)H4XA—C32X—H4XE53.3
C6B—N1B—H1B118.4H4XB—C32X—H4XE160.4
C2B—N1B—H1B118.4H4XC—C32X—H4XE73.0
N3B—C2B—N1B114.6 (4)H4XD—C32X—H4XE109.5
N3B—C2B—S21B124.0 (4)N3X—C32X—H4XF89.4
N1B—C2B—S21B121.4 (4)N3X'—C32X—H4XF110.3
C2B—N3B—C4B126.6 (4)H4XA—C32X—H4XF62.4
C2B—N3B—H3B116.7H4XB—C32X—H4XF61.8
C4B—N3B—H3B116.7H4XC—C32X—H4XF161.1
O41B—C4B—C5B126.2 (4)H4XD—C32X—H4XF109.5
O41B—C4B—N3B118.5 (4)H4XE—C32X—H4XF109.5
C5B—C4B—N3B115.3 (5)N3Y'—C1Y—H1YA73.4
C6B—C5B—C4B120.7 (4)C2Y—C1Y—H1YA109.5
C6B—C5B—H5B119.6N3Y'—C1Y—H1YB120.4
C4B—C5B—H5B119.6C2Y—C1Y—H1YB109.5
N61B—C6B—C5B125.2 (5)H1YA—C1Y—H1YB109.5
N61B—C6B—N1B115.3 (5)N3Y'—C1Y—H1YC125.9
C5B—C6B—N1B119.5 (4)C2Y—C1Y—H1YC109.5
C6B—N61B—H61B112 (4)H1YA—C1Y—H1YC109.5
C6B—N61B—H62B117 (4)H1YB—C1Y—H1YC109.5
H61B—N61B—H62B125 (5)N3Y'—C1Y—H1YD109.8
C2Z—C1Z—H1Z1109.5C2Y—C1Y—H1YD146.0
C2Z—C1Z—H1Z2109.5H1YB—C1Y—H1YD88.5
H1Z1—C1Z—H1Z2109.5H1YC—C1Y—H1YD90.1
C2Z—C1Z—H1Z3109.5N3Y'—C1Y—H1YE109.4
H1Z1—C1Z—H1Z3109.5C2Y—C1Y—H1YE90.2
H1Z2—C1Z—H1Z3109.5H1YA—C1Y—H1YE126.0
O21Z—C2Z—N3Z117.5 (7)H1YC—C1Y—H1YE110.0
O21Z—C2Z—C1Z121.6 (6)H1YD—C1Y—H1YE109.5
N3Z—C2Z—C1Z120.8 (8)N3Y'—C1Y—H1YF109.2
C2Z—N3Z—C31Z123.6 (7)C2Y—C1Y—H1YF88.4
C2Z—N3Z—C32Z121.2 (7)H1YA—C1Y—H1YF120.5
C31Z—N3Z—C32Z115.2 (6)H1YB—C1Y—H1YF117.0
N3Z—C31Z—H31A109.5H1YD—C1Y—H1YF109.5
N3Z—C31Z—H31B109.5H1YE—C1Y—H1YF109.5
H31A—C31Z—H31B109.5O21Y—C2Y—N3Y115.2 (8)
N3Z—C31Z—H31C109.5O21Y—C2Y—C1Y127.6 (7)
H31A—C31Z—H31C109.5N3Y—C2Y—C1Y117.2 (7)
H31B—C31Z—H31C109.5C2Y—N3Y—C31Y117.4 (6)
N3Z—C32Z—H32A109.5C2Y—N3Y—C32Y117.4 (7)
N3Z—C32Z—H32B109.5C31Y—N3Y—C32Y124.8 (6)
H32A—C32Z—H32B109.5C2Y—N3Y—H3YD156.3
N3Z—C32Z—H32C109.5C32Y—N3Y—H3YD85.7
H32A—C32Z—H32C109.5O21Y—C2Y'—N3Y'114.2 (10)
H32B—C32Z—H32C109.5O21Y—C2Y'—C31Y131.7 (10)
N3X'—C1X—H1XA70.6N3Y'—C2Y'—C31Y114.1 (9)
C2X—C1X—H1XA109.5C2Y'—N3Y'—C1Y116.3 (9)
N3X'—C1X—H1XB127.4C2Y'—N3Y'—C32Y113.6 (9)
C2X—C1X—H1XB109.5C1Y—N3Y'—C32Y130.1 (9)
H1XA—C1X—H1XB109.5N3Y—C31Y—H3YA109.5
N3X'—C1X—H1XC120.1C2Y'—C31Y—H3YA147.7
C2X—C1X—H1XC109.5N3Y—C31Y—H3YB109.5
H1XA—C1X—H1XC109.5C2Y'—C31Y—H3YB89.1
H1XB—C1X—H1XC109.5H3YA—C31Y—H3YB109.5
N3X'—C1X—H1XD108.8N3Y—C31Y—H3YC109.5
C2X—C1X—H1XD147.8C2Y'—C31Y—H3YC87.5
H1XB—C1X—H1XD91.4H3YA—C31Y—H3YC109.5
H1XC—C1X—H1XD84.8H3YB—C31Y—H3YC109.5
N3X'—C1X—H1XE110.8N3Y—C31Y—H3YD71.8
C2X—C1X—H1XE89.2C2Y'—C31Y—H3YD109.8
H1XA—C1X—H1XE118.0H3YB—C31Y—H3YD128.4
H1XC—C1X—H1XE118.8H3YC—C31Y—H3YD118.6
H1XD—C1X—H1XE109.5N3Y—C31Y—H3YE118.6
N3X'—C1X—H1XF108.9C2Y'—C31Y—H3YE108.7
C2X—C1X—H1XF87.2H3YA—C31Y—H3YE87.0
H1XA—C1X—H1XF129.3H3YC—C31Y—H3YE119.9
H1XB—C1X—H1XF108.9H3YD—C31Y—H3YE109.5
H1XD—C1X—H1XF109.5N3Y—C31Y—H3YF128.4
H1XE—C1X—H1XF109.5C2Y'—C31Y—H3YF109.9
O21X—C2X—N3X118.8 (7)H3YA—C31Y—H3YF89.9
O21X—C2X—C1X123.6 (6)H3YB—C31Y—H3YF107.8
N3X—C2X—C1X117.6 (6)H3YD—C31Y—H3YF109.5
C2X—N3X—C31X117.9 (6)H3YE—C31Y—H3YF109.5
C2X—N3X—C32X121.2 (6)N3Y—C32Y—H4YA109.5
C31X—N3X—C32X120.9 (6)N3Y'—C32Y—H4YA148.5
O21X—C2X'—N3X'114.6 (11)N3Y—C32Y—H4YB109.5
O21X—C2X'—C31X130.9 (11)N3Y'—C32Y—H4YB88.8
N3X'—C2X'—C31X114.2 (11)H4YA—C32Y—H4YB109.5
C2X'—N3X'—C1X110.7 (10)N3Y—C32Y—H4YC109.5
C2X'—N3X'—C32X112.6 (11)N3Y'—C32Y—H4YC86.8
C1X—N3X'—C32X135.9 (10)H4YA—C32Y—H4YC109.5
N3X—C31X—H3XA109.5H4YB—C32Y—H4YC109.5
C2X'—C31X—H3XA144.8N3Y—C32Y—H4YD148.2
N3X—C31X—H3XB109.5N3Y'—C32Y—H4YD109.5
C2X'—C31X—H3XB90.3H4YA—C32Y—H4YD101.5
H3XA—C31X—H3XB109.5H4YB—C32Y—H4YD65.1
N3X—C31X—H3XC109.5H4YC—C32Y—H4YD51.1
C2X'—C31X—H3XC89.7N3Y—C32Y—H4YE84.6
H3XA—C31X—H3XC109.5N3Y'—C32Y—H4YE109.7
H3XB—C31X—H3XC109.5H4YA—C32Y—H4YE52.6
N3X—C31X—H3XD74.0H4YB—C32Y—H4YE161.2
C2X'—C31X—H3XD109.2H4YC—C32Y—H4YE75.8
H3XB—C31X—H3XD126.3H4YD—C32Y—H4YE109.5
H3XC—C31X—H3XD119.8N3Y—C32Y—H4YF91.1
N3X—C31X—H3XE121.7N3Y'—C32Y—H4YF109.2
C2X'—C31X—H3XE110.5H4YA—C32Y—H4YF63.6
H3XA—C31X—H3XE87.8H4YB—C32Y—H4YF59.3
H3XC—C31X—H3XE116.2H4YC—C32Y—H4YF159.3
H3XD—C31X—H3XE109.5H4YD—C32Y—H4YF109.5
N3X—C31X—H3XF124.3H4YE—C32Y—H4YF109.5
C6A—N1A—C2A—N3A3.5 (7)O21X—C2X'—N3X'—C1X7 (3)
C6A—N1A—C2A—S21A175.8 (4)C31X—C2X'—N3X'—C1X177.9 (13)
N1A—C2A—N3A—C4A3.1 (7)O21X—C2X'—N3X'—C32X177.6 (15)
S21A—C2A—N3A—C4A176.2 (4)C31X—C2X'—N3X'—C32X7 (2)
C2A—N3A—C4A—O41A179.7 (5)C2X—C1X—N3X'—C2X'1.8 (12)
C2A—N3A—C4A—C5A0.6 (7)C2X—C1X—N3X'—C32X170 (3)
O41A—C4A—C5A—C6A177.9 (5)C2X—N3X—C31X—C2X'1.0 (16)
N3A—C4A—C5A—C6A1.8 (7)C32X—N3X—C31X—C2X'177.9 (18)
C4A—C5A—C6A—N61A178.8 (5)O21X—C2X'—C31X—N3X178 (3)
C4A—C5A—C6A—N1A1.5 (7)N3X'—C2X'—C31X—N3X3.1 (10)
C2A—N1A—C6A—N61A178.4 (5)C2X—N3X—C32X—N3X'4.6 (14)
C2A—N1A—C6A—C5A1.4 (7)C31X—N3X—C32X—N3X'176.5 (14)
C6B—N1B—C2B—N3B3.2 (7)C2X'—N3X'—C32X—N3X2.3 (13)
C6B—N1B—C2B—S21B178.5 (4)C1X—N3X'—C32X—N3X170 (3)
N1B—C2B—N3B—C4B4.0 (7)C2Y'—O21Y—C2Y—N3Y2.3 (9)
S21B—C2B—N3B—C4B177.7 (4)C2Y'—O21Y—C2Y—C1Y176.4 (16)
C2B—N3B—C4B—O41B179.5 (5)N3Y'—C1Y—C2Y—O21Y174.4 (14)
C2B—N3B—C4B—C5B2.7 (7)N3Y'—C1Y—C2Y—N3Y4.2 (10)
O41B—C4B—C5B—C6B178.0 (5)O21Y—C2Y—N3Y—C31Y0.6 (9)
N3B—C4B—C5B—C6B0.5 (7)C1Y—C2Y—N3Y—C31Y179.5 (6)
C4B—C5B—C6B—N61B179.9 (5)O21Y—C2Y—N3Y—C32Y171.9 (6)
C4B—C5B—C6B—N1B0.1 (7)C1Y—C2Y—N3Y—C32Y6.9 (9)
C2B—N1B—C6B—N61B178.5 (5)C2Y—O21Y—C2Y'—N3Y'3.2 (8)
C2B—N1B—C6B—C5B1.4 (7)C2Y—O21Y—C2Y'—C31Y174 (2)
O21Z—C2Z—N3Z—C31Z1.5 (10)O21Y—C2Y'—N3Y'—C1Y2.3 (15)
C1Z—C2Z—N3Z—C31Z179.5 (6)C31Y—C2Y'—N3Y'—C1Y175.7 (8)
O21Z—C2Z—N3Z—C32Z177.4 (6)O21Y—C2Y'—N3Y'—C32Y177.3 (8)
C1Z—C2Z—N3Z—C32Z0.5 (10)C31Y—C2Y'—N3Y'—C32Y4.6 (14)
C2X'—O21X—C2X—N3X1.2 (17)C2Y—C1Y—N3Y'—C2Y'1.4 (9)
C2X'—O21X—C2X—C1X178 (2)C2Y—C1Y—N3Y'—C32Y179.0 (18)
N3X'—C1X—C2X—O21X176.2 (17)C2Y—N3Y—C31Y—C2Y'2.4 (9)
N3X'—C1X—C2X—N3X4.1 (13)C32Y—N3Y—C31Y—C2Y'169.5 (11)
O21X—C2X—N3X—C31X0.2 (11)O21Y—C2Y'—C31Y—N3Y175.0 (18)
C1X—C2X—N3X—C31X179.6 (6)N3Y'—C2Y'—C31Y—N3Y2.6 (9)
O21X—C2X—N3X—C32X179.1 (7)C2Y—N3Y—C32Y—N3Y'1.2 (8)
C1X—C2X—N3X—C32X0.6 (10)C31Y—N3Y—C32Y—N3Y'173.1 (13)
C2X—O21X—C2X'—N3X'3.2 (12)C2Y'—N3Y'—C32Y—N3Y6.2 (7)
C2X—O21X—C2X'—C31X178 (3)C1Y—N3Y'—C32Y—N3Y174.2 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O21Z0.881.902.718 (6)155
N3B—H3B···O41A0.881.952.823 (5)173
N61B—H61B···O21Z0.88 (2)2.10 (4)2.873 (7)146 (5)
N61B—H62B···O21Y0.87 (2)2.02 (3)2.830 (7)155 (6)
N1A—H1A···O21X0.881.942.761 (6)156
N3A—H3A···O41B0.881.922.792 (5)172
N61A—H61A···O21X0.89 (2)2.18 (4)2.922 (6)140 (5)
N61A—H62A···O41Bi0.87 (2)2.08 (2)2.937 (6)171 (5)
Symmetry code: (i) x+1/2, y+1, z.
(Id) 6-Amino-2-thiouracil 1-methylpyrrolidin-2-one sesquisolvate top
Crystal data top
2C4H5N3OS·3C5H9NOF(000) = 1240
Mr = 583.74Dx = 1.339 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 28863 reflections
a = 15.2293 (10) Åθ = 2.4–26.4°
b = 7.5483 (4) ŵ = 0.23 mm1
c = 25.1871 (13) ÅT = 173 K
V = 2895.4 (3) Å3Plate, colourless
Z = 40.34 × 0.28 × 0.16 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4332 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source3541 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.053
ω scansθmax = 24.8°, θmin = 2.7°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1417
Tmin = 0.925, Tmax = 0.964k = 88
8280 measured reflectionsl = 2925
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.066P)2 + 4.3455P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4332 reflectionsΔρmax = 0.36 e Å3
474 parametersΔρmin = 0.34 e Å3
569 restraintsAbsolute structure: Flack (1983), 1810 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (15)
Crystal data top
2C4H5N3OS·3C5H9NOV = 2895.4 (3) Å3
Mr = 583.74Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 15.2293 (10) ŵ = 0.23 mm1
b = 7.5483 (4) ÅT = 173 K
c = 25.1871 (13) Å0.34 × 0.28 × 0.16 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4332 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3541 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.964Rint = 0.053
8280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.36 e Å3
S = 1.06Δρmin = 0.34 e Å3
4332 reflectionsAbsolute structure: Flack (1983), 1810 Friedel pairs
474 parametersAbsolute structure parameter: 0.12 (15)
569 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.6639 (3)0.4991 (7)0.63829 (18)0.0438 (11)
H1A0.67490.52430.67170.053*
C2A0.5864 (3)0.4207 (8)0.6264 (2)0.0439 (13)
S21A0.51259 (9)0.3814 (3)0.67358 (8)0.0591 (4)
N3A0.5747 (3)0.3810 (6)0.57501 (19)0.0404 (10)
H3A0.52560.32630.56650.048*
C4A0.6339 (3)0.4189 (7)0.5331 (2)0.0394 (12)
O41A0.6111 (2)0.3789 (5)0.48797 (16)0.0475 (9)
C5A0.7116 (3)0.5072 (7)0.5483 (2)0.0445 (13)
H5A0.75310.54220.52220.053*
C6A0.7269 (3)0.5420 (7)0.6006 (2)0.0398 (13)
N61A0.7985 (3)0.6218 (7)0.6200 (2)0.0575 (14)
H61A0.84050.65640.59830.069*
H61B0.80360.63960.65440.069*
N1B0.3617 (3)0.0813 (6)0.3959 (2)0.0453 (11)
H1B0.34910.04880.36320.054*
C2B0.4426 (4)0.1516 (7)0.4056 (2)0.0432 (13)
S21B0.51735 (10)0.1701 (2)0.35892 (7)0.0552 (4)
N3B0.4562 (3)0.2013 (6)0.45640 (19)0.0390 (10)
H3B0.50770.24750.46420.047*
C4B0.3950 (3)0.1855 (7)0.4980 (3)0.0440 (14)
O41B0.4182 (2)0.2408 (6)0.54357 (16)0.0467 (9)
C5B0.3140 (3)0.1124 (7)0.4854 (3)0.0446 (13)
H5B0.27010.10030.51190.054*
C6B0.2980 (3)0.0582 (7)0.4348 (3)0.0445 (14)
N61B0.2220 (3)0.0180 (7)0.4177 (2)0.0614 (15)
H61C0.17860.03550.44020.074*
H61D0.21640.04980.38430.074*
N1X0.8041 (3)0.5650 (7)0.81512 (19)0.0548 (12)
C11X0.8907 (4)0.6303 (11)0.8028 (3)0.071 (2)
H11A0.89360.66170.76510.106*
H11B0.93420.53810.81050.106*
H11C0.90310.73530.82440.106*
C2X0.7416 (3)0.5532 (8)0.7794 (2)0.0554 (15)
O21X0.7504 (3)0.5829 (7)0.73126 (16)0.0633 (12)
C3X0.6576 (4)0.4962 (10)0.8067 (2)0.0659 (18)
H3X10.61390.59310.80650.079*
H3X20.63200.39110.78900.079*
C4X0.6853 (4)0.4527 (9)0.8624 (3)0.0742 (19)
H4X10.68510.32290.86800.089*
H4X20.64480.50790.88830.089*
C5X0.7784 (4)0.5273 (9)0.8690 (2)0.0643 (17)
H5X10.77820.63630.89090.077*
H5X20.81800.43910.88540.077*
N1Y0.0051 (6)0.2275 (15)0.4881 (3)0.057 (3)0.623 (13)
C11Y0.0214 (8)0.2611 (17)0.4340 (4)0.063 (3)0.623 (13)
H1YA0.02520.22250.40980.095*0.623 (13)
H1YB0.07540.19530.42630.095*0.623 (13)
H1YC0.03190.38820.42920.095*0.623 (13)
C2Y0.0422 (8)0.133 (2)0.5218 (4)0.052 (3)0.623 (13)
O21Y0.1109 (9)0.0542 (19)0.5129 (6)0.061 (3)0.623 (13)
C3Y0.0001 (9)0.149 (2)0.5772 (4)0.070 (3)0.623 (13)
H3YA0.00840.03030.59340.084*0.623 (13)
H3YB0.03650.22200.60110.084*0.623 (13)
C4Y0.0861 (9)0.235 (2)0.5665 (5)0.068 (4)0.623 (13)
H4YA0.09810.32740.59350.082*0.623 (13)
H4YB0.13400.14680.56750.082*0.623 (13)
C5Y0.0794 (8)0.318 (2)0.5112 (5)0.069 (4)0.623 (13)
H5YA0.13350.29730.49030.083*0.623 (13)
H5YB0.06870.44760.51350.083*0.623 (13)
N1Y'0.0013 (10)0.171 (3)0.5493 (5)0.058 (4)0.377 (13)
C1Y'0.0288 (16)0.093 (3)0.5988 (7)0.085 (7)0.377 (13)
H1YD0.01530.11670.62620.128*0.377 (13)
H1YE0.08530.14350.60960.128*0.377 (13)
H1YF0.03510.03560.59420.128*0.377 (13)
C2Y'0.0486 (15)0.161 (4)0.5054 (7)0.065 (6)0.377 (13)
O2Y'0.1064 (17)0.052 (4)0.4965 (10)0.092 (9)0.377 (13)
C3Y'0.0017 (13)0.257 (3)0.4611 (6)0.064 (5)0.377 (13)
H3YC0.03360.35600.44660.077*0.377 (13)
H3YD0.01590.17410.43190.077*0.377 (13)
C4Y'0.0833 (16)0.325 (4)0.4863 (7)0.063 (5)0.377 (13)
H4YC0.13560.27060.46940.076*0.377 (13)
H4YD0.08710.45490.48240.076*0.377 (13)
C5Y'0.0786 (12)0.273 (3)0.5457 (7)0.054 (5)0.377 (13)
H5YC0.07590.37930.56850.064*0.377 (13)
H5YD0.13010.20060.55610.064*0.377 (13)
O21Z0.2718 (3)0.0272 (8)0.30892 (18)0.0793 (15)
N1Z0.3020 (5)0.0182 (13)0.2228 (3)0.075 (3)0.678 (11)
C11Z0.3901 (7)0.050 (2)0.2285 (5)0.084 (4)0.678 (11)
H1ZA0.42730.00100.20030.127*0.678 (11)
H1ZB0.41360.01470.26320.127*0.678 (11)
H1ZC0.38920.17910.22590.127*0.678 (11)
C2Z0.2500 (8)0.045 (4)0.2632 (3)0.072 (3)0.678 (11)
C3Z0.1615 (7)0.112 (3)0.2436 (4)0.079 (3)0.678 (11)
H3ZA0.15140.23560.25490.095*0.678 (11)
H3ZB0.11330.03660.25740.095*0.678 (11)
C4Z0.1675 (8)0.099 (2)0.1846 (4)0.106 (4)0.678 (11)
H4ZA0.12550.00970.17110.128*0.678 (11)
H4ZB0.15340.21480.16820.128*0.678 (11)
C5Z0.2621 (10)0.044 (4)0.1710 (4)0.087 (4)0.678 (11)
H5ZA0.29260.13900.15090.104*0.678 (11)
H5ZB0.26320.06620.14990.104*0.678 (11)
N1Z'0.2188 (9)0.072 (3)0.2230 (5)0.067 (4)0.322 (11)
C1Z'0.1291 (12)0.111 (7)0.2365 (11)0.104 (11)0.322 (11)
H1ZD0.09650.14220.20420.156*0.322 (11)
H1ZE0.10210.00730.25310.156*0.322 (11)
H1ZF0.12740.21130.26130.156*0.322 (11)
C2Z'0.2785 (13)0.032 (8)0.2592 (4)0.063 (5)0.322 (11)
C3Z'0.3645 (11)0.006 (5)0.2283 (7)0.085 (7)0.322 (11)
H3ZC0.39530.10230.24070.102*0.322 (11)
H3ZD0.40380.10870.23320.102*0.322 (11)
C4Z'0.3385 (14)0.013 (4)0.1707 (7)0.093 (6)0.322 (11)
H4ZC0.37950.05280.14740.112*0.322 (11)
H4ZD0.33800.13910.15980.112*0.322 (11)
C5Z'0.245 (2)0.067 (9)0.1678 (5)0.080 (6)0.322 (11)
H5ZC0.20550.00920.14670.096*0.322 (11)
H5ZD0.24640.18710.15210.096*0.322 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.036 (2)0.065 (3)0.031 (3)0.003 (2)0.0009 (18)0.001 (2)
C2A0.034 (3)0.048 (3)0.050 (4)0.001 (2)0.005 (2)0.003 (3)
S21A0.0399 (7)0.0913 (12)0.0462 (9)0.0033 (7)0.0062 (7)0.0085 (9)
N3A0.030 (2)0.049 (3)0.042 (3)0.0034 (18)0.0004 (18)0.006 (2)
C4A0.042 (3)0.037 (3)0.039 (3)0.006 (2)0.001 (2)0.001 (3)
O41A0.051 (2)0.057 (2)0.034 (2)0.0017 (18)0.0010 (17)0.001 (2)
C5A0.035 (3)0.050 (3)0.048 (4)0.001 (2)0.005 (2)0.002 (3)
C6A0.034 (3)0.043 (3)0.042 (3)0.007 (2)0.001 (2)0.001 (3)
N61A0.042 (2)0.086 (4)0.045 (3)0.012 (2)0.006 (2)0.005 (3)
N1B0.041 (2)0.043 (2)0.052 (3)0.007 (2)0.009 (2)0.009 (2)
C2B0.050 (3)0.034 (3)0.045 (4)0.008 (2)0.011 (2)0.002 (3)
S21B0.0517 (8)0.0682 (10)0.0456 (9)0.0001 (7)0.0017 (7)0.0000 (8)
N3B0.033 (2)0.040 (2)0.044 (3)0.0024 (17)0.0008 (19)0.002 (2)
C4B0.031 (2)0.041 (3)0.060 (4)0.006 (2)0.004 (2)0.007 (3)
O41B0.0360 (18)0.061 (2)0.043 (3)0.0005 (17)0.0007 (16)0.003 (2)
C5B0.039 (3)0.039 (3)0.056 (4)0.002 (2)0.000 (2)0.002 (3)
C6B0.039 (3)0.034 (3)0.060 (4)0.005 (2)0.008 (3)0.004 (3)
N61B0.034 (2)0.075 (4)0.075 (4)0.005 (2)0.001 (3)0.022 (3)
N1X0.061 (3)0.062 (3)0.042 (3)0.015 (2)0.001 (2)0.002 (3)
C11X0.060 (4)0.080 (5)0.073 (5)0.005 (3)0.006 (3)0.011 (4)
C2X0.059 (3)0.057 (4)0.049 (3)0.009 (3)0.002 (3)0.007 (3)
O21X0.050 (2)0.101 (4)0.039 (2)0.004 (2)0.0051 (18)0.002 (2)
C3X0.061 (4)0.074 (5)0.063 (4)0.009 (3)0.007 (3)0.000 (4)
C4X0.088 (4)0.055 (4)0.079 (5)0.011 (3)0.023 (4)0.017 (4)
C5X0.076 (4)0.071 (4)0.046 (4)0.011 (3)0.002 (3)0.011 (4)
N1Y0.045 (5)0.055 (6)0.071 (6)0.004 (4)0.014 (5)0.005 (6)
C11Y0.076 (8)0.054 (7)0.060 (7)0.014 (6)0.017 (6)0.007 (6)
C2Y0.046 (5)0.045 (6)0.066 (7)0.020 (4)0.005 (5)0.010 (6)
O21Y0.059 (6)0.060 (6)0.063 (7)0.006 (4)0.001 (5)0.011 (6)
C3Y0.074 (7)0.067 (9)0.069 (8)0.025 (6)0.015 (7)0.010 (8)
C4Y0.072 (6)0.063 (9)0.070 (9)0.013 (6)0.031 (6)0.017 (8)
C5Y0.054 (6)0.050 (8)0.103 (12)0.004 (5)0.028 (8)0.009 (11)
N1Y'0.044 (7)0.063 (9)0.066 (9)0.001 (6)0.004 (7)0.006 (9)
C1Y'0.108 (17)0.077 (16)0.071 (11)0.009 (11)0.029 (11)0.005 (11)
C2Y'0.058 (10)0.058 (13)0.081 (10)0.005 (9)0.021 (8)0.019 (10)
O2Y'0.043 (8)0.113 (15)0.12 (2)0.021 (8)0.010 (10)0.079 (13)
C3Y'0.071 (10)0.057 (11)0.064 (12)0.027 (8)0.017 (10)0.009 (13)
C4Y'0.083 (10)0.040 (10)0.066 (13)0.003 (8)0.001 (10)0.004 (11)
C5Y'0.045 (8)0.046 (12)0.071 (13)0.005 (8)0.019 (9)0.004 (12)
O21Z0.080 (3)0.101 (4)0.057 (3)0.003 (3)0.023 (3)0.014 (3)
N1Z0.107 (6)0.062 (5)0.056 (5)0.011 (5)0.021 (5)0.013 (5)
C11Z0.112 (8)0.078 (11)0.063 (8)0.006 (8)0.008 (6)0.015 (7)
C2Z0.089 (8)0.064 (8)0.064 (5)0.005 (9)0.032 (5)0.003 (7)
C3Z0.086 (8)0.083 (8)0.067 (6)0.018 (8)0.039 (6)0.011 (7)
C4Z0.137 (9)0.118 (10)0.065 (7)0.010 (9)0.040 (7)0.004 (8)
C5Z0.121 (9)0.080 (11)0.060 (6)0.035 (8)0.028 (6)0.006 (8)
N1Z'0.078 (8)0.070 (9)0.052 (7)0.002 (8)0.010 (6)0.002 (8)
C1Z'0.060 (12)0.13 (2)0.12 (2)0.001 (18)0.024 (11)0.03 (2)
C2Z'0.067 (10)0.061 (12)0.061 (7)0.000 (13)0.012 (7)0.017 (12)
C3Z'0.078 (11)0.089 (18)0.087 (10)0.007 (14)0.006 (8)0.042 (13)
C4Z'0.104 (12)0.089 (14)0.087 (10)0.019 (11)0.027 (10)0.002 (13)
C5Z'0.113 (13)0.074 (14)0.052 (8)0.022 (13)0.010 (9)0.027 (12)
Geometric parameters (Å, º) top
N1A—C2A1.355 (7)C3Y—H3YB0.9900
N1A—C6A1.388 (7)C4Y—C5Y1.531 (9)
N1A—H1A0.8800C4Y—H4YA0.9900
C2A—N3A1.340 (7)C4Y—H4YB0.9900
C2A—S21A1.663 (6)C5Y—H5YA0.9900
N3A—C4A1.417 (7)C5Y—H5YB0.9900
N3A—H3A0.8800N1Y'—C2Y'1.322 (8)
C4A—O41A1.227 (6)N1Y'—C5Y'1.441 (8)
C4A—C5A1.411 (7)N1Y'—C1Y'1.443 (9)
C5A—C6A1.362 (8)C1Y'—H1YD0.9800
C5A—H5A0.9500C1Y'—H1YE0.9800
C6A—N61A1.338 (7)C1Y'—H1YF0.9800
N61A—H61A0.8800C2Y'—O2Y'1.230 (9)
N61A—H61B0.8800C2Y'—C3Y'1.534 (9)
N1B—C2B1.363 (7)C3Y'—C4Y'1.485 (9)
N1B—C6B1.389 (8)C3Y'—H3YC0.9900
N1B—H1B0.8800C3Y'—H3YD0.9900
C2B—N3B1.349 (7)C4Y'—C5Y'1.548 (9)
C2B—S21B1.643 (6)C4Y'—H4YC0.9900
N3B—C4B1.408 (7)C4Y'—H4YD0.9900
N3B—H3B0.8800C5Y'—H5YC0.9900
C4B—O41B1.271 (7)C5Y'—H5YD0.9900
C4B—C5B1.388 (7)O21Z—C2Z1.207 (7)
C5B—C6B1.360 (8)O21Z—C2Z'1.257 (8)
C5B—H5B0.9500N1Z—C2Z1.305 (8)
C6B—N61B1.362 (7)N1Z—C11Z1.443 (8)
N61B—H61C0.8800N1Z—C5Z1.454 (8)
N61B—H61D0.8800C11Z—H1ZA0.9800
N1X—C2X1.313 (6)C11Z—H1ZB0.9800
N1X—C5X1.440 (6)C11Z—H1ZC0.9800
N1X—C11X1.442 (6)C2Z—C3Z1.519 (8)
C11X—H11A0.9800C3Z—C4Z1.492 (8)
C11X—H11B0.9800C3Z—H3ZA0.9900
C11X—H11C0.9800C3Z—H3ZB0.9900
C2X—O21X1.240 (6)C4Z—C5Z1.538 (9)
C2X—C3X1.515 (6)C4Z—H4ZA0.9900
C3X—C4X1.501 (7)C4Z—H4ZB0.9900
C3X—H3X10.9900C5Z—H5ZA0.9900
C3X—H3X20.9900C5Z—H5ZB0.9900
C4X—C5X1.535 (7)N1Z'—C2Z'1.324 (8)
C4X—H4X10.9900N1Z'—C1Z'1.438 (9)
C4X—H4X20.9900N1Z'—C5Z'1.448 (9)
C5X—H5X10.9900C1Z'—H1ZD0.9800
C5X—H5X20.9900C1Z'—H1ZE0.9800
N1Y—C2Y1.322 (8)C1Z'—H1ZF0.9800
N1Y—C11Y1.444 (8)C2Z'—C3Z'1.537 (9)
N1Y—C5Y1.445 (8)C3Z'—C4Z'1.510 (10)
C11Y—H1YA0.9800C3Z'—H3ZC0.9900
C11Y—H1YB0.9800C3Z'—H3ZD0.9900
C11Y—H1YC0.9800C4Z'—C5Z'1.543 (10)
C2Y—O21Y1.225 (8)C4Z'—H4ZC0.9900
C2Y—C3Y1.540 (8)C4Z'—H4ZD0.9900
C3Y—C4Y1.488 (9)C5Z'—H5ZC0.9900
C3Y—H3YA0.9900C5Z'—H5ZD0.9900
C2A—N1A—C6A123.6 (5)N1Y—C5Y—C4Y102.8 (7)
C2A—N1A—H1A118.2N1Y—C5Y—H5YA111.2
C6A—N1A—H1A118.2C4Y—C5Y—H5YA111.2
N3A—C2A—N1A115.3 (5)N1Y—C5Y—H5YB111.2
N3A—C2A—S21A124.1 (4)C4Y—C5Y—H5YB111.2
N1A—C2A—S21A120.6 (5)H5YA—C5Y—H5YB109.1
C2A—N3A—C4A126.1 (5)C2Y'—N1Y'—C5Y'116.0 (8)
C2A—N3A—H3A117.0C2Y'—N1Y'—C1Y'122.7 (11)
C4A—N3A—H3A117.0C5Y'—N1Y'—C1Y'121.3 (11)
O41A—C4A—C5A127.3 (5)N1Y'—C1Y'—H1YD109.5
O41A—C4A—N3A117.4 (5)N1Y'—C1Y'—H1YE109.5
C5A—C4A—N3A115.3 (5)H1YD—C1Y'—H1YE109.5
C6A—C5A—C4A119.8 (5)N1Y'—C1Y'—H1YF109.5
C6A—C5A—H5A120.1H1YD—C1Y'—H1YF109.5
C4A—C5A—H5A120.1H1YE—C1Y'—H1YF109.5
N61A—C6A—C5A125.4 (5)O2Y'—C2Y'—N1Y'125.6 (15)
N61A—C6A—N1A114.7 (5)O2Y'—C2Y'—C3Y'122.8 (14)
C5A—C6A—N1A119.9 (5)N1Y'—C2Y'—C3Y'108.0 (8)
C6A—N61A—H61A120.0C4Y'—C3Y'—C2Y'105.6 (8)
C6A—N61A—H61B120.0C4Y'—C3Y'—H3YC110.6
H61A—N61A—H61B120.0C2Y'—C3Y'—H3YC110.6
C2B—N1B—C6B123.6 (5)C4Y'—C3Y'—H3YD110.6
C2B—N1B—H1B118.2C2Y'—C3Y'—H3YD110.6
C6B—N1B—H1B118.2H3YC—C3Y'—H3YD108.7
N3B—C2B—N1B114.6 (5)C3Y'—C4Y'—C5Y'106.7 (8)
N3B—C2B—S21B123.3 (4)C3Y'—C4Y'—H4YC110.4
N1B—C2B—S21B122.1 (4)C5Y'—C4Y'—H4YC110.4
C2B—N3B—C4B125.5 (5)C3Y'—C4Y'—H4YD110.4
C2B—N3B—H3B117.2C5Y'—C4Y'—H4YD110.4
C4B—N3B—H3B117.2H4YC—C4Y'—H4YD108.6
O41B—C4B—C5B125.8 (5)N1Y'—C5Y'—C4Y'103.6 (8)
O41B—C4B—N3B117.4 (5)N1Y'—C5Y'—H5YC111.0
C5B—C4B—N3B116.8 (6)C4Y'—C5Y'—H5YC111.0
C6B—C5B—C4B119.6 (6)N1Y'—C5Y'—H5YD111.0
C6B—C5B—H5B120.2C4Y'—C5Y'—H5YD111.0
C4B—C5B—H5B120.2H5YC—C5Y'—H5YD109.0
C5B—C6B—N61B125.1 (6)C2Z—N1Z—C11Z122.9 (8)
C5B—C6B—N1B119.8 (5)C2Z—N1Z—C5Z115.1 (7)
N61B—C6B—N1B115.1 (6)C11Z—N1Z—C5Z121.7 (8)
C6B—N61B—H61C120.0O21Z—C2Z—N1Z123.9 (8)
C6B—N61B—H61D120.0O21Z—C2Z—C3Z126.2 (8)
H61C—N61B—H61D120.0N1Z—C2Z—C3Z109.7 (7)
C2X—N1X—C5X115.8 (5)C4Z—C3Z—C2Z104.4 (7)
C2X—N1X—C11X122.6 (5)C4Z—C3Z—H3ZA110.9
C5X—N1X—C11X121.3 (5)C2Z—C3Z—H3ZA110.9
N1X—C11X—H11A109.5C4Z—C3Z—H3ZB110.9
N1X—C11X—H11B109.5C2Z—C3Z—H3ZB110.9
H11A—C11X—H11B109.5H3ZA—C3Z—H3ZB108.9
N1X—C11X—H11C109.5C3Z—C4Z—C5Z107.2 (7)
H11A—C11X—H11C109.5C3Z—C4Z—H4ZA110.3
H11B—C11X—H11C109.5C5Z—C4Z—H4ZA110.3
O21X—C2X—N1X125.4 (5)C3Z—C4Z—H4ZB110.3
O21X—C2X—C3X125.9 (5)C5Z—C4Z—H4ZB110.3
N1X—C2X—C3X108.6 (5)H4ZA—C4Z—H4ZB108.5
C4X—C3X—C2X104.5 (5)N1Z—C5Z—C4Z103.2 (7)
C4X—C3X—H3X1110.9N1Z—C5Z—H5ZA111.1
C2X—C3X—H3X1110.9C4Z—C5Z—H5ZA111.1
C4X—C3X—H3X2110.9N1Z—C5Z—H5ZB111.1
C2X—C3X—H3X2110.9C4Z—C5Z—H5ZB111.1
H3X1—C3X—H3X2108.9H5ZA—C5Z—H5ZB109.1
C3X—C4X—C5X106.2 (5)C2Z'—N1Z'—C1Z'122.5 (12)
C3X—C4X—H4X1110.5C2Z'—N1Z'—C5Z'117.6 (8)
C5X—C4X—H4X1110.5C1Z'—N1Z'—C5Z'119.8 (11)
C3X—C4X—H4X2110.5N1Z'—C1Z'—H1ZD109.5
C5X—C4X—H4X2110.5N1Z'—C1Z'—H1ZE109.5
H4X1—C4X—H4X2108.7H1ZD—C1Z'—H1ZE109.5
N1X—C5X—C4X102.8 (5)N1Z'—C1Z'—H1ZF109.5
N1X—C5X—H5X1111.2H1ZD—C1Z'—H1ZF109.5
C4X—C5X—H5X1111.2H1ZE—C1Z'—H1ZF109.5
N1X—C5X—H5X2111.2O21Z—C2Z'—N1Z'129.6 (11)
C4X—C5X—H5X2111.2O21Z—C2Z'—C3Z'124.8 (11)
H5X1—C5X—H5X2109.1N1Z'—C2Z'—C3Z'105.4 (8)
C2Y—N1Y—C11Y123.3 (8)C4Z'—C3Z'—C2Z'106.0 (9)
C2Y—N1Y—C5Y115.1 (7)C4Z'—C3Z'—H3ZC110.5
C11Y—N1Y—C5Y121.0 (8)C2Z'—C3Z'—H3ZC110.5
O21Y—C2Y—N1Y127.6 (9)C4Z'—C3Z'—H3ZD110.5
O21Y—C2Y—C3Y124.1 (9)C2Z'—C3Z'—H3ZD110.5
N1Y—C2Y—C3Y108.2 (7)H3ZC—C3Z'—H3ZD108.7
C4Y—C3Y—C2Y103.7 (7)C3Z'—C4Z'—C5Z'104.5 (10)
C4Y—C3Y—H3YA111.0C3Z'—C4Z'—H4ZC110.9
C2Y—C3Y—H3YA111.0C5Z'—C4Z'—H4ZC110.9
C4Y—C3Y—H3YB111.0C3Z'—C4Z'—H4ZD110.9
C2Y—C3Y—H3YB111.0C5Z'—C4Z'—H4ZD110.9
H3YA—C3Y—H3YB109.0H4ZC—C4Z'—H4ZD108.9
C3Y—C4Y—C5Y106.7 (7)N1Z'—C5Z'—C4Z'102.9 (9)
C3Y—C4Y—H4YA110.4N1Z'—C5Z'—H5ZC111.2
C5Y—C4Y—H4YA110.4C4Z'—C5Z'—H5ZC111.2
C3Y—C4Y—H4YB110.4N1Z'—C5Z'—H5ZD111.2
C5Y—C4Y—H4YB110.4C4Z'—C5Z'—H5ZD111.2
H4YA—C4Y—H4YB108.6H5ZC—C5Z'—H5ZD109.1
C6A—N1A—C2A—N3A1.9 (8)N1Y—C2Y—C3Y—C4Y10.7 (17)
C6A—N1A—C2A—S21A177.4 (4)C2Y—C3Y—C4Y—C5Y17.4 (18)
N1A—C2A—N3A—C4A2.3 (8)C2Y—N1Y—C5Y—C4Y11.8 (18)
S21A—C2A—N3A—C4A177.0 (4)C11Y—N1Y—C5Y—C4Y176.9 (14)
C2A—N3A—C4A—O41A177.3 (5)C3Y—C4Y—C5Y—N1Y17.9 (18)
C2A—N3A—C4A—C5A0.2 (8)C5Y'—N1Y'—C2Y'—O2Y'162 (3)
O41A—C4A—C5A—C6A179.9 (5)C1Y'—N1Y'—C2Y'—O2Y'20 (5)
N3A—C4A—C5A—C6A3.1 (7)C5Y'—N1Y'—C2Y'—C3Y'3 (3)
C4A—C5A—C6A—N61A178.8 (5)C1Y'—N1Y'—C2Y'—C3Y'179 (2)
C4A—C5A—C6A—N1A3.5 (8)O2Y'—C2Y'—C3Y'—C4Y'160 (3)
C2A—N1A—C6A—N61A178.8 (5)N1Y'—C2Y'—C3Y'—C4Y'1 (3)
C2A—N1A—C6A—C5A0.9 (8)C2Y'—C3Y'—C4Y'—C5Y'2 (3)
C6B—N1B—C2B—N3B1.2 (7)C2Y'—N1Y'—C5Y'—C4Y'4 (3)
C6B—N1B—C2B—S21B177.7 (4)C1Y'—N1Y'—C5Y'—C4Y'178 (3)
N1B—C2B—N3B—C4B0.1 (7)C3Y'—C4Y'—C5Y'—N1Y'3 (3)
S21B—C2B—N3B—C4B178.8 (4)C2Z'—O21Z—C2Z—N1Z3 (9)
C2B—N3B—C4B—O41B179.3 (5)C2Z'—O21Z—C2Z—C3Z173 (13)
C2B—N3B—C4B—C5B0.0 (7)C11Z—N1Z—C2Z—O21Z5 (4)
O41B—C4B—C5B—C6B179.9 (5)C5Z—N1Z—C2Z—O21Z179 (2)
N3B—C4B—C5B—C6B0.9 (8)C11Z—N1Z—C2Z—C3Z178.4 (15)
C4B—C5B—C6B—N61B178.8 (5)C5Z—N1Z—C2Z—C3Z4 (3)
C4B—C5B—C6B—N1B2.0 (8)O21Z—C2Z—C3Z—C4Z177 (2)
C2B—N1B—C6B—C5B2.2 (8)N1Z—C2Z—C3Z—C4Z6 (3)
C2B—N1B—C6B—N61B178.5 (5)C2Z—C3Z—C4Z—C5Z6 (2)
C5X—N1X—C2X—O21X178.9 (6)C2Z—N1Z—C5Z—C4Z0 (3)
C11X—N1X—C2X—O21X5.5 (11)C11Z—N1Z—C5Z—C4Z174.6 (15)
C5X—N1X—C2X—C3X1.5 (8)C3Z—C4Z—C5Z—N1Z4 (3)
C11X—N1X—C2X—C3X174.8 (6)C2Z—O21Z—C2Z'—N1Z'2 (5)
O21X—C2X—C3X—C4X171.9 (7)C2Z—O21Z—C2Z'—C3Z'176 (15)
N1X—C2X—C3X—C4X7.7 (8)C1Z'—N1Z'—C2Z'—O21Z3 (8)
C2X—C3X—C4X—C5X13.1 (7)C5Z'—N1Z'—C2Z'—O21Z180 (6)
C2X—N1X—C5X—C4X9.7 (8)C1Z'—N1Z'—C2Z'—C3Z'178 (4)
C11X—N1X—C5X—C4X176.8 (6)C5Z'—N1Z'—C2Z'—C3Z'5 (6)
C3X—C4X—C5X—N1X13.7 (7)O21Z—C2Z'—C3Z'—C4Z'169 (5)
C11Y—N1Y—C2Y—O21Y4 (3)N1Z'—C2Z'—C3Z'—C4Z'15 (5)
C5Y—N1Y—C2Y—O21Y174.7 (18)C2Z'—C3Z'—C4Z'—C5Z'19 (4)
C11Y—N1Y—C2Y—C3Y172.0 (14)C2Z'—N1Z'—C5Z'—C4Z'7 (6)
C5Y—N1Y—C2Y—C3Y1.0 (18)C1Z'—N1Z'—C5Z'—C4Z'170 (4)
O21Y—C2Y—C3Y—C4Y173.4 (17)C3Z'—C4Z'—C5Z'—N1Z'16 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.881.942.760 (6)155
N3A—H3A···O41B0.881.852.724 (6)172
N61A—H61B···O21X0.882.142.912 (7)146
N61A—H61A···O41Bi0.881.982.847 (6)170
N1B—H1B···O21Z0.881.892.710 (7)154
N3B—H3B···O41A0.881.962.827 (6)171
N61B—H61D···O21Z0.882.082.844 (8)144
N61B—H61C···O2Y0.881.912.70 (2)149
N61B—H61C···O21Y0.882.212.985 (14)147
Symmetry code: (i) x+1/2, y+1, z.
(Ie) 6-Amino-2-thiouracil 1-methylpyrrolidin-2-one sesquisolvate top
Crystal data top
2C4H5N3OS·3C5H9NOF(000) = 2480
Mr = 583.74Dx = 1.332 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6864 reflections
a = 7.5509 (7) Åθ = 1.4–26.0°
b = 15.2328 (12) ŵ = 0.23 mm1
c = 50.601 (3) ÅT = 173 K
V = 5820.2 (8) Å3Plate, colourless
Z = 80.29 × 0.14 × 0.10 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5484 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source2211 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.157
ω scansθmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 99
Tmin = 0.936, Tmax = 0.977k = 1816
30686 measured reflectionsl = 5961
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.1082P)2]
where P = (Fo2 + 2Fc2)/3
5484 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.83 e Å3
352 restraintsΔρmin = 0.43 e Å3
Crystal data top
2C4H5N3OS·3C5H9NOV = 5820.2 (8) Å3
Mr = 583.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.5509 (7) ŵ = 0.23 mm1
b = 15.2328 (12) ÅT = 173 K
c = 50.601 (3) Å0.29 × 0.14 × 0.10 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
5484 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2211 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.977Rint = 0.157
30686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079352 restraints
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.83 e Å3
5484 reflectionsΔρmin = 0.43 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.2569 (6)0.0889 (3)0.06904 (9)0.0442 (11)
H1A0.23470.07660.05240.053*
C2A0.3391 (7)0.1662 (4)0.07474 (11)0.0437 (13)
S21A0.3865 (2)0.23898 (10)0.05127 (3)0.0581 (5)
N3A0.3761 (6)0.1785 (3)0.10057 (8)0.0412 (11)
H3A0.43090.22750.10470.049*
C4A0.3364 (7)0.1214 (4)0.12142 (11)0.0402 (13)
O41A0.3783 (5)0.1432 (3)0.14403 (7)0.0475 (10)
C5A0.2434 (7)0.0441 (4)0.11387 (11)0.0427 (13)
H5A0.20690.00320.12700.051*
C6A0.2067 (7)0.0286 (4)0.08798 (11)0.0405 (13)
N61A0.1208 (7)0.0419 (3)0.07876 (10)0.0532 (13)
H61A0.121 (8)0.049 (4)0.0615 (4)0.064*
H62A0.070 (7)0.080 (3)0.0895 (10)0.064*
N1B0.6753 (6)0.3964 (3)0.18927 (10)0.0481 (12)
H1B0.70690.40940.20550.058*
C2B0.6086 (7)0.3144 (4)0.18463 (11)0.0444 (13)
S21B0.5897 (2)0.23949 (11)0.20825 (3)0.0591 (5)
N3B0.5574 (5)0.2994 (3)0.15926 (8)0.0418 (11)
H3B0.51100.24780.15560.050*
C4B0.5732 (6)0.3600 (3)0.13848 (11)0.0398 (13)
O41B0.5208 (5)0.3362 (2)0.11592 (7)0.0426 (9)
C5B0.6468 (7)0.4416 (4)0.14502 (12)0.0448 (14)
H5B0.66210.48460.13160.054*
C6B0.6966 (7)0.4602 (4)0.17015 (12)0.0448 (14)
N61B0.7685 (7)0.5354 (3)0.17781 (11)0.0556 (13)
H61B0.759 (8)0.581 (3)0.1677 (11)0.067*
H62B0.790 (8)0.536 (4)0.1949 (5)0.067*
N1X0.2521 (7)0.0498 (4)0.01799 (10)0.0746 (16)
C11X0.2067 (11)0.1403 (5)0.01255 (16)0.091 (2)
H11A0.20920.15050.00660.137*
H11B0.29250.17910.02120.137*
H11C0.08770.15270.01930.137*
C2X0.2288 (9)0.0122 (4)0.00056 (12)0.0680 (17)
O21X0.1797 (6)0.0030 (3)0.02255 (8)0.0659 (12)
C3X0.2718 (10)0.1003 (5)0.01374 (14)0.087 (2)
H3X10.16340.13600.01600.105*
H3X20.35820.13400.00310.105*
C4X0.3486 (13)0.0760 (6)0.03980 (16)0.114 (3)
H4X10.47910.08220.03950.136*
H4X20.30050.11410.05390.136*
C5X0.2959 (10)0.0202 (5)0.04461 (12)0.086 (2)
H5X10.19250.02450.05660.104*
H5X20.39550.05430.05210.104*
N1Y0.5231 (9)0.7566 (5)0.14098 (19)0.122 (2)
C11Y0.4943 (15)0.7331 (9)0.1670 (2)0.154 (4)
H11D0.36660.72980.17040.232*
H11E0.54750.77700.17870.232*
H11F0.54820.67560.17040.232*
C2Y0.6165 (8)0.7070 (4)0.12516 (17)0.090 (2)
O21Y0.7036 (6)0.6421 (3)0.13124 (11)0.0805 (15)
C3Y0.6028 (9)0.7448 (4)0.09741 (17)0.118 (3)
H3Y10.53120.70680.08570.141*
H3Y20.72100.75420.08950.141*
C4Y0.5082 (12)0.8327 (5)0.1032 (2)0.128 (3)
H4Y10.59330.88170.10120.154*
H4Y20.41120.84150.09030.154*
C5Y0.4318 (9)0.8337 (5)0.1315 (2)0.134 (4)
H5Y10.46530.88730.14130.161*
H5Y20.30150.82650.13160.161*
N1Z0.8015 (9)0.5399 (5)0.27500 (11)0.0921 (19)
C11Z0.8688 (13)0.6228 (5)0.26735 (16)0.099 (3)
H11G0.98950.62970.27420.149*
H11H0.79320.66920.27460.149*
H11I0.87020.62680.24800.149*
C2Z0.7704 (8)0.4801 (5)0.25759 (12)0.0679 (18)
O21Z0.7883 (6)0.4842 (3)0.23342 (8)0.0663 (12)
C3Z0.7032 (10)0.3967 (5)0.27200 (14)0.095 (2)
H3Z10.58670.37790.26510.114*
H3Z20.78860.34770.27020.114*
C4Z0.6893 (12)0.4262 (7)0.29980 (16)0.126 (3)
H4Z10.75710.38600.31140.151*
H4Z20.56390.42530.30550.151*
C5Z0.7631 (10)0.5193 (6)0.30206 (11)0.093 (2)
H5Z10.67430.56010.30960.111*
H5Z20.87150.52080.31310.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.053 (3)0.040 (3)0.040 (3)0.004 (2)0.001 (2)0.001 (2)
C2A0.046 (3)0.036 (3)0.049 (4)0.001 (2)0.003 (3)0.001 (3)
S21A0.0850 (11)0.0438 (9)0.0457 (9)0.0086 (9)0.0079 (8)0.0058 (7)
N3A0.047 (2)0.033 (2)0.044 (3)0.002 (2)0.005 (2)0.002 (2)
C4A0.040 (3)0.041 (3)0.039 (3)0.001 (2)0.003 (2)0.003 (3)
O41A0.054 (2)0.051 (2)0.038 (2)0.0054 (19)0.0027 (18)0.0009 (18)
C5A0.045 (3)0.036 (3)0.046 (3)0.003 (3)0.004 (3)0.001 (3)
C6A0.040 (3)0.037 (3)0.045 (3)0.003 (2)0.001 (2)0.004 (3)
N61A0.065 (3)0.045 (3)0.050 (3)0.014 (3)0.002 (3)0.003 (3)
N1B0.048 (3)0.051 (3)0.046 (3)0.008 (2)0.002 (2)0.005 (2)
C2B0.043 (3)0.045 (4)0.045 (3)0.007 (3)0.005 (3)0.001 (3)
S21B0.0776 (10)0.0545 (10)0.0452 (9)0.0033 (9)0.0018 (8)0.0046 (8)
N3B0.045 (2)0.040 (3)0.040 (3)0.003 (2)0.001 (2)0.003 (2)
C4B0.036 (3)0.037 (3)0.047 (3)0.006 (2)0.002 (2)0.001 (3)
O41B0.053 (2)0.039 (2)0.035 (2)0.0019 (17)0.0012 (17)0.0010 (17)
C5B0.047 (3)0.040 (3)0.048 (3)0.003 (3)0.002 (3)0.001 (3)
C6B0.043 (3)0.038 (3)0.054 (4)0.005 (3)0.003 (3)0.002 (3)
N61B0.070 (3)0.037 (3)0.059 (4)0.003 (3)0.015 (3)0.003 (3)
N1X0.077 (4)0.097 (4)0.050 (3)0.012 (3)0.012 (3)0.008 (3)
C11X0.115 (6)0.080 (5)0.079 (5)0.003 (5)0.010 (5)0.004 (4)
C2X0.065 (4)0.086 (5)0.052 (4)0.005 (4)0.002 (3)0.001 (3)
O21X0.090 (3)0.066 (3)0.042 (2)0.012 (2)0.001 (2)0.002 (2)
C3X0.086 (5)0.095 (5)0.081 (5)0.001 (4)0.004 (4)0.026 (4)
C4X0.117 (7)0.127 (7)0.097 (6)0.014 (6)0.020 (5)0.051 (5)
C5X0.090 (5)0.122 (6)0.047 (4)0.034 (5)0.017 (4)0.019 (4)
N1Y0.069 (4)0.069 (5)0.230 (7)0.005 (3)0.055 (5)0.007 (5)
C11Y0.100 (7)0.161 (12)0.203 (9)0.022 (8)0.008 (9)0.014 (8)
C2Y0.045 (4)0.046 (4)0.178 (7)0.014 (3)0.033 (4)0.018 (4)
O21Y0.070 (3)0.050 (3)0.121 (4)0.002 (2)0.027 (3)0.009 (3)
C3Y0.068 (4)0.051 (4)0.234 (7)0.026 (3)0.096 (5)0.054 (5)
C4Y0.083 (6)0.081 (6)0.221 (9)0.005 (5)0.078 (6)0.012 (7)
C5Y0.040 (4)0.064 (5)0.298 (11)0.001 (3)0.032 (6)0.028 (7)
N1Z0.089 (4)0.128 (5)0.059 (4)0.030 (4)0.005 (3)0.000 (4)
C11Z0.128 (7)0.096 (6)0.074 (5)0.004 (5)0.010 (5)0.005 (5)
C2Z0.051 (4)0.094 (5)0.058 (4)0.020 (3)0.017 (3)0.018 (3)
O21Z0.092 (3)0.064 (3)0.043 (2)0.002 (2)0.004 (2)0.006 (2)
C3Z0.062 (4)0.155 (6)0.069 (5)0.035 (4)0.003 (4)0.037 (4)
C4Z0.087 (6)0.188 (9)0.102 (6)0.031 (6)0.012 (5)0.042 (6)
C5Z0.062 (4)0.178 (8)0.039 (3)0.045 (5)0.004 (3)0.002 (4)
Geometric parameters (Å, º) top
N1A—C2A1.363 (7)C3X—H3X20.9900
N1A—C6A1.380 (7)C4X—C5X1.537 (8)
N1A—H1A0.8800C4X—H4X10.9900
C2A—N3A1.349 (7)C4X—H4X20.9900
C2A—S21A1.663 (6)C5X—H5X10.9900
N3A—C4A1.399 (7)C5X—H5X20.9900
N3A—H3A0.8800N1Y—C2Y1.307 (7)
C4A—O41A1.233 (6)N1Y—C11Y1.381 (8)
C4A—C5A1.424 (8)N1Y—C5Y1.445 (7)
C5A—C6A1.360 (8)C11Y—H11D0.9800
C5A—H5A0.9500C11Y—H11E0.9800
C6A—N61A1.339 (7)C11Y—H11F0.9800
N61A—H61A0.88 (2)C2Y—O21Y1.227 (6)
N61A—H62A0.88 (2)C2Y—C3Y1.521 (8)
N1B—C2B1.368 (7)C3Y—C4Y1.546 (8)
N1B—C6B1.381 (7)C3Y—H3Y10.9900
N1B—H1B0.8800C3Y—H3Y20.9900
C2B—N3B1.360 (7)C4Y—C5Y1.540 (8)
C2B—S21B1.658 (6)C4Y—H4Y10.9900
N3B—C4B1.404 (7)C4Y—H4Y20.9900
N3B—H3B0.8800C5Y—H5Y10.9900
C4B—O41B1.262 (6)C5Y—H5Y20.9900
C4B—C5B1.402 (8)N1Z—C2Z1.289 (7)
C5B—C6B1.356 (8)N1Z—C11Z1.415 (7)
C5B—H5B0.9500N1Z—C5Z1.435 (7)
C6B—N61B1.325 (8)C11Z—H11G0.9800
N61B—H61B0.87 (2)C11Z—H11H0.9800
N61B—H62B0.88 (2)C11Z—H11I0.9800
N1X—C2X1.305 (7)C2Z—O21Z1.232 (6)
N1X—C11X1.447 (7)C2Z—C3Z1.549 (7)
N1X—C5X1.459 (6)C3Z—C4Z1.480 (8)
C11X—H11A0.9800C3Z—H3Z10.9900
C11X—H11B0.9800C3Z—H3Z20.9900
C11X—H11C0.9800C4Z—C5Z1.528 (8)
C2X—O21X1.235 (6)C4Z—H4Z10.9900
C2X—C3X1.533 (7)C4Z—H4Z20.9900
C3X—C4X1.487 (8)C5Z—H5Z10.9900
C3X—H3X10.9900C5Z—H5Z20.9900
C2A—N1A—C6A123.6 (5)N1X—C5X—C4X102.0 (6)
C2A—N1A—H1A118.2N1X—C5X—H5X1111.4
C6A—N1A—H1A118.2C4X—C5X—H5X1111.4
N3A—C2A—N1A114.8 (5)N1X—C5X—H5X2111.4
N3A—C2A—S21A123.7 (4)C4X—C5X—H5X2111.4
N1A—C2A—S21A121.5 (4)H5X1—C5X—H5X2109.2
C2A—N3A—C4A126.9 (5)C2Y—N1Y—C11Y121.2 (8)
C2A—N3A—H3A116.6C2Y—N1Y—C5Y121.5 (8)
C4A—N3A—H3A116.6C11Y—N1Y—C5Y117.0 (9)
O41A—C4A—N3A118.6 (5)N1Y—C11Y—H11D109.5
O41A—C4A—C5A126.7 (5)N1Y—C11Y—H11E109.5
N3A—C4A—C5A114.7 (5)H11D—C11Y—H11E109.5
C6A—C5A—C4A120.2 (5)N1Y—C11Y—H11F109.5
C6A—C5A—H5A119.9H11D—C11Y—H11F109.5
C4A—C5A—H5A119.9H11E—C11Y—H11F109.5
N61A—C6A—C5A125.0 (5)O21Y—C2Y—N1Y127.0 (8)
N61A—C6A—N1A115.1 (5)O21Y—C2Y—C3Y125.0 (7)
C5A—C6A—N1A119.9 (5)N1Y—C2Y—C3Y108.0 (7)
C6A—N61A—H61A116 (4)C2Y—C3Y—C4Y100.6 (7)
C6A—N61A—H62A121 (4)C2Y—C3Y—H3Y1111.7
H61A—N61A—H62A122 (6)C4Y—C3Y—H3Y1111.7
C2B—N1B—C6B124.5 (5)C2Y—C3Y—H3Y2111.7
C2B—N1B—H1B117.8C4Y—C3Y—H3Y2111.7
C6B—N1B—H1B117.8H3Y1—C3Y—H3Y2109.4
N3B—C2B—N1B114.8 (5)C5Y—C4Y—C3Y111.0 (7)
N3B—C2B—S21B122.7 (4)C5Y—C4Y—H4Y1109.4
N1B—C2B—S21B122.4 (4)C3Y—C4Y—H4Y1109.4
C2B—N3B—C4B124.9 (5)C5Y—C4Y—H4Y2109.4
C2B—N3B—H3B117.5C3Y—C4Y—H4Y2109.4
C4B—N3B—H3B117.5H4Y1—C4Y—H4Y2108.0
O41B—C4B—C5B126.3 (5)N1Y—C5Y—C4Y97.1 (7)
O41B—C4B—N3B117.5 (5)N1Y—C5Y—H5Y1112.3
C5B—C4B—N3B116.1 (5)C4Y—C5Y—H5Y1112.3
C6B—C5B—C4B121.1 (5)N1Y—C5Y—H5Y2112.3
C6B—C5B—H5B119.4C4Y—C5Y—H5Y2112.3
C4B—C5B—H5B119.4H5Y1—C5Y—H5Y2109.9
N61B—C6B—C5B124.6 (6)C2Z—N1Z—C11Z120.6 (6)
N61B—C6B—N1B116.8 (5)C2Z—N1Z—C5Z117.4 (7)
C5B—C6B—N1B118.5 (5)C11Z—N1Z—C5Z122.0 (7)
C6B—N61B—H61B119 (4)N1Z—C11Z—H11G109.5
C6B—N61B—H62B111 (4)N1Z—C11Z—H11H109.5
H61B—N61B—H62B126 (6)H11G—C11Z—H11H109.5
C2X—N1X—C11X122.0 (6)N1Z—C11Z—H11I109.5
C2X—N1X—C5X115.5 (6)H11G—C11Z—H11I109.5
C11X—N1X—C5X121.6 (6)H11H—C11Z—H11I109.5
N1X—C11X—H11A109.5O21Z—C2Z—N1Z128.5 (7)
N1X—C11X—H11B109.5O21Z—C2Z—C3Z123.0 (6)
H11A—C11X—H11B109.5N1Z—C2Z—C3Z108.5 (6)
N1X—C11X—H11C109.5C4Z—C3Z—C2Z102.8 (7)
H11A—C11X—H11C109.5C4Z—C3Z—H3Z1111.2
H11B—C11X—H11C109.5C2Z—C3Z—H3Z1111.2
O21X—C2X—N1X126.8 (6)C4Z—C3Z—H3Z2111.2
O21X—C2X—C3X125.1 (6)C2Z—C3Z—H3Z2111.2
N1X—C2X—C3X108.1 (5)H3Z1—C3Z—H3Z2109.1
C4X—C3X—C2X104.5 (6)C3Z—C4Z—C5Z109.1 (7)
C4X—C3X—H3X1110.9C3Z—C4Z—H4Z1109.9
C2X—C3X—H3X1110.9C5Z—C4Z—H4Z1109.9
C4X—C3X—H3X2110.9C3Z—C4Z—H4Z2109.9
C2X—C3X—H3X2110.9C5Z—C4Z—H4Z2109.9
H3X1—C3X—H3X2108.9H4Z1—C4Z—H4Z2108.3
C3X—C4X—C5X106.1 (6)N1Z—C5Z—C4Z101.9 (6)
C3X—C4X—H4X1110.5N1Z—C5Z—H5Z1111.4
C5X—C4X—H4X1110.5C4Z—C5Z—H5Z1111.4
C3X—C4X—H4X2110.5N1Z—C5Z—H5Z2111.4
C5X—C4X—H4X2110.5C4Z—C5Z—H5Z2111.4
H4X1—C4X—H4X2108.7H5Z1—C5Z—H5Z2109.3
C6A—N1A—C2A—N3A3.0 (7)C5X—N1X—C2X—C3X4.8 (9)
C6A—N1A—C2A—S21A176.5 (4)O21X—C2X—C3X—C4X172.1 (7)
N1A—C2A—N3A—C4A1.1 (7)N1X—C2X—C3X—C4X8.4 (8)
S21A—C2A—N3A—C4A178.3 (4)C2X—C3X—C4X—C5X17.1 (9)
C2A—N3A—C4A—O41A179.3 (5)C2X—N1X—C5X—C4X15.2 (9)
C2A—N3A—C4A—C5A1.6 (7)C11X—N1X—C5X—C4X175.3 (7)
O41A—C4A—C5A—C6A179.8 (5)C3X—C4X—C5X—N1X19.2 (9)
N3A—C4A—C5A—C6A2.8 (7)C11Y—N1Y—C2Y—O21Y8.5 (13)
C4A—C5A—C6A—N61A179.8 (5)C5Y—N1Y—C2Y—O21Y177.4 (7)
C4A—C5A—C6A—N1A1.2 (8)C11Y—N1Y—C2Y—C3Y172.7 (9)
C2A—N1A—C6A—N61A177.2 (5)C5Y—N1Y—C2Y—C3Y1.3 (9)
C2A—N1A—C6A—C5A1.9 (8)O21Y—C2Y—C3Y—C4Y169.9 (6)
C6B—N1B—C2B—N3B1.9 (7)N1Y—C2Y—C3Y—C4Y8.9 (7)
C6B—N1B—C2B—S21B178.7 (4)C2Y—C3Y—C4Y—C5Y13.5 (8)
N1B—C2B—N3B—C4B1.7 (7)C2Y—N1Y—C5Y—C4Y7.0 (9)
S21B—C2B—N3B—C4B178.9 (4)C11Y—N1Y—C5Y—C4Y178.8 (9)
C2B—N3B—C4B—O41B179.5 (4)C3Y—C4Y—C5Y—N1Y12.4 (9)
C2B—N3B—C4B—C5B0.3 (7)C11Z—N1Z—C2Z—O21Z1.5 (12)
O41B—C4B—C5B—C6B179.2 (5)C5Z—N1Z—C2Z—O21Z177.7 (6)
N3B—C4B—C5B—C6B1.0 (7)C11Z—N1Z—C2Z—C3Z178.5 (7)
C4B—C5B—C6B—N61B179.3 (5)C5Z—N1Z—C2Z—C3Z2.4 (8)
C4B—C5B—C6B—N1B0.8 (8)O21Z—C2Z—C3Z—C4Z175.1 (7)
C2B—N1B—C6B—N61B177.9 (5)N1Z—C2Z—C3Z—C4Z4.9 (8)
C2B—N1B—C6B—C5B0.7 (8)C2Z—C3Z—C4Z—C5Z5.6 (9)
C11X—N1X—C2X—O21X5.4 (12)C2Z—N1Z—C5Z—C4Z1.2 (9)
C5X—N1X—C2X—O21X174.8 (7)C11Z—N1Z—C5Z—C4Z178.0 (8)
C11X—N1X—C2X—C3X174.1 (7)C3Z—C4Z—C5Z—N1Z4.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O21Z0.881.912.740 (6)156
N3B—H3B···O41A0.881.972.843 (6)171
N61B—H61B···O21Y0.87 (2)2.11 (4)2.904 (7)152 (6)
N61B—H62B···O21Z0.88 (2)2.10 (3)2.924 (7)155 (6)
N1A—H1A···O21X0.881.922.753 (6)156
N3A—H3A···O41B0.881.882.751 (6)173
N61A—H61A···O21X0.88 (2)2.17 (4)2.959 (6)149 (6)
N61A—H62A···O41Bi0.88 (2)1.97 (2)2.851 (6)174 (6)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

(Ia)(Ib)(Ic)(Id)
Crystal data
Chemical formulaC4H5N3OS·2C3H7NOC4H5N3OS·C4H9NO2C4H5N3OS·3C4H9NO2C4H5N3OS·3C5H9NO
Mr289.36230.29547.71583.74
Crystal system, space groupTriclinic, P1Monoclinic, P21/nOrthorhombic, Pca21Orthorhombic, Pca21
Temperature (K)173173173173
a, b, c (Å)8.0894 (16), 12.037 (3), 15.390 (3)9.4615 (9), 9.2679 (11), 13.4208 (12)15.2133 (7), 7.4335 (13), 24.445 (3)15.2293 (10), 7.5483 (4), 25.1871 (13)
α, β, γ (°)89.774 (19), 89.466 (17), 76.691 (17)90, 101.801 (7), 9090, 90, 9090, 90, 90
V3)1458.2 (5)1152.0 (2)2764.4 (6)2895.4 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.230.270.240.23
Crystal size (mm)0.30 × 0.15 × 0.100.50 × 0.30 × 0.250.27 × 0.20 × 0.150.34 × 0.28 × 0.16
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.933, 0.9770.877, 0.9360.938, 0.9650.925, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
11063, 5428, 1966 9565, 2163, 1968 33090, 5184, 3323 8280, 4332, 3541
Rint0.1050.0580.1490.053
(sin θ/λ)max1)0.6090.6100.6090.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.199, 0.90 0.040, 0.118, 1.07 0.063, 0.113, 0.93 0.062, 0.170, 1.06
No. of reflections5428216351844332
No. of parameters351171378474
No. of restraints0132357569
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.400.24, 0.190.32, 0.230.36, 0.34
Absolute structure??Flack (1983), 2517 Friedel pairsFlack (1983), 1810 Friedel pairs
Absolute structure parameter??0.04 (14)0.12 (15)


(Ie)
Crystal data
Chemical formula2C4H5N3OS·3C5H9NO
Mr583.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)7.5509 (7), 15.2328 (12), 50.601 (3)
α, β, γ (°)90, 90, 90
V3)5820.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.29 × 0.14 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.936, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
30686, 5484, 2211
Rint0.157
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.229, 0.90
No. of reflections5484
No. of parameters367
No. of restraints352
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.43
Absolute structure?
Absolute structure parameter?

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O41B0.881.762.601 (7)160.0
N3A—H3A···O11X0.881.882.756 (7)170.4
N61A—H61A···O11W0.881.962.834 (9)171.8
N61A—H61B···O41B0.882.202.929 (8)140.2
N1B—H1B···O41Ai0.881.782.620 (7)158.6
N3B—H3B···O11Y0.881.872.738 (9)169.3
N61B—H61C···O11Z0.881.962.840 (8)173.7
N61B—H61D···O41Ai0.882.212.937 (7)140.1
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.883 (17)1.935 (19)2.743 (2)151 (2)
N3A—H3A···O41Ai0.889 (16)1.902 (16)2.7892 (19)175 (2)
N61A—H61A···O21X0.854 (17)2.08 (2)2.870 (2)153 (2)
N61A—H62A···O41Aii0.875 (17)1.995 (18)2.848 (2)165 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O21Z0.881.902.718 (6)154.9
N3B—H3B···O41A0.881.952.823 (5)172.9
N61B—H61B···O21Z0.879 (19)2.10 (4)2.873 (7)146 (5)
N61B—H62B···O21Y0.869 (19)2.02 (3)2.830 (7)155 (6)
N1A—H1A···O21X0.881.942.761 (6)155.7
N3A—H3A···O41B0.881.922.792 (5)172.3
N61A—H61A···O21X0.891 (19)2.18 (4)2.922 (6)140 (5)
N61A—H62A···O41Bi0.87 (2)2.08 (2)2.937 (6)171 (5)
Symmetry code: (i) x+1/2, y+1, z.
Hydrogen-bond geometry (Å, º) for (Id) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21X0.881.942.760 (6)154.5
N3A—H3A···O41B0.881.852.724 (6)171.8
N61A—H61B···O21X0.882.142.912 (7)145.7
N61A—H61A···O41Bi0.881.982.847 (6)169.8
N1B—H1B···O21Z0.881.892.710 (7)153.6
N3B—H3B···O41A0.881.962.827 (6)170.6
N61B—H61D···O21Z0.882.082.844 (8)144.1
N61B—H61C···O2Y'0.881.912.70 (2)149.0
N61B—H61C···O21Y0.882.212.985 (14)146.9
Symmetry code: (i) x+1/2, y+1, z.
Hydrogen-bond geometry (Å, º) for (Ie) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O21Z0.881.912.740 (6)155.6
N3B—H3B···O41A0.881.972.843 (6)170.7
N61B—H61B···O21Y0.87 (2)2.11 (4)2.904 (7)152 (6)
N61B—H62B···O21Z0.88 (2)2.10 (3)2.924 (7)155 (6)
N1A—H1A···O21X0.881.922.753 (6)156.3
N3A—H3A···O41B0.881.882.751 (6)172.6
N61A—H61A···O21X0.88 (2)2.17 (4)2.959 (6)149 (6)
N61A—H62A···O41Bi0.88 (2)1.97 (2)2.851 (6)174 (6)
Symmetry code: (i) x+1/2, y1/2, z.
Crystallization of 6-amino-2-thiouracil. top
Crystal6-Amino-2-thiouracil monohydrate (mg, mmol)SolventTemperature
(Ia)5.8, 0.036DMF (270 µl)Room temperature
(Ib)7.3, 0.045DMF/DMAC (1:1 v/v, 75 µl)Room temperature
(Ic)4.5, 0.028DMAC (150 µl)Room temperature
(Id)4.4, 0.027NMP (50 µl)Room temperature
(Ie)6.3, 0.039NMP (110 µl)277 K
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds