Download citation
Download citation
link to html
A previous analysis [Fatila et al. (2012). Dalton Trans. 41, 1352–1362] of the title complex, [Ce2(C5HF6O2)6(C4H10O2)3], had identified it as Ce(hfac)3(dme)1.5 according to the 1H NMR integration [hfac = 1,1,1,5,5,5-hexa­fluoro­acetyl­ace­ton­ate (1,1,1,5,5,5-hexa­fluoro-4-oxopent-2-en-2-olate) and dme = 1,2-dimethoxyethane]; however, it was not possible to determine the coordination environment unambiguously. The structural data presented here reveal that the complex is a binuclear species located on a crystallographic inversion center. Each CeIII ion is coordinated to three hfac ligands, one bidentate dme ligand and one monodentate (bridging) dme ligand, thus giving a coordination number of nine (CN = 9) to each CeIII ion. The atoms of the bridging dme ligand are unequally disordered over two sets of sites. In addition, in two of the –CF3 groups, the F atoms are rotationally disordered over two sets of sites. This is the first crystal structure of a binuclear lanthanide β-diketonate with a bridging dme ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112010402/fg3244sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112010402/fg3244IIsup2.hkl
Contains datablock II

CCDC reference: 879432

Comment top

Metal–organic chemical vapor deposition (MOCVD) is an important technique for the production of thin-film devices (Krumdieck, 2009; Jones et al., 2004; Jones, 2002). The quality of an MOCVD process is dependent on the precursor materials. As such, the development of useful MOCVD precursors is a large and rapidly growing field of research (Carpentier, 2010; Jones & Chalker, 2003; Hubert-Pfalzgraf & Guillon, 1998). Currently in use are the so-called `second-generation' MOCVD precursors which combine fluorinated β-diketonates and coordinated polyethers in the design of anhydrous monomeric metal complexes. Main group, d- and f-block metal precursors have been developed according to this general formula (Condorelli et al., 2007; Malandrino & Fragalà, 2006; Binnemans, 2005).

The improvement of techniques and precursor materials for the deposition of ceria (CeO2) is an ongoing area of study owing to the broad spectrum of uses for ceria films, such as anode materials in solid-oxide fuel cells, in magneto-optical devices and as a dielectric material in metal oxide semiconductors (CMOS) (Barreca et al., 2003, 2006; Lo Nigro et al., 2001). It is predictable, then, that second-generation MOCVD cerium precursors are of interest, particularly since volatile complexes of both CeIII and CeIV are equally viable for the deposition of ceria (Lo Nigro et al., 2003, 2005; Pollard et al., 2000; McAleese et al., 1996).

The eight-coordinate Ce(hfac)3(dme) complex [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate (1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olate) and dme = 1,2-dimethyoxyethane], (I) (see Scheme), is an example of a second-generation MOCVD cerium precursor. The first publication claiming the synthesis of (I) presents characterization data that do not quite fit the proposed structural formula (Pollard et al., 2000). We have since isolated and fully characterized (I), including its single-crystal X-ray structure (Fatila et al., 2012). Interestingly, during the course of our study, we discovered that the initial product recovered from our synthesis, prior to the sublimation that generates (I), has the formula Ce(hfac)3(dme)1.5. However, in the absence of crystallographic data, we could not determine definitively if this represents solvation of (I) with a half molar equivalent of dme, or a cocrystallization of (I) and a complex with the formula Ce(hfac)3(dme)2, or a binuclear complex with a bridging dme ligand. Herein, we present the single-crystal X-ray structure of this Ce(hfac)3(dme)1.5 complex demonstrating that it is, in fact, the binuclear complex [Ce(hfac)3(dme)]2(µ-dme) complex, (II) (Fig. 1).

Yellow needles of (II), prepared by precipitation from cold anhydrous hexane, formed in the monoclinic space group P21/n. The title complex lies on an inversion center with the unique CeIII ion chelated by three bidentate hfac ligands and one bidentate dme ligand. A bridging dme ligand connects the two symmetry-related CeIII ions completing the coordination number nine (CN = 9) for each. The bridging dme ligand is in the anti conformation. It is worth noting that there is disorder with respect to the atom positions of the bridging dme ligand resulting from the two possible ways in which the 'Z' shape of the anti conformation can be achieved (Fig. 2). There is also disorder with respect to the position of some of the F atoms.

The geometry of the coordination about each CeIII ion is a slightly distorted monocapped square antiprism wherein the capping position O atom (O2) belongs to the bidentate coordinated dme ligand not the bridging dme ligand. This connectivity describes a polyhedron with nine vertices, 20 edges and 13 faces, known as a Johnson solid J10 or a gyroelongated square pyramid (Fig. 3).

The Ce—O bond lengths are summarized in Table 1, where they are also compared with bond lengths observed in the eight-coordinate species, (I), and the nine-coordinate hydrate Ce(hfac)3(dme)(H2O) complex, (III) (see Scheme). It should be noted that although (III) is also a monocapped square antiprism, the capping O atom is assigned to water, not dme (Fatila et al., 2012).

The crystal structures of complexes in which dme acts as a bridging ligand are not uncommon for cations of alkali metals (Li, Na, K and Rb) [Cambridge Structural Database (CSD; Allen, 2002) refcodes IMADAC (Beck et al., 2010), OJEKIY (Hsu & Liang, 2010), XAHZOX (Wong et al., 2010), CIMTAU and CIMTEY (Maudez et al., 2007), VEPJAC (Wang et al., 2006), QEXWAR (Neander et al., 2000)]. There are also a few examples of such structures with cations of alkaline earth metals [Mg (INARIZ; Krieck et al., 2010) and Ca (FEGRIT; Becker et al., 2004)], transition metals [Mo (PAHNIW; Parsons et al., 2004) and Pd (MOBQEZ; Lohner et al., 2002)] and main group metals [Al (SAMLAT; Saied et al., 1998) and In (ZADCOW; Carta et al., 1995)]. Structures of this nature incorporating lanthanide ions are limited to six reported examples: [Ln(NCS)3(dme)2(µ-dme)0.5]2 [Ln = Eu (CUYLIS), Dy (CUYLOY) and Er (CUYLUE); Bakker et al., 2010], [Nd2(OCH-i-Pr2)6(µ-dme)] (CSD refcode HANJEL; Barnhart et al., 1993), (YbI2(dme)2)2(µ-dme) (Gröb et al., 2000), [Nd(3,5-di-t-butylpyrazolato)(µ-dme)]n (TUMJIU; Cosgriff et al., 1996). The present results for complex (II) are the first reported of this nature involving Ce, and the first potential MOCVD precursor with this structure.

Related literature top

For related literature, see: Allen (2002); Bakker et al. (2010); Barnhart et al. (1993); Barreca et al. (2003, 2006); Beck et al. (2010); Becker et al. (2004); Binnemans (2005); Carpentier (2010); Carta et al. (1995); Condorelli et al. (2007); Cosgriff et al. (1996); Fatila et al. (2012); Gröb et al. (2000); Hsu & Liang (2010); Hubert-Pfalzgraf & Guillon (1998); Jones (2002); Jones & Chalker (2003); Jones et al. (2004); Krieck et al. (2010); Krumdieck (2009); Lo Nigro, Malandrino & Fragalà (2001); Lo Nigro, Toro, Malandrino & Fragalà (2003, 2005); Lohner et al. (2002); Malandrino & Fragalà (2006); Maudez et al. (2007); McAleese et al. (1996); Neander et al. (2000); Parsons et al. (2004); Pollard et al. (2000); Richardson et al. (1968); Saied et al. (1998); Wang et al. (2006); Wong et al. (2010).

Experimental top

CeCl3 and Hhfac were purchased from Alfa Aesar and monoglyme was purchased from Acros. All reagents were used as received. CeCl3 was converted to its Ce(hfac)3(H2O)3 adduct according to a slightly modified literature method (Richardson et al., 1968). Modifications include dissolving the CeCl3 starting material in a solution (pH = 7–8) of aqueous Hhfac deprotonated with Na2CO3, following which the solution was extracted with Et2O three times and washed with saturated KCl(aq). The organic phase was concentrated down to a yellow oil which was then dissolved in hexanes. Evaporation of the hexanes yielded a yellow solid with an IR spectrum consistent with literature values for Ln(hfac)3(H2O)3 where Ln = La–Nd (Richardson et al., 1968) (m.p. 370–373 K).

Elemental analyses were performed by MHW Laboratories in Phoenix, AZ. All 1H NMR spectra were collected on a Bruker 400 Avance spectrometer at ambient temperature. Solvents were dried using an LC Technology Solvent Purification System with standard molecular sieves of size 3 Å.

Excess monoglyme (1.1 ml, 11 mmol) was added to a slurry of Ce(hfac)3(H2O)3 (2.0546 g, 2.5200 mmol) in hexanes (100 ml). The resulting yellow solution was stirred for 2 h at room temperature, then concentrated to a yellow–orange oil which crystallized into yellow–orange microcrystals upon introduction to a glove-box (Ar atmosphere) (crude yield 2.2156 g, 98%). Crystallographic quality yellow needles were obtained by dissolving the yellow–orange microcrystalline material in a minimum amount of anhydrous hexane under an inert atmosphere and cooling to 253 K for 2 d. A yellow block was cut from a needle and mounted for crystallographic data collection. IR (Nujol, NaCl): 3146 (w), 1651 (ms, br), 1609 (mw), 1559 (m), 1533 (m), 1496 (ms), 1348 (w), 1254 (s), 1207 (s), 1146 (s), 1094 (ms), 1056 (m), 1023 (mw), 1008 (mw), 949 (w), 910 (mw), 863 (mw), 834 (mw), 800 (m), 769 (w), 740 (mw), 722 (w), 660 (m), 583 (s) cm-1. 1H NMR [400 MHz, (CD3)2CO, 25.2 mg in 1.0054 g of d6-acetone]: δ 11.54 (s, 6H, CH of hfac), 3.52 (s, 12H, CH2 of monoglyme), 3.35 (s, 18H, CH3 of monoglyme). 1H NMR (400 MHz, CD2Cl2, 25.7 mg in 1.0356 g of CD2Cl2): δ 14.19 (s, 6H, CH of hfac), -1.17 (s, 12H, CH2 of monoglyme), -3.42 (s, 18H, CH3 of monoglyme). 1H NMR (400 MHz, CDCl3, 14.2 mg in 1.1296 g of CDCl3): δ 14.26 (s, 6H, CH of hfac), -1.15(s, 12H, CH2 of monoglyme), -3.61 (s, 18H, CH3 of monoglyme). Analysis calculated for C21H18CeF18O9: C 28.14, H 2.02%; found: C 28.27, H 2.16%.

Refinement top

The bridging dme ligand was disordered over two sites across the inversion center. The occupancies were refined initially then ultimately fixed at 0.69:0.31. The geometry of the two sites of the bridging dme were restrained to be similar. In addition, atoms O8A and O8B were constrained to have identical anisotropic displacement parameters. Two of the –CF3 groups were disordered and both were modeled anisotropically with site-occupation factors of the alternate orientations at 0.64:0.36. For each disordered –CF3 group, the C—F bonds were restrained to be identical. H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl), 0.99 (methylene) or 0.95 Å (aromatic) and with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II). H atoms have been omitted and the disorder is not shown. Displacement ellipsoids are drawn at the 25% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The structure of complex (II), highlighting the disorder with respect to the bridging dme ligand atom positions. The chelating hfac and dme ligands are represented by their O-atom positions. H atoms have been omitted. All displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 3] Fig. 3. Left: Ball-and-stick representation of the monocapped square antiprism coordination geometry about the CeIII ion (purple in the electronic version of the paper); all O atoms (red) are shown. C atoms (gray) of the dme ligands are included. C atoms of the hfac ligands, all H atoms and all F atoms have been omitted. Right: O-atom positions only, with the J10 polyhedron they describe drawn with full lines (green).
(µ-1,2-Dimethoxyethane-κ2O:O')bis[(1,2-dimethoxyethane- κ2O,O')tris(1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olato- κ2O,O')cerium(III)] top
Crystal data top
[Ce2(C5HF6O2)6(C4H10O2)3]F(000) = 1744
Mr = 1792.95Dx = 1.901 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 46711 reflections
a = 9.1135 (18) Åθ = 2.6–27.5°
b = 13.818 (3) ŵ = 1.61 mm1
c = 24.971 (5) ÅT = 147 K
β = 95.16 (3)°Block, yellow
V = 3131.9 (11) Å30.22 × 0.22 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
6407 independent reflections
Radiation source: fine-focus sealed tube5262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 2.7°
ϕ scans and ω scans with κ offsetsh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1717
Tmin = 0.667, Tmax = 0.729l = 3131
32118 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0077P)2 + 5.4228P]
where P = (Fo2 + 2Fc2)/3
6407 reflections(Δ/σ)max = 0.003
517 parametersΔρmax = 0.78 e Å3
227 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ce2(C5HF6O2)6(C4H10O2)3]V = 3131.9 (11) Å3
Mr = 1792.95Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1135 (18) ŵ = 1.61 mm1
b = 13.818 (3) ÅT = 147 K
c = 24.971 (5) Å0.22 × 0.22 × 0.20 mm
β = 95.16 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6407 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5262 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.729Rint = 0.044
32118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035227 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 0.78 e Å3
6407 reflectionsΔρmin = 0.48 e Å3
517 parameters
Special details top

Experimental. IR spectra were obtained on a Nicolet 510-FTIR spectrometer at ambient temperatures. IR (Nujol, NaCl): 3146(w), 1651 (ms, br), 1609 (mw, br), 1559 (m), 1533 (m), 1496 (m), 1348 (w), 1254(s), 1207 (s), 1146 (s), 1094 (ms), 1056(m), 1025 (w), 1006 (vw), 984 (vw, br),948 (w), 910 (mw), 863 (mw), 835 (vw), 800 (m), 769 (w), 740 (mw), 660(s), 583 (s) cm-1.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.40631 (2)0.345135 (13)0.627314 (8)0.03100 (6)
C10.7941 (5)0.3808 (3)0.6667 (2)0.0810 (16)
H1A0.79110.45140.66990.121*
H1B0.79870.36300.62890.121*
H1C0.88130.35570.68800.121*
O20.6645 (3)0.34011 (18)0.68589 (12)0.0562 (7)
C30.6583 (6)0.3630 (3)0.74171 (19)0.0750 (14)
H3A0.65470.43410.74640.090*
H3B0.74770.33840.76280.090*
C40.5269 (6)0.3187 (3)0.76127 (18)0.0751 (14)
H4A0.53160.24750.75770.090*
H4B0.52180.33460.79970.090*
O50.3990 (3)0.35524 (18)0.73015 (10)0.0527 (7)
C60.2661 (6)0.3473 (4)0.75652 (17)0.0757 (14)
H6A0.24480.27890.76270.114*
H6B0.18430.37620.73380.114*
H6C0.27830.38150.79100.114*
C7A0.2263 (9)0.4589 (16)0.5135 (6)0.042 (2)0.69
H7AA0.20440.52560.50200.062*0.69
H7AB0.14860.43530.53480.062*0.69
H7AC0.23110.41760.48180.062*0.69
O8A0.3662 (8)0.4562 (10)0.5456 (3)0.0354 (13)0.69
C9A0.4785 (6)0.5165 (3)0.5272 (2)0.0347 (11)0.69
H9A0.56630.51490.55360.042*0.69
H9B0.44270.58410.52440.042*0.69
C7B0.189 (2)0.452 (4)0.5153 (17)0.056 (7)0.31
H7BA0.15440.51710.50490.085*0.31
H7BB0.13240.42780.54410.085*0.31
H7BC0.17470.40870.48420.085*0.31
O8B0.344 (2)0.456 (2)0.5342 (7)0.0354 (13)0.31
C9B0.4337 (13)0.4723 (8)0.4899 (5)0.036 (3)0.31
H9C0.37650.50900.46110.043*0.31
H9D0.46300.40960.47490.043*0.31
O210.4817 (3)0.17636 (16)0.64651 (9)0.0385 (5)
C220.5599 (4)0.1158 (2)0.62563 (14)0.0391 (8)
C230.6423 (4)0.1293 (3)0.58151 (15)0.0475 (9)
H23A0.69310.07560.56820.057*
C240.6520 (4)0.2181 (3)0.55683 (15)0.0450 (9)
O250.5952 (3)0.29715 (16)0.56801 (10)0.0419 (6)
C260.5609 (5)0.0156 (3)0.65180 (16)0.0544 (10)
C270.7473 (6)0.2250 (3)0.5090 (2)0.0750 (14)
F21A0.534 (3)0.0118 (17)0.7018 (6)0.111 (8)0.36
F22A0.453 (2)0.0318 (17)0.6228 (8)0.088 (6)0.36
F23A0.683 (2)0.032 (2)0.6439 (14)0.058 (5)0.36
F21B0.6631 (14)0.0447 (12)0.6381 (7)0.068 (3)0.64
F22B0.5923 (17)0.0277 (10)0.7045 (2)0.105 (5)0.64
F23B0.4349 (14)0.0305 (11)0.6438 (6)0.118 (5)0.64
F24A0.866 (3)0.278 (3)0.5265 (18)0.114 (8)0.36
F25A0.692 (3)0.2747 (19)0.4662 (8)0.116 (8)0.36
F26A0.783 (3)0.1387 (17)0.4899 (18)0.095 (8)0.36
F24B0.6548 (15)0.2444 (10)0.4653 (4)0.097 (4)0.64
F25B0.8226 (18)0.1440 (8)0.5003 (10)0.070 (3)0.64
F26B0.8492 (18)0.2941 (13)0.5155 (10)0.113 (5)0.64
O310.5152 (2)0.50755 (15)0.64848 (10)0.0377 (5)
C320.4673 (4)0.5913 (2)0.65119 (13)0.0320 (7)
C330.3212 (4)0.6216 (2)0.64644 (13)0.0334 (7)
H33A0.30000.68890.64640.040*
C340.2059 (4)0.5561 (2)0.64181 (12)0.0333 (7)
O350.2112 (2)0.46494 (16)0.64138 (9)0.0356 (5)
C360.5875 (4)0.6688 (2)0.66030 (15)0.0412 (8)
C370.0490 (4)0.5958 (3)0.63968 (16)0.0473 (9)
F310.5366 (3)0.75614 (15)0.66953 (12)0.0765 (8)
F320.6671 (3)0.67357 (19)0.61871 (10)0.0762 (8)
F330.6806 (2)0.64658 (16)0.70262 (10)0.0599 (6)
F340.0405 (3)0.69028 (18)0.62878 (12)0.0731 (7)
F350.0064 (2)0.58356 (17)0.68685 (9)0.0592 (6)
F360.0399 (2)0.5500 (2)0.60293 (10)0.0707 (7)
O410.2887 (3)0.25491 (16)0.54967 (9)0.0397 (6)
C420.2146 (4)0.1788 (2)0.54383 (14)0.0367 (8)
C430.1434 (4)0.1300 (2)0.58252 (14)0.0398 (8)
H43A0.09810.06930.57410.048*
C440.1378 (4)0.1694 (2)0.63348 (14)0.0386 (8)
O450.1938 (3)0.24676 (17)0.65129 (9)0.0400 (6)
C460.2069 (5)0.1384 (3)0.48673 (15)0.0482 (9)
C470.0529 (5)0.1137 (3)0.67433 (17)0.0557 (10)
F410.3401 (3)0.1167 (2)0.47337 (11)0.0890 (9)
F420.1501 (3)0.20240 (18)0.45141 (9)0.0793 (8)
F430.1255 (3)0.05864 (16)0.47930 (9)0.0651 (7)
F440.1374 (4)0.0963 (2)0.71825 (11)0.1030 (11)
F450.0018 (3)0.02894 (19)0.65661 (10)0.0820 (8)
F460.0615 (4)0.1638 (2)0.68703 (15)0.1155 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.03305 (11)0.02486 (9)0.03525 (11)0.00211 (9)0.00390 (7)0.00281 (9)
C10.037 (2)0.058 (3)0.145 (5)0.003 (2)0.009 (3)0.016 (3)
O20.0474 (15)0.0375 (14)0.0786 (19)0.0019 (12)0.0221 (13)0.0031 (14)
C30.088 (3)0.052 (3)0.075 (3)0.002 (2)0.046 (2)0.000 (2)
C40.119 (4)0.056 (3)0.045 (2)0.003 (3)0.028 (2)0.007 (2)
O50.0739 (18)0.0456 (15)0.0373 (14)0.0125 (14)0.0018 (13)0.0002 (12)
C60.110 (4)0.080 (3)0.041 (2)0.028 (3)0.026 (2)0.009 (2)
C7A0.048 (5)0.045 (4)0.033 (4)0.007 (6)0.010 (5)0.012 (4)
O8A0.039 (3)0.0347 (13)0.033 (3)0.006 (2)0.006 (2)0.002 (3)
C9A0.049 (3)0.024 (2)0.031 (3)0.003 (2)0.007 (3)0.003 (2)
C7B0.034 (7)0.080 (19)0.053 (14)0.014 (12)0.009 (9)0.001 (11)
O8B0.039 (3)0.0347 (13)0.033 (3)0.006 (2)0.006 (2)0.002 (3)
C9B0.051 (7)0.033 (6)0.023 (6)0.001 (6)0.006 (5)0.003 (5)
O210.0444 (14)0.0311 (12)0.0403 (13)0.0004 (10)0.0059 (11)0.0012 (10)
C220.045 (2)0.0317 (17)0.040 (2)0.0016 (15)0.0026 (16)0.0008 (15)
C230.060 (3)0.0345 (19)0.049 (2)0.0141 (17)0.0120 (19)0.0037 (16)
C240.044 (2)0.044 (2)0.047 (2)0.0118 (17)0.0105 (17)0.0043 (17)
O250.0406 (14)0.0331 (13)0.0537 (15)0.0067 (11)0.0141 (11)0.0054 (11)
C260.071 (3)0.037 (2)0.056 (3)0.013 (2)0.013 (2)0.0084 (19)
C270.098 (4)0.056 (3)0.078 (3)0.040 (3)0.049 (3)0.029 (2)
F21A0.22 (2)0.037 (6)0.089 (7)0.039 (10)0.092 (10)0.023 (5)
F22A0.071 (8)0.046 (6)0.140 (13)0.033 (6)0.029 (9)0.053 (8)
F23A0.046 (5)0.043 (10)0.082 (10)0.012 (5)0.004 (5)0.009 (7)
F21B0.110 (8)0.028 (3)0.068 (6)0.019 (5)0.029 (6)0.010 (3)
F22B0.199 (11)0.078 (7)0.040 (3)0.056 (7)0.020 (4)0.027 (3)
F23B0.078 (4)0.073 (5)0.205 (12)0.012 (3)0.022 (6)0.084 (7)
F24A0.088 (8)0.079 (15)0.186 (17)0.013 (8)0.079 (7)0.054 (9)
F25A0.138 (13)0.121 (16)0.104 (8)0.092 (12)0.091 (7)0.080 (10)
F26A0.14 (2)0.080 (8)0.078 (14)0.065 (10)0.061 (15)0.023 (6)
F24B0.146 (8)0.094 (7)0.061 (3)0.055 (5)0.059 (4)0.043 (3)
F25B0.077 (5)0.056 (3)0.085 (9)0.034 (3)0.044 (5)0.019 (3)
F26B0.122 (7)0.053 (4)0.181 (11)0.013 (5)0.112 (7)0.026 (8)
O310.0316 (13)0.0272 (12)0.0535 (15)0.0014 (10)0.0002 (11)0.0045 (11)
C320.0347 (18)0.0309 (17)0.0302 (17)0.0002 (14)0.0019 (14)0.0007 (14)
C330.0388 (18)0.0289 (16)0.0327 (18)0.0058 (14)0.0049 (15)0.0016 (14)
C340.0349 (18)0.043 (2)0.0220 (16)0.0078 (15)0.0046 (13)0.0024 (14)
O350.0330 (13)0.0367 (13)0.0375 (13)0.0008 (10)0.0044 (10)0.0030 (11)
C360.042 (2)0.0312 (19)0.050 (2)0.0016 (15)0.0051 (17)0.0058 (17)
C370.039 (2)0.055 (2)0.048 (2)0.0076 (18)0.0056 (18)0.0021 (19)
F310.0565 (15)0.0288 (12)0.142 (3)0.0018 (10)0.0058 (15)0.0169 (13)
F320.0841 (18)0.0770 (18)0.0716 (17)0.0414 (15)0.0305 (14)0.0085 (14)
F330.0506 (13)0.0544 (14)0.0709 (15)0.0129 (11)0.0153 (11)0.0053 (12)
F340.0497 (15)0.0617 (15)0.109 (2)0.0242 (12)0.0120 (14)0.0190 (14)
F350.0459 (13)0.0723 (16)0.0627 (15)0.0056 (12)0.0231 (11)0.0096 (12)
F360.0397 (13)0.103 (2)0.0666 (16)0.0162 (13)0.0118 (11)0.0200 (15)
O410.0536 (15)0.0305 (12)0.0348 (13)0.0112 (11)0.0022 (11)0.0006 (10)
C420.042 (2)0.0290 (18)0.0382 (18)0.0024 (15)0.0011 (15)0.0002 (14)
C430.048 (2)0.0286 (17)0.043 (2)0.0115 (15)0.0000 (16)0.0023 (15)
C440.039 (2)0.0324 (19)0.044 (2)0.0066 (15)0.0035 (15)0.0016 (16)
O450.0434 (14)0.0375 (13)0.0399 (14)0.0075 (11)0.0087 (11)0.0054 (11)
C460.061 (3)0.040 (2)0.043 (2)0.0090 (18)0.0058 (19)0.0058 (17)
C470.066 (3)0.052 (2)0.050 (2)0.017 (2)0.011 (2)0.003 (2)
F410.0703 (18)0.122 (2)0.0772 (19)0.0100 (16)0.0208 (15)0.0534 (18)
F420.136 (2)0.0592 (15)0.0391 (13)0.0103 (16)0.0102 (14)0.0072 (12)
F430.0963 (19)0.0466 (13)0.0518 (14)0.0262 (13)0.0042 (13)0.0163 (11)
F440.136 (3)0.117 (2)0.0521 (16)0.064 (2)0.0104 (17)0.0324 (16)
F450.108 (2)0.0685 (17)0.0724 (17)0.0530 (16)0.0264 (15)0.0001 (14)
F460.119 (3)0.091 (2)0.152 (3)0.003 (2)0.099 (2)0.018 (2)
Geometric parameters (Å, º) top
Ce1—O252.461 (2)C22—C261.532 (5)
Ce1—O212.466 (2)C23—C241.379 (5)
Ce1—O412.468 (2)C23—H23A0.9500
Ce1—O352.477 (2)C24—O251.251 (4)
Ce1—O452.483 (2)C24—C271.542 (6)
Ce1—O312.491 (2)C26—F21A1.293 (13)
Ce1—O8A2.552 (8)C26—F23B1.312 (9)
Ce1—O52.578 (3)C26—F21B1.317 (9)
Ce1—O22.657 (3)C26—F23A1.322 (12)
Ce1—O8B2.796 (19)C26—F22B1.331 (8)
C1—O21.429 (5)C26—F22A1.341 (11)
C1—H1A0.9800C27—F25A1.331 (12)
C1—H1B0.9800C27—F26B1.332 (11)
C1—H1C0.9800C27—F26A1.334 (13)
O2—C31.435 (5)C27—F25B1.340 (9)
C3—C41.467 (7)C27—F24B1.345 (9)
C3—H3A0.9900C27—F24A1.346 (14)
C3—H3B0.9900O31—C321.241 (4)
C4—O51.433 (5)C32—C331.391 (4)
C4—H4A0.9900C32—C361.534 (5)
C4—H4B0.9900C33—C341.384 (5)
O5—C61.434 (5)C33—H33A0.9500
C6—H6A0.9800C34—O351.260 (4)
C6—H6B0.9800C34—C371.529 (5)
C6—H6C0.9800C36—F311.320 (4)
C7A—O8A1.445 (8)C36—F321.321 (4)
C7A—H7AA0.9800C36—F331.330 (4)
C7A—H7AB0.9800C37—F361.329 (4)
C7A—H7AC0.9800C37—F351.333 (4)
O8A—C9A1.429 (9)C37—F341.334 (5)
C9A—C9Ai1.517 (10)O41—C421.251 (4)
C9A—H9A0.9900C42—C431.386 (5)
C9A—H9B0.9900C42—C461.527 (5)
C7B—O8B1.455 (14)C43—C441.389 (5)
C7B—H7BA0.9800C43—H43A0.9500
C7B—H7BB0.9800C44—O451.249 (4)
C7B—H7BC0.9800C44—C471.540 (5)
O8B—C9B1.449 (15)C46—F421.321 (4)
C9B—C9Bi1.48 (2)C46—F411.322 (5)
C9B—H9C0.9900C46—F431.333 (4)
C9B—H9D0.9900C47—F441.304 (5)
O21—C221.243 (4)C47—F461.315 (5)
C22—C231.401 (5)C47—F451.322 (5)
O25—Ce1—O2170.39 (8)O8B—C9B—C9Bi108.6 (15)
O25—Ce1—O4170.67 (8)O8B—C9B—H9C110.0
O21—Ce1—O4176.63 (8)C9Bi—C9B—H9C110.0
O25—Ce1—O35144.62 (8)O8B—C9B—H9D110.0
O21—Ce1—O35142.69 (8)C9Bi—C9B—H9D110.0
O41—Ce1—O35100.51 (8)H9C—C9B—H9D108.3
O25—Ce1—O45126.92 (8)C22—O21—Ce1135.6 (2)
O21—Ce1—O4569.21 (8)O21—C22—C23127.5 (3)
O41—Ce1—O4567.65 (8)O21—C22—C26114.3 (3)
O35—Ce1—O4575.31 (8)C23—C22—C26118.2 (3)
O25—Ce1—O3194.80 (8)C24—C23—C22122.0 (3)
O21—Ce1—O31135.40 (8)C24—C23—H23A119.0
O41—Ce1—O31139.33 (8)C22—C23—H23A119.0
O35—Ce1—O3169.21 (7)O25—C24—C23129.3 (3)
O45—Ce1—O31138.28 (8)O25—C24—C27113.1 (3)
O25—Ce1—O8A74.9 (3)C23—C24—C27117.7 (3)
O21—Ce1—O8A137.8 (3)C24—O25—Ce1134.0 (2)
O41—Ce1—O8A69.8 (3)F21A—C26—F23B83.7 (16)
O35—Ce1—O8A70.0 (3)F21A—C26—F21B115.0 (15)
O45—Ce1—O8A117.58 (18)F23B—C26—F21B106.4 (12)
O31—Ce1—O8A69.7 (3)F21A—C26—F23A111.0 (19)
O25—Ce1—O5134.11 (9)F23B—C26—F23A118.3 (18)
O21—Ce1—O583.65 (8)F23B—C26—F22B108.6 (9)
O41—Ce1—O5139.59 (8)F21B—C26—F22B104.0 (10)
O35—Ce1—O574.89 (8)F23A—C26—F22B95.8 (17)
O45—Ce1—O572.47 (8)F21A—C26—F22A108.0 (16)
O31—Ce1—O577.61 (8)F21B—C26—F22A93.1 (16)
O8A—Ce1—O5138.5 (3)F23A—C26—F22A105.4 (19)
O25—Ce1—O272.03 (9)F22B—C26—F22A132.7 (13)
O21—Ce1—O269.56 (8)F21A—C26—C22116.9 (11)
O41—Ce1—O2136.05 (8)F23B—C26—C22113.8 (7)
O35—Ce1—O2123.41 (8)F21B—C26—C22116.0 (9)
O45—Ce1—O2121.60 (8)F23A—C26—C22110.9 (16)
O31—Ce1—O265.85 (7)F22B—C26—C22107.4 (6)
O8A—Ce1—O2120.79 (18)F22A—C26—C22103.6 (10)
O5—Ce1—O263.52 (10)F25A—C27—F26B86.5 (18)
O25—Ce1—O8B75.3 (5)F25A—C27—F26A105 (2)
O21—Ce1—O8B135.3 (7)F26B—C27—F26A120 (2)
O41—Ce1—O8B65.3 (6)F25A—C27—F25B117.6 (18)
O35—Ce1—O8B70.1 (6)F26B—C27—F25B104.9 (11)
O45—Ce1—O8B113.3 (4)F26B—C27—F24B109.6 (13)
O31—Ce1—O8B74.4 (6)F26A—C27—F24B92.4 (19)
O8A—Ce1—O8B4.8 (7)F25B—C27—F24B109.1 (11)
O5—Ce1—O8B141.0 (7)F25A—C27—F24A103 (2)
O2—Ce1—O8B125.0 (4)F26A—C27—F24A113 (2)
O2—C1—H1A109.5F25B—C27—F24A95 (2)
O2—C1—H1B109.5F24B—C27—F24A126 (2)
H1A—C1—H1B109.5F25A—C27—C24116.9 (12)
O2—C1—H1C109.5F26B—C27—C24112.6 (10)
H1A—C1—H1C109.5F26A—C27—C24113 (2)
H1B—C1—H1C109.5F25B—C27—C24114.0 (11)
C1—O2—C3110.2 (3)F24B—C27—C24106.6 (7)
C1—O2—Ce1121.5 (3)F24A—C27—C24106.0 (19)
C3—O2—Ce1114.7 (2)C32—O31—Ce1135.8 (2)
O2—C3—C4109.6 (3)O31—C32—C33127.9 (3)
O2—C3—H3A109.7O31—C32—C36114.2 (3)
C4—C3—H3A109.7C33—C32—C36117.9 (3)
O2—C3—H3B109.7C34—C33—C32121.6 (3)
C4—C3—H3B109.7C34—C33—H33A119.2
H3A—C3—H3B108.2C32—C33—H33A119.2
O5—C4—C3108.7 (3)O35—C34—C33128.7 (3)
O5—C4—H4A109.9O35—C34—C37113.3 (3)
C3—C4—H4A109.9C33—C34—C37118.0 (3)
O5—C4—H4B109.9C34—O35—Ce1134.2 (2)
C3—C4—H4B109.9F31—C36—F32108.6 (3)
H4A—C4—H4B108.3F31—C36—F33106.4 (3)
C4—O5—C6113.8 (3)F32—C36—F33106.2 (3)
C4—O5—Ce1115.4 (3)F31—C36—C32114.0 (3)
C6—O5—Ce1123.5 (2)F32—C36—C32110.7 (3)
O5—C6—H6A109.5F33—C36—C32110.6 (3)
O5—C6—H6B109.5F36—C37—F35107.1 (3)
H6A—C6—H6B109.5F36—C37—F34107.7 (3)
O5—C6—H6C109.5F35—C37—F34106.6 (3)
H6A—C6—H6C109.5F36—C37—C34111.3 (3)
H6B—C6—H6C109.5F35—C37—C34110.5 (3)
O8A—C7A—H7AA109.5F34—C37—C34113.3 (3)
O8A—C7A—H7AB109.5C42—O41—Ce1135.1 (2)
H7AA—C7A—H7AB109.5O41—C42—C43127.5 (3)
O8A—C7A—H7AC109.5O41—C42—C46113.3 (3)
H7AA—C7A—H7AC109.5C43—C42—C46119.2 (3)
H7AB—C7A—H7AC109.5C42—C43—C44120.4 (3)
C9A—O8A—C7A115.3 (8)C42—C43—H43A119.8
C9A—O8A—Ce1123.6 (4)C44—C43—H43A119.8
C7A—O8A—Ce1121.1 (8)O45—C44—C43127.8 (3)
O8A—C9A—C9Ai111.3 (7)O45—C44—C47113.9 (3)
O8A—C9A—H9A109.4C43—C44—C47118.2 (3)
C9Ai—C9A—H9A109.4C44—O45—Ce1133.3 (2)
O8A—C9A—H9B109.4F42—C46—F41107.3 (3)
C9Ai—C9A—H9B109.4F42—C46—F43106.3 (3)
H9A—C9A—H9B108.0F41—C46—F43106.8 (3)
O8B—C7B—H7BA109.5F42—C46—C42111.2 (3)
O8B—C7B—H7BB109.5F41—C46—C42110.7 (3)
H7BA—C7B—H7BB109.5F43—C46—C42114.2 (3)
O8B—C7B—H7BC109.5F44—C47—F46108.4 (4)
H7BA—C7B—H7BC109.5F44—C47—F45106.4 (4)
H7BB—C7B—H7BC109.5F46—C47—F45106.5 (4)
C9B—O8B—C7B110.8 (17)F44—C47—C44110.8 (3)
C9B—O8B—Ce1129.5 (15)F46—C47—C44110.7 (3)
C7B—O8B—Ce1111.6 (19)F45—C47—C44113.8 (3)
O25—Ce1—O2—C144.4 (3)O5—Ce1—O25—C2471.2 (4)
O21—Ce1—O2—C1119.6 (3)O2—Ce1—O25—C2485.9 (3)
O41—Ce1—O2—C177.5 (3)O8B—Ce1—O25—C24138.9 (7)
O35—Ce1—O2—C199.9 (3)O21—C22—C26—F21A26.3 (17)
O45—Ce1—O2—C1167.3 (3)C23—C22—C26—F21A154.7 (17)
O31—Ce1—O2—C159.5 (3)O21—C22—C26—F23B68.8 (10)
O8A—Ce1—O2—C114.7 (5)C23—C22—C26—F23B110.2 (9)
O5—Ce1—O2—C1147.3 (3)O21—C22—C26—F21B167.2 (10)
O8B—Ce1—O2—C112.0 (9)C23—C22—C26—F21B13.8 (11)
O25—Ce1—O2—C3178.8 (3)O21—C22—C26—F23A155.0 (16)
O21—Ce1—O2—C3103.6 (3)C23—C22—C26—F23A26.1 (16)
O41—Ce1—O2—C3145.7 (2)O21—C22—C26—F22B51.4 (8)
O35—Ce1—O2—C336.8 (3)C23—C22—C26—F22B129.6 (8)
O45—Ce1—O2—C356.0 (3)O21—C22—C26—F22A92.4 (13)
O31—Ce1—O2—C377.2 (3)C23—C22—C26—F22A86.6 (13)
O8A—Ce1—O2—C3122.0 (4)O25—C24—C27—F25A44.5 (16)
O5—Ce1—O2—C310.5 (2)C23—C24—C27—F25A136.5 (16)
O8B—Ce1—O2—C3124.7 (8)O25—C24—C27—F26B53.4 (13)
C1—O2—C3—C4178.5 (4)C23—C24—C27—F26B125.6 (12)
Ce1—O2—C3—C440.0 (4)O25—C24—C27—F26A166.9 (16)
O2—C3—C4—O559.3 (5)C23—C24—C27—F26A14.1 (17)
C3—C4—O5—C6158.0 (4)O25—C24—C27—F25B172.7 (9)
C3—C4—O5—Ce150.7 (4)C23—C24—C27—F25B6.3 (10)
O25—Ce1—O5—C45.7 (3)O25—C24—C27—F24B66.9 (8)
O21—Ce1—O5—C449.0 (3)C23—C24—C27—F24B114.1 (7)
O41—Ce1—O5—C4109.6 (3)O25—C24—C27—F24A69.0 (19)
O35—Ce1—O5—C4161.8 (3)C23—C24—C27—F24A109.9 (19)
O45—Ce1—O5—C4119.1 (3)O25—Ce1—O31—C32135.1 (3)
O31—Ce1—O5—C490.3 (3)O21—Ce1—O31—C32158.1 (3)
O8A—Ce1—O5—C4128.8 (3)O41—Ce1—O31—C3269.5 (3)
O2—Ce1—O5—C421.3 (3)O35—Ce1—O31—C3212.3 (3)
O8B—Ce1—O5—C4135.2 (7)O45—Ce1—O31—C3245.9 (4)
O25—Ce1—O5—C6153.8 (3)O8A—Ce1—O31—C3263.2 (4)
O21—Ce1—O5—C699.2 (3)O5—Ce1—O31—C3290.7 (3)
O41—Ce1—O5—C638.5 (3)O2—Ce1—O31—C32157.0 (3)
O35—Ce1—O5—C650.0 (3)O8B—Ce1—O31—C3261.8 (6)
O45—Ce1—O5—C629.0 (3)Ce1—O31—C32—C335.7 (6)
O31—Ce1—O5—C6121.6 (3)Ce1—O31—C32—C36173.6 (2)
O8A—Ce1—O5—C683.1 (4)O31—C32—C33—C345.2 (5)
O2—Ce1—O5—C6169.5 (3)C36—C32—C33—C34175.6 (3)
O8B—Ce1—O5—C676.7 (7)C32—C33—C34—O350.4 (5)
O25—Ce1—O8A—C9A55.7 (8)C32—C33—C34—C37176.9 (3)
O21—Ce1—O8A—C9A90.9 (9)C33—C34—O35—Ce116.6 (5)
O41—Ce1—O8A—C9A130.3 (9)C37—C34—O35—Ce1166.7 (2)
O35—Ce1—O8A—C9A119.8 (9)O25—Ce1—O35—C3450.3 (3)
O45—Ce1—O8A—C9A179.8 (7)O21—Ce1—O35—C34156.6 (3)
O31—Ce1—O8A—C9A45.4 (8)O41—Ce1—O35—C34121.7 (3)
O5—Ce1—O8A—C9A85.7 (9)O45—Ce1—O35—C34175.0 (3)
O2—Ce1—O8A—C9A2.1 (10)O31—Ce1—O35—C3417.3 (3)
O8B—Ce1—O8A—C9A151 (11)O8A—Ce1—O35—C3457.8 (4)
O25—Ce1—O8A—C7A121.9 (14)O5—Ce1—O35—C3499.5 (3)
O21—Ce1—O8A—C7A86.7 (14)O2—Ce1—O35—C3456.5 (3)
O41—Ce1—O8A—C7A47.3 (13)O8B—Ce1—O35—C3463.0 (6)
O35—Ce1—O8A—C7A62.6 (13)O31—C32—C36—F31172.4 (3)
O45—Ce1—O8A—C7A2.2 (14)C33—C32—C36—F318.3 (5)
O31—Ce1—O8A—C7A137.0 (14)O31—C32—C36—F3264.9 (4)
O5—Ce1—O8A—C7A96.6 (13)C33—C32—C36—F32114.5 (3)
O2—Ce1—O8A—C7A179.7 (12)O31—C32—C36—F3352.6 (4)
O8B—Ce1—O8A—C7A27 (9)C33—C32—C36—F33128.1 (3)
C7A—O8A—C9A—C9Ai64.7 (15)O35—C34—C37—F3645.1 (4)
Ce1—O8A—C9A—C9Ai113.0 (8)C33—C34—C37—F36137.9 (3)
O25—Ce1—O8B—C9B13 (2)O35—C34—C37—F3573.8 (4)
O21—Ce1—O8B—C9B54 (2)C33—C34—C37—F35103.3 (4)
O41—Ce1—O8B—C9B88 (2)O35—C34—C37—F34166.7 (3)
O35—Ce1—O8B—C9B159 (2)C33—C34—C37—F3416.3 (5)
O45—Ce1—O8B—C9B137.4 (19)O25—Ce1—O41—C42120.4 (3)
O31—Ce1—O8B—C9B86 (2)O21—Ce1—O41—C4246.8 (3)
O8A—Ce1—O8B—C9B71 (9)O35—Ce1—O41—C4295.2 (3)
O5—Ce1—O8B—C9B131.9 (19)O45—Ce1—O41—C4226.0 (3)
O2—Ce1—O8B—C9B42 (3)O31—Ce1—O41—C42165.4 (3)
O25—Ce1—O8B—C7B132 (3)O8A—Ce1—O41—C42159.2 (4)
O21—Ce1—O8B—C7B91 (3)O5—Ce1—O41—C4216.2 (4)
O41—Ce1—O8B—C7B57 (3)O2—Ce1—O41—C4287.0 (3)
O35—Ce1—O8B—C7B55 (3)O8B—Ce1—O41—C42157.3 (6)
O45—Ce1—O8B—C7B8 (3)Ce1—O41—C42—C4317.1 (6)
O31—Ce1—O8B—C7B129 (3)Ce1—O41—C42—C46162.6 (2)
O8A—Ce1—O8B—C7B144 (12)O41—C42—C43—C446.0 (6)
O5—Ce1—O8B—C7B83 (3)C46—C42—C43—C44174.4 (3)
O2—Ce1—O8B—C7B173 (3)C42—C43—C44—O451.7 (6)
C7B—O8B—C9B—C9Bi149 (3)C42—C43—C44—C47178.1 (3)
Ce1—O8B—C9B—C9Bi66 (2)C43—C44—O45—Ce125.0 (6)
O25—Ce1—O21—C228.2 (3)C47—C44—O45—Ce1155.2 (3)
O41—Ce1—O21—C2265.8 (3)O25—Ce1—O45—C4411.4 (3)
O35—Ce1—O21—C22155.6 (3)O21—Ce1—O45—C4454.1 (3)
O45—Ce1—O21—C22136.6 (3)O41—Ce1—O45—C4429.5 (3)
O31—Ce1—O21—C2284.6 (3)O35—Ce1—O45—C44137.6 (3)
O8A—Ce1—O21—C2228.1 (4)O31—Ce1—O45—C44169.9 (3)
O5—Ce1—O21—C22149.7 (3)O8A—Ce1—O45—C4480.0 (4)
O2—Ce1—O21—C2285.7 (3)O5—Ce1—O45—C44143.9 (3)
O8B—Ce1—O21—C2234.0 (7)O2—Ce1—O45—C44101.9 (3)
Ce1—O21—C22—C233.5 (6)O8B—Ce1—O45—C4477.4 (8)
Ce1—O21—C22—C26175.3 (2)O41—C42—C46—F4258.1 (4)
O21—C22—C23—C243.6 (6)C43—C42—C46—F42122.2 (4)
C26—C22—C23—C24177.5 (4)O41—C42—C46—F4161.0 (4)
C22—C23—C24—O250.5 (7)C43—C42—C46—F41118.7 (4)
C22—C23—C24—C27179.3 (4)O41—C42—C46—F43178.4 (3)
C23—C24—O25—Ce111.5 (6)C43—C42—C46—F431.9 (5)
C27—C24—O25—Ce1169.7 (3)O45—C44—C47—F4456.0 (5)
O21—Ce1—O25—C2411.8 (3)C43—C44—C47—F44124.2 (4)
O41—Ce1—O25—C2470.4 (3)O45—C44—C47—F4664.2 (5)
O35—Ce1—O25—C24151.2 (3)C43—C44—C47—F46115.6 (4)
O45—Ce1—O25—C2430.5 (4)O45—C44—C47—F45175.9 (3)
O31—Ce1—O25—C24148.6 (3)C43—C44—C47—F454.3 (5)
O8A—Ce1—O25—C24143.9 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ce2(C5HF6O2)6(C4H10O2)3]
Mr1792.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)147
a, b, c (Å)9.1135 (18), 13.818 (3), 24.971 (5)
β (°) 95.16 (3)
V3)3131.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.22 × 0.22 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.667, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
32118, 6407, 5262
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.065, 1.08
No. of reflections6407
No. of parameters517
No. of restraints227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.48

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Ce—O bond lengths (Å) for (I), (II) and (III) top
(I)(II)(III)
(Fatila et al., 2012)This work(Fatila et al., 2012)
Temperature150 K147 K150 K
Molecule 1/Molecule 2
Ce—Ohfac2.434 (5)2.460 (2)2.495 (4)/2.453 (4)
2.435 (4)2.466 (2)2.454 (5)/2.499 (3)
2.439 (5)2.468 (2)2.487 (3)/2.499 (4)
2.446 (5)2.477 (2)2.496 (3)/2.503 (3)
2.447 (5)2.483 (2)2.506 (4)/2.499 (3)
2.466 (4)2.490 (2)2.515 (4)/2.492 (4)
Ce—Odme2.531 (5)2.579 (3)2.570 (5)/2.566 (4)
2.566 (5)2.657 (3)a2.608 (4)/2.611 (4)
2.552 (8)/2.796 (19)b
Ce—Owater2.595 (4)/2.601 (4)
Notes: (a) capping O atom; (b) bridging dme ligand.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds