Download citation
Download citation
link to html
The new high-spin iron(II) complex, [Fe(C12H10N6)2(H2O)2](C8H3N4S)2 or [Fe(abpt)2(H2O)2](tcnsme)2 [where abpt is 4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole and tcnsme is the 1,1,3,3-tetra­cyano-2-methyl­thio­propenide anion], consists of discrete [Fe(abpt)2(H2O)2]2+ dications, where the FeII ion is coordinated by two N,N′-bidentate chelating abpt ligands in the equatorial plane and two water mol­ecules in trans positions, generating a distorted octa­hedral [FeN4O2] environment. The cationic unit is neutralized by two polynitrile tcnsme anions, in which the C—N, C—C and C—S bond lengths indicate extensive electronic delocalization. In the crystal structure, the dications and anions are linked through O—H...N and N—H...N hydrogen bonds involving the water H atoms and those of the NH2 groups and the N atoms of the CN groups, leading to the formation of a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011003578X/fg3192sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011003578X/fg3192Isup2.hkl
Contains datablock I

CCDC reference: 798583

Comment top

Polynitrile–transition metal compounds are of current interest for their magnetic properties and their rich architectures and topologies (Kaim & Moscherosch, 1994; Dunbar, 1996; Batten et al., 1999; Thétiot et al., 2003; Benmansour et al., 2007). For geometric and electronic reasons, polynitrile anions are interesting ligands for the preparation of a large variety of magnetic materials displaying extended molecular architectures: (i) their geometry precludes the possibility of a chelate coordination mode, and therefore they can only act as terminal or bridging ligands through their nitrile groups; (ii) association of the π electron system of the CN groups with the π system of the central fragment may allow electronic delocalization that facilitates the transmission of electronic effects between the metal centres (Batten et al., 2000; Manson et al., 2000; Triki et al., 2005). Following these structural and electronic characteristics, several series of binary systems of the form polynitrile/MII, with only polynitrile bridges, or ternary systems of the form polynitrile/co-ligand/MII (where MII is a transition metal ion) involving an additional bridging or chelate co-ligand, have been reported. Most of them display one-, two- or three-dimensional polymeric assemblies, in which the polynitrile anions act as µ2-, µ3- and µ4-bridging ligands, and they exhibit interesting magnetic properties (Batten & Murray, 2003; Jones et al., 2006; Setifi et al., 2006, 2007; Yuste et al., 2007). Given the crucial role of these anionic ligands, we are interested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the large field of molecular materials exhibiting the spin crossover (SCO) phenomenon (Kunkeler et al., 1996; Sheu et al., 2008; Dupouy et al., 2008, 2009). In an attempt to prepare such a complex, we obtained the title compound, (I), [Fe(abpt)2(H2O)2](tcnsme)2, where abpt is 4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole and tcnsme is the 1,1,3,3-tetracyano-2-methylthiopropenide anion.

The asymmetric unit of compound (I) is composed of a discrete [Fe(abpt)2(H2O)2]2+ dication with two crystallographically independent abpt ligands (ligand A involving atoms N1–N6/C1–C12 and ligand B involving atoms N7–N12/C13–C24), two water molecules and two noncoordinated tcnsme anions (Fig. 1). The coordination geometry of the metal centre is distorted octahedral [FeN4O2], with four equatorial N atoms (N1 and N2, and N7 and N8) belonging to the pyridine and triazole rings of the two abpt chelating ligands. The remaining axial positions are occupied by atoms O1 and O2 from two water molecules. The Fe1—N bond distances [Fe1—N1 = 2.176 (3), Fe1—N2 = 2.163 (3), Fe1—N7 = 2.170 (3) and Fe1—N8 = 2.162 (3) Å] are similar to the Fe—N distances reported previously for high-spin (HS) iron(II) complexes (Moliner et al., 1999, 2001; Dupouy et al., 2009; Sheu et al., 2009). The coordinated pyridine and triazole rings of the A and B abpt ligands lie almost in the same plane [dihedral angles 1.9 (2) and 2.9 (2)°, respectively], while the uncoordinated pyridine groups and the chelate pyridine–triazole systems define dihedral angles of 6.77 (17) and 11.68 (16)° for ligands A and B, respectively. The angles involving the cis-N atoms, lying in the plane defined by the two abpt ligands, differ considerably from 90°, with the N1—Fe—N2 and N7—Fe—N8 bite angles being 75.74 (11) and 75.77 (10)°, respectively. The remaining bond angles involving the cis-N (N2—Fe1—N7 and N1—Fe1—N8) are 104.20 (11) and 104.29 (11)°, respectively, while those involving the trans-N atoms (N1—Fe1—N7 and N2—Fe1—N8) are 179.94 (11) and 179.91 (13)°, respectively.

The distances of atoms O1, O2 and Fe1 from the mean plane through atoms N1/N2/N7/N8 are 2.124 (2), -2.130 (2) and 0.0008 (6) Å, respectively. This is similar to the situtaion observed in other mononuclear abpt compounds (Moliner et al., 1999; Dupouy et al., 2008; Gaspar et al., 2003). The two ligands are in the same plane, since the mean planes through both coordinating triazole rings make an angle of 2.0 (2)°. The dihedral angles defined by the triazole rings and the noncoordinated pyridyl rings are 6.3 (2) in ligand A and 10.0 (2)° in ligand B. The same feature has been observed previously in other mononuclear abpt compounds mentioned above. It appears that a triazole–pyridyl twist angle of 6–15° is required to bring the ligand into the favoured conformation to form the intramolecular N(NH2)—H···N(pyridyl) hydrogen bond, which contributes to this almost planar conformation (Fig. 1, Table 1). The abpt ligand is considerably more planar on coordinating bidentately to metal ions.

Examination of the intermolecular contacts in the crystal structure of (I) reveals that the main contacts are associated with O—H···N and N—H···N hydrogen bonds involving the water H atoms and those of the NH2 groups, and the N atoms of the CN groups of the anions (Table 1, Fig. 2). In the crystal structure, this leads to the formation of a two-dimensional hydrogen-bonded network propagating in the ab plane, as shown in Fig. 3.

Due to the presence of the supplementary π electron systems of the cyano groups, the tcnsme ligands of (I) present a strong electronic delocalization, as indicated by the six almost equivalent C—C bond lengths in the two anions [1.395 (5)–1.428 (5) Å]. The tcnsme anion can thus be considered as a resonance hybrid of the different canonical structures, giving rise to the mean electronic structure of Fig. 4, which agrees well with the bond lengths and bond angles. However, it is noteworthy that, despite this high conjugation, the anions deviate significantly from planarity, since the two almost planar C(CN)2 wings are tilted out of the plane containing the central C25/C26/C29/S1 and C33/C34/C37/S2 fragments. For the tcnsme anion involving atom S1, the tilt angles, namely the angles between the central C25/C26/C29/S1 plane and the C26–C28 and C29–C31 planes are 24.0 (4) and 12.3 (4)°, respectively, although the dihedral angle between the two wings is 33.9 (6)°. For the tcnsme anion involving atom S2, the tilt angles, namely the angles between the central C33/C34/C37/S2 plane and the C34–C36 and C37–C39 planes are 24.0 (4) and 16.4 (4)°, respectively. Here, the dihedral angle between the two wings is 37.0 (6)°.

A number of mononuclear SCO complexes with the formula [Fe(abpt)2X2] have been synthesized (Kunkeler et al., 1996; Moliner et al., 1998, 1999, 2001; Sheu et al., 2008, 2009; Dupouy et al., 2008, 2009). They have two bidentate abpt ligands in equatorial positions and two axial anion ligands, such as X = N(CN)2, NCS, TCNQ, C(CN)3, tcnoet, tcpd [N(CN)2 is dicyanamide, NCS is isothiocyanate, NCSe is isoselenocyanate, TCNQ is 7,7,8,8-tetracyanoquinodimethane, C(CN)3 is tricyanomethanide, tcnoet is 1,1,3,3-tetracyano-2-ethoxypropenide and tcpd is 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide]. Examination of the molecular structure of these complexes reveals compact molecules in the lattice with ππ stacking interactions, and shows rather planar abpt ligands with a small dihedral angle between the uncoordinated pyridyl and triazole rings. In the present study, no ππ stacking interactions were observed. This is probably due to the fact that the axial N atoms are replaced by water molecules, which may provide a reason for the stabilization of the HS state and may also be responsible for the absence of the SCO phenomenon.

Experimental top

All reagents were purchased from commercial sources and used as received. Potassium 1,1,3,3-tetracyano-2-methylthiopropenide (Ktcnsme) was synthesized according to the published procedure (Edwards & Kendall, 1950). To an aqueous solution of FeCl2 (0.025 g, 5 ml) was added drowpise an ethanolic solution of 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (0.093 g, 10 ml), resulting in a red suspension. Ktcnsme was dissolved in water (0.089 g, 10 ml) and added quickly to the mixture. The final solution was filtered and the filtrate allowed to evaporate in air for a week, giving red crystals of (I) suitable for X-ray diffraction analysis.

Refinement top

The crystal structure was refined as an inversion twin, with a final refined BASF value of 0.546 (17). The H atoms of the water molecules and NH2 groups could all be located in difference Fourier maps. The water H atoms were refined with a distance restraint of O—H = 0.84 (2) Å. The difference maps showed that the NH2 H atoms were pyramidally arranged and they were subsequently allowed for using AFIX 137 constraints (N—H = 0.91 Å) (SHELXL97; Sheldrick, 2008), with the occupancy of the third H atom set to zero. C-bound H atoms were placed in geometric positions and allowed for using a riding model, with C—H = 0.95 or 0.98 Å, for aromatic and methyl H, respectively. For all H atoms, Uiso(H) = kUeq(O,N,C), with k = 1.5 for the water molecule, the NH2 group and the methyl H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular O—H···N and N—H···N hydrogen bonds are shown as dashed lines (details are given in Table 1).
[Figure 2] Fig. 2. A view of the [Fe(abpt)2(H2O)2]2+ dication, surrounded by the hydrogen-bonded tcnsme anions. O—H···N and N—H···N hydrogen bonds are shown as dashed lines [details are given in Table 1; symmetry codes: (i) x + 1/2, -y + 1, z; (ii) x - 1/2, -y + 2, z.]
[Figure 3] Fig. 3. A view, along the c axis, of the crystal packing in (I). O—H···N and N—H···N hydrogen bonds are shown as dashed lines [They look almost solid. Please redraw with clearer lines, e.g. black dashed lines] (details are given in Table 1).
[Figure 4] Fig. 4. The different canonical structures of the tcnsme anion.
bis(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole)diaquairon(II) bis(1,1,3,3-tetracyano-2-methylsulfanylpropenide) top
Crystal data top
[Fe(C12H10N6)2(H2O)2](C8H3N4S)2F(000) = 1936
Mr = 942.81Dx = 1.457 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 28262 reflections
a = 17.0060 (4) Åθ = 2.6–27.9°
b = 7.9570 (2) ŵ = 0.51 mm1
c = 31.7600 (5) ÅT = 170 K
V = 4297.66 (16) Å3Plate, red
Z = 40.45 × 0.30 × 0.25 mm
Data collection top
Oxford Xcalibur 2 CCD
diffractometer
9408 independent reflections
Radiation source: fine-focus sealed tube6273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.3622 pixels mm-1θmax = 28.0°, θmin = 2.7°
ω and ϕ scansh = 2122
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1010
Tmin = 0.859, Tmax = 1.000l = 4141
91385 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
9408 reflectionsΔρmax = 0.62 e Å3
603 parametersΔρmin = 0.32 e Å3
5 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.546 (17)
Crystal data top
[Fe(C12H10N6)2(H2O)2](C8H3N4S)2V = 4297.66 (16) Å3
Mr = 942.81Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.0060 (4) ŵ = 0.51 mm1
b = 7.9570 (2) ÅT = 170 K
c = 31.7600 (5) Å0.45 × 0.30 × 0.25 mm
Data collection top
Oxford Xcalibur 2 CCD
diffractometer
9408 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6273 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.000Rint = 0.055
91385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.62 e Å3
S = 1.12Δρmin = 0.32 e Å3
9408 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
603 parametersAbsolute structure parameter: 0.546 (17)
5 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.36919 (3)0.74726 (7)0.06690 (2)0.0191 (1)
O10.42220 (15)0.9762 (3)0.08642 (9)0.0255 (9)
O20.31597 (15)0.5196 (3)0.04614 (9)0.0276 (9)
N10.46957 (16)0.6098 (4)0.09174 (8)0.0216 (9)
N20.33642 (17)0.6896 (4)0.13111 (9)0.0218 (9)
N30.27260 (15)0.7124 (4)0.15717 (9)0.0216 (9)
N40.36637 (16)0.5834 (4)0.19264 (9)0.0210 (10)
N50.41151 (19)0.5052 (4)0.22428 (11)0.0277 (11)
N60.26280 (19)0.5522 (5)0.26409 (10)0.0356 (11)
N70.26902 (15)0.8843 (4)0.04219 (8)0.0189 (9)
N80.40197 (16)0.8053 (4)0.00275 (8)0.0197 (9)
N90.46691 (16)0.7868 (4)0.02282 (9)0.0231 (10)
N100.37351 (15)0.9188 (4)0.05791 (9)0.0209 (10)
N110.32914 (17)1.0012 (4)0.08957 (10)0.0258 (11)
N120.48035 (18)0.9668 (5)0.12703 (11)0.0327 (11)
C10.53408 (19)0.5749 (4)0.06986 (12)0.0245 (11)
C20.5973 (2)0.4918 (5)0.08727 (13)0.0297 (14)
C30.5941 (2)0.4439 (6)0.12859 (12)0.0370 (14)
C40.5280 (2)0.4770 (5)0.15205 (14)0.0293 (14)
C50.4664 (2)0.5632 (5)0.13293 (10)0.0209 (11)
C60.3917 (2)0.6108 (5)0.15269 (10)0.0212 (11)
C70.2918 (2)0.6466 (5)0.19413 (10)0.0218 (11)
C80.2375 (2)0.6393 (5)0.23044 (11)0.0255 (11)
C90.1640 (2)0.7129 (5)0.22832 (13)0.0333 (14)
C100.1132 (2)0.6984 (6)0.26184 (13)0.0447 (14)
C110.1398 (3)0.6099 (6)0.29698 (13)0.0477 (16)
C120.2132 (3)0.5398 (7)0.29689 (15)0.0457 (16)
C130.20408 (19)0.9199 (4)0.06423 (12)0.0234 (11)
C140.1409 (2)1.0016 (5)0.04728 (14)0.0327 (14)
C150.1452 (2)1.0520 (6)0.00583 (13)0.0360 (14)
C160.2116 (2)1.0178 (5)0.01757 (14)0.0317 (14)
C170.27219 (19)0.9350 (5)0.00146 (10)0.0205 (11)
C180.34668 (19)0.8862 (5)0.01852 (10)0.0183 (11)
C190.44857 (19)0.8556 (4)0.05946 (10)0.0193 (11)
C200.50411 (19)0.8727 (4)0.09490 (10)0.0215 (11)
C210.5774 (2)0.8019 (5)0.09284 (11)0.0270 (11)
C220.6302 (2)0.8329 (6)0.12521 (12)0.0370 (14)
C230.6070 (2)0.9315 (6)0.15803 (13)0.0410 (14)
C240.5317 (3)0.9941 (6)0.15772 (15)0.0433 (18)
S10.30858 (6)0.15619 (16)0.22784 (3)0.0410 (4)
N130.0566 (2)0.0430 (5)0.14180 (10)0.0366 (11)
N140.2717 (2)0.3020 (4)0.11227 (11)0.0400 (11)
N150.0095 (2)0.1836 (5)0.23611 (11)0.0457 (14)
N160.1987 (2)0.0770 (6)0.32123 (12)0.0597 (16)
C250.2108 (2)0.1482 (5)0.21180 (11)0.0244 (11)
C260.1881 (2)0.1597 (5)0.16886 (11)0.0239 (11)
C270.1147 (2)0.0985 (5)0.15461 (11)0.0282 (11)
C280.2357 (2)0.2392 (5)0.13816 (11)0.0250 (12)
C290.1568 (2)0.1344 (5)0.24476 (11)0.0275 (11)
C300.0756 (2)0.1636 (5)0.23959 (11)0.0283 (12)
C310.1816 (2)0.1014 (6)0.28680 (13)0.0413 (14)
C320.3672 (2)0.0836 (6)0.18461 (14)0.0373 (14)
S20.42940 (6)1.37003 (15)0.09699 (3)0.0382 (3)
N170.6801 (2)1.4498 (5)0.00843 (10)0.0393 (11)
N180.4639 (2)1.1911 (4)0.01832 (12)0.0410 (12)
N190.7271 (2)1.3025 (5)0.10276 (11)0.0440 (14)
N200.5465 (2)1.4963 (6)0.18549 (13)0.0563 (14)
C330.5266 (2)1.3649 (5)0.07966 (11)0.0252 (11)
C340.5485 (2)1.3408 (5)0.03691 (11)0.0237 (11)
C350.6214 (2)1.3971 (5)0.02166 (11)0.0269 (11)
C360.5001 (2)1.2591 (5)0.00677 (12)0.0280 (12)
C370.5821 (2)1.3861 (5)0.11158 (10)0.0286 (11)
C380.6622 (3)1.3398 (5)0.10663 (11)0.0347 (16)
C390.5611 (2)1.4465 (6)0.15241 (12)0.0363 (14)
C400.3688 (2)1.4216 (6)0.05271 (14)0.0343 (16)
H10.536700.608400.041200.0290*
H1A0.435 (2)1.052 (4)0.0693 (11)0.0380*
H1B0.4572 (19)0.987 (5)0.1035 (11)0.0380*
H20.642600.468000.070800.0350*
H2A0.314 (2)0.452 (4)0.0670 (10)0.0410*
H2B0.2819 (19)0.529 (5)0.0280 (11)0.0410*
H30.637600.387800.141100.0440*
H40.524500.442000.180600.0350*
H5B0.379100.465600.244800.0420*
H5C0.445500.581300.235600.0420*
H90.148700.773300.203900.0400*
H100.062100.746500.261100.0530*
H110.106900.598300.321000.0570*
H11A0.293000.928700.100400.0390*
H11B0.361901.036400.110400.0390*
H120.230000.479600.321100.0550*
H130.201800.886900.093000.0280*
H140.095201.023000.063600.0390*
H150.102401.110300.006600.0430*
H160.215101.051100.046200.0380*
H210.591800.732800.069700.0330*
H220.681600.786300.124500.0440*
H230.642000.956200.180500.0490*
H240.515401.061000.180900.0520*
H32A0.385600.180100.168200.0560*
H32B0.335400.010000.166600.0560*
H32C0.412500.020900.195400.0560*
H40A0.398501.493000.033200.0520*
H40B0.352901.318200.038300.0520*
H40C0.322001.482000.062400.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0163 (2)0.0268 (2)0.0142 (2)0.0002 (2)0.0001 (2)0.0027 (2)
O10.0254 (16)0.0319 (16)0.0192 (15)0.0029 (13)0.0030 (11)0.0043 (11)
O20.0306 (16)0.0310 (16)0.0213 (16)0.0060 (13)0.0084 (12)0.0046 (12)
N10.0189 (16)0.0291 (18)0.0168 (15)0.0018 (13)0.0007 (12)0.0012 (13)
N20.0204 (16)0.0255 (17)0.0194 (15)0.0024 (14)0.0031 (13)0.0011 (13)
N30.0170 (16)0.0322 (18)0.0155 (15)0.0048 (14)0.0044 (13)0.0033 (13)
N40.0190 (18)0.031 (2)0.0131 (16)0.0024 (13)0.0021 (12)0.0031 (14)
N50.0278 (18)0.037 (2)0.0184 (19)0.0016 (14)0.0023 (15)0.0107 (13)
N60.035 (2)0.051 (2)0.0209 (18)0.0048 (18)0.0045 (15)0.0086 (17)
N70.0162 (15)0.0269 (17)0.0135 (14)0.0028 (13)0.0008 (12)0.0006 (12)
N80.0144 (15)0.0256 (17)0.0191 (15)0.0028 (13)0.0025 (13)0.0019 (12)
N90.0188 (16)0.0274 (18)0.0232 (16)0.0018 (13)0.0040 (13)0.0002 (13)
N100.0183 (18)0.027 (2)0.0174 (16)0.0016 (12)0.0029 (12)0.0040 (14)
N110.0207 (17)0.043 (2)0.0137 (19)0.0006 (15)0.0056 (13)0.0093 (13)
N120.0285 (19)0.048 (2)0.0215 (18)0.0062 (16)0.0063 (14)0.0067 (16)
C10.0218 (19)0.029 (2)0.0226 (18)0.0010 (16)0.0012 (18)0.0036 (18)
C20.020 (2)0.043 (3)0.026 (2)0.0079 (19)0.0059 (18)0.0038 (17)
C30.028 (2)0.054 (3)0.029 (2)0.014 (2)0.0037 (18)0.004 (2)
C40.021 (2)0.049 (3)0.018 (2)0.0066 (19)0.0037 (17)0.0111 (18)
C50.021 (2)0.026 (2)0.0158 (18)0.0005 (16)0.0005 (14)0.0033 (16)
C60.024 (2)0.024 (2)0.0156 (17)0.0012 (17)0.0009 (16)0.0038 (15)
C70.026 (2)0.027 (2)0.0124 (17)0.0081 (16)0.0014 (15)0.0008 (15)
C80.026 (2)0.035 (2)0.0154 (17)0.0081 (18)0.0034 (16)0.0011 (16)
C90.030 (2)0.044 (3)0.026 (2)0.0017 (19)0.0029 (18)0.0005 (18)
C100.028 (2)0.066 (3)0.040 (2)0.003 (2)0.011 (2)0.003 (2)
C110.045 (3)0.067 (3)0.031 (2)0.009 (3)0.017 (2)0.002 (2)
C120.050 (3)0.067 (3)0.020 (2)0.001 (3)0.010 (2)0.009 (2)
C130.0218 (19)0.034 (2)0.0143 (16)0.0007 (16)0.0067 (17)0.0020 (18)
C140.021 (2)0.053 (3)0.024 (2)0.0091 (19)0.0026 (18)0.0004 (18)
C150.021 (2)0.055 (3)0.032 (2)0.016 (2)0.0019 (18)0.010 (2)
C160.025 (2)0.044 (3)0.026 (2)0.005 (2)0.0009 (18)0.0024 (18)
C170.019 (2)0.029 (2)0.0136 (18)0.0048 (16)0.0021 (15)0.0007 (15)
C180.0132 (18)0.025 (2)0.0166 (17)0.0044 (16)0.0035 (15)0.0008 (15)
C190.0156 (19)0.029 (2)0.0133 (17)0.0048 (16)0.0044 (14)0.0013 (15)
C200.0208 (19)0.028 (2)0.0157 (17)0.0033 (17)0.0008 (15)0.0059 (15)
C210.026 (2)0.038 (2)0.0171 (19)0.0018 (18)0.0030 (16)0.0055 (17)
C220.027 (2)0.052 (3)0.032 (2)0.003 (2)0.0102 (18)0.007 (2)
C230.031 (2)0.059 (3)0.033 (2)0.007 (2)0.0174 (18)0.001 (2)
C240.043 (3)0.066 (4)0.021 (2)0.004 (2)0.0076 (19)0.007 (2)
S10.0241 (5)0.0732 (8)0.0258 (5)0.0066 (5)0.0028 (4)0.0077 (5)
N130.029 (2)0.058 (2)0.0229 (19)0.0069 (18)0.0051 (15)0.0002 (18)
N140.048 (2)0.040 (2)0.0320 (19)0.0035 (18)0.0019 (18)0.0093 (17)
N150.036 (2)0.065 (3)0.036 (2)0.009 (2)0.0024 (18)0.0025 (19)
N160.034 (2)0.120 (4)0.025 (2)0.009 (2)0.0027 (17)0.014 (2)
C250.024 (2)0.024 (2)0.0251 (18)0.0009 (17)0.0021 (16)0.0026 (16)
C260.025 (2)0.024 (2)0.0228 (19)0.0047 (17)0.0030 (16)0.0006 (15)
C270.029 (2)0.035 (2)0.0205 (18)0.0063 (19)0.0017 (18)0.0041 (17)
C280.026 (2)0.024 (2)0.025 (2)0.0002 (17)0.0034 (17)0.0035 (16)
C290.023 (2)0.039 (2)0.0206 (18)0.0051 (18)0.0026 (15)0.0028 (17)
C300.028 (2)0.035 (2)0.022 (2)0.0027 (19)0.0004 (17)0.0018 (17)
C310.022 (2)0.073 (3)0.029 (2)0.009 (2)0.0014 (18)0.006 (2)
C320.026 (2)0.052 (3)0.034 (2)0.001 (2)0.0033 (17)0.002 (2)
S20.0248 (5)0.0618 (7)0.0279 (5)0.0007 (5)0.0021 (4)0.0063 (5)
N170.040 (2)0.056 (2)0.0220 (19)0.0022 (19)0.0020 (16)0.0027 (18)
N180.044 (2)0.040 (2)0.039 (2)0.0070 (18)0.0049 (18)0.0141 (18)
N190.030 (2)0.063 (3)0.039 (2)0.0091 (19)0.0024 (17)0.0020 (19)
N200.044 (2)0.096 (3)0.029 (2)0.009 (2)0.0037 (19)0.003 (2)
C330.029 (2)0.025 (2)0.0216 (18)0.0002 (17)0.0017 (16)0.0047 (15)
C340.023 (2)0.027 (2)0.0212 (18)0.0030 (17)0.0018 (15)0.0016 (16)
C350.026 (2)0.038 (2)0.0167 (17)0.0015 (19)0.0039 (17)0.0002 (16)
C360.031 (2)0.030 (2)0.023 (2)0.0001 (19)0.0077 (18)0.0046 (17)
C370.028 (2)0.038 (2)0.0197 (18)0.0078 (18)0.0016 (16)0.0050 (16)
C380.042 (3)0.040 (3)0.022 (2)0.004 (2)0.0036 (18)0.0074 (18)
C390.029 (2)0.060 (3)0.020 (2)0.002 (2)0.0066 (17)0.0063 (19)
C400.026 (2)0.034 (3)0.043 (3)0.0003 (17)0.0051 (18)0.002 (2)
Geometric parameters (Å, º) top
Fe1—O12.125 (3)C5—C61.467 (5)
Fe1—O22.130 (3)C7—C81.479 (5)
Fe1—N12.176 (3)C8—C91.382 (5)
Fe1—N22.163 (3)C9—C101.376 (5)
Fe1—N72.170 (3)C10—C111.395 (6)
Fe1—N82.162 (3)C11—C121.367 (7)
S1—C251.740 (4)C13—C141.366 (5)
S1—C321.792 (4)C14—C151.378 (6)
S2—C401.791 (4)C15—C161.379 (5)
S2—C331.743 (4)C16—C171.364 (5)
O1—H1B0.81 (3)C17—C181.469 (5)
O1—H1A0.84 (3)C19—C201.476 (5)
O2—H2B0.82 (3)C20—C211.369 (5)
O2—H2A0.85 (3)C21—C221.387 (5)
N1—C11.328 (4)C22—C231.363 (6)
N1—C51.361 (4)C23—C241.374 (6)
N2—C61.322 (5)C1—H10.9500
N2—N31.377 (4)C2—H20.9500
N3—C71.326 (4)C3—H30.9500
N4—C71.365 (4)C4—H40.9500
N4—C61.358 (4)C9—H90.9500
N4—N51.409 (4)C10—H100.9500
N6—C81.345 (5)C11—H110.9500
N6—C121.344 (6)C12—H120.9500
N7—C131.338 (4)C13—H130.9500
N7—C171.356 (4)C14—H140.9500
N8—N91.379 (4)C15—H150.9500
N8—C181.325 (4)C16—H160.9500
N9—C191.323 (4)C21—H210.9500
N10—N111.418 (4)C22—H220.9500
N10—C181.357 (4)C23—H230.9500
N10—C191.373 (4)C24—H240.9500
N12—C201.329 (5)C25—C291.397 (5)
N12—C241.327 (6)C25—C261.420 (5)
N5—H5C0.9100C26—C271.414 (5)
N5—H5B0.9100C26—C281.416 (5)
N11—H11B0.9100C29—C301.410 (5)
N11—H11A0.9100C29—C311.425 (5)
N13—C271.156 (5)C32—H32C0.9800
N14—C281.141 (5)C32—H32A0.9800
N15—C301.141 (5)C32—H32B0.9800
N16—C311.148 (6)C33—C341.421 (5)
N17—C351.161 (5)C33—C371.395 (5)
N18—C361.143 (5)C34—C351.404 (5)
N19—C381.150 (6)C34—C361.420 (5)
N20—C391.150 (6)C37—C381.420 (6)
C1—C21.378 (5)C37—C391.428 (5)
C2—C31.368 (6)C40—H40A0.9800
C3—C41.374 (5)C40—H40B0.9800
C4—C51.392 (5)C40—H40C0.9800
O1—Fe1—O2178.91 (11)N9—C19—C20123.9 (3)
O1—Fe1—N189.56 (11)N9—C19—N10109.8 (3)
O1—Fe1—N290.92 (11)N10—C19—C20126.1 (3)
O1—Fe1—N790.45 (11)N12—C20—C21123.1 (3)
O1—Fe1—N888.99 (11)N12—C20—C19116.3 (3)
O2—Fe1—N191.04 (11)C19—C20—C21120.5 (3)
O2—Fe1—N290.11 (11)C20—C21—C22118.7 (3)
O2—Fe1—N788.96 (11)C21—C22—C23118.8 (3)
O2—Fe1—N889.97 (11)C22—C23—C24118.2 (4)
N1—Fe1—N275.74 (11)N12—C24—C23124.0 (4)
N1—Fe1—N7179.94 (11)C2—C1—H1119.00
N1—Fe1—N8104.29 (10)N1—C1—H1119.00
N2—Fe1—N7104.20 (11)C1—C2—H2120.00
N2—Fe1—N8179.91 (13)C3—C2—H2120.00
N7—Fe1—N875.77 (10)C4—C3—H3120.00
C25—S1—C32107.18 (18)C2—C3—H3120.00
C33—S2—C40107.65 (17)C3—C4—H4121.00
H1A—O1—H1B100 (4)C5—C4—H4121.00
Fe1—O1—H1A122 (2)C10—C9—H9120.00
Fe1—O1—H1B127 (3)C8—C9—H9120.00
H2A—O2—H2B125 (3)C11—C10—H10121.00
Fe1—O2—H2B116 (3)C9—C10—H10121.00
Fe1—O2—H2A108 (2)C10—C11—H11120.00
Fe1—N1—C5117.0 (2)C12—C11—H11120.00
Fe1—N1—C1124.3 (2)C11—C12—H12119.00
C1—N1—C5118.6 (3)N6—C12—H12118.00
Fe1—N2—C6114.0 (2)N7—C13—H13119.00
Fe1—N2—N3137.9 (2)C14—C13—H13119.00
N3—N2—C6108.2 (3)C15—C14—H14121.00
N2—N3—C7106.6 (3)C13—C14—H14121.00
N5—N4—C7130.1 (3)C14—C15—H15120.00
N5—N4—C6124.4 (3)C16—C15—H15120.00
C6—N4—C7105.6 (3)C17—C16—H16121.00
C8—N6—C12116.9 (4)C15—C16—H16121.00
Fe1—N7—C13124.4 (2)C22—C21—H21121.00
Fe1—N7—C17117.6 (2)C20—C21—H21121.00
C13—N7—C17118.0 (3)C21—C22—H22121.00
Fe1—N8—N9137.6 (2)C23—C22—H22121.00
Fe1—N8—C18113.7 (2)C22—C23—H23121.00
N9—N8—C18108.7 (3)C24—C23—H23121.00
N8—N9—C19106.6 (3)C23—C24—H24118.00
N11—N10—C18124.3 (3)N12—C24—H24118.00
C18—N10—C19106.0 (3)S1—C25—C26122.6 (3)
N11—N10—C19129.7 (3)C26—C25—C29123.1 (3)
C20—N12—C24117.2 (3)S1—C25—C29114.3 (3)
N4—N5—H5C109.00C25—C26—C27121.7 (3)
H5B—N5—H5C109.00C27—C26—C28116.0 (3)
N4—N5—H5B109.00C25—C26—C28122.3 (3)
N10—N11—H11B109.00N13—C27—C26176.8 (4)
H11A—N11—H11B110.00N14—C28—C26177.2 (4)
N10—N11—H11A110.00C25—C29—C30122.9 (3)
N1—C1—C2122.3 (3)C30—C29—C31115.4 (3)
C1—C2—C3119.2 (3)C25—C29—C31121.5 (3)
C2—C3—C4120.0 (4)N15—C30—C29178.1 (4)
C3—C4—C5118.3 (4)N16—C31—C29177.3 (4)
N1—C5—C6112.0 (3)S1—C32—H32B109.00
N1—C5—C4121.6 (3)S1—C32—H32C109.00
C4—C5—C6126.3 (3)S1—C32—H32A109.00
N2—C6—C5121.1 (3)H32A—C32—H32C110.00
N4—C6—C5129.3 (3)H32B—C32—H32C109.00
N2—C6—N4109.6 (3)H32A—C32—H32B110.00
N3—C7—N4110.1 (3)S2—C33—C34123.6 (3)
N3—C7—C8123.5 (3)S2—C33—C37114.2 (3)
N4—C7—C8126.4 (3)C34—C33—C37122.2 (3)
N6—C8—C9123.1 (3)C33—C34—C35121.2 (3)
C7—C8—C9120.7 (3)C33—C34—C36123.6 (3)
N6—C8—C7116.1 (3)C35—C34—C36115.2 (3)
C8—C9—C10119.7 (4)N17—C35—C34177.1 (4)
C9—C10—C11117.2 (4)N18—C36—C34177.2 (4)
C10—C11—C12120.0 (4)C33—C37—C38122.5 (3)
N6—C12—C11123.0 (4)C33—C37—C39122.1 (3)
N7—C13—C14122.9 (4)C38—C37—C39115.3 (3)
C13—C14—C15118.2 (3)N19—C38—C37179.8 (4)
C14—C15—C16120.1 (4)N20—C39—C37178.0 (4)
C15—C16—C17118.4 (4)S2—C40—H40A109.00
N7—C17—C16122.4 (3)S2—C40—H40B109.00
N7—C17—C18111.6 (3)S2—C40—H40C109.00
C16—C17—C18126.0 (3)H40A—C40—H40B109.00
N8—C18—N10108.9 (3)H40A—C40—H40C109.00
N10—C18—C17129.6 (3)H40B—C40—H40C110.00
N8—C18—C17121.4 (3)
O1—Fe1—N1—C189.0 (3)Fe1—N8—N9—C19178.1 (3)
O1—Fe1—N1—C588.3 (3)N9—N8—C18—N101.1 (4)
O2—Fe1—N1—C190.1 (3)Fe1—N8—C18—C172.2 (4)
O2—Fe1—N1—C592.6 (3)Fe1—N8—C18—N10179.0 (2)
N2—Fe1—N1—C1179.9 (3)N8—N9—C19—C20175.7 (3)
N2—Fe1—N1—C52.8 (3)N8—N9—C19—N100.4 (4)
N8—Fe1—N1—C10.2 (3)N11—N10—C18—N8178.8 (3)
N8—Fe1—N1—C5177.1 (3)C19—N10—C18—C17175.6 (4)
O1—Fe1—N2—N392.9 (3)C18—N10—C19—N90.2 (4)
O1—Fe1—N2—C686.7 (3)C18—N10—C19—C20174.9 (3)
O2—Fe1—N2—N386.7 (4)N11—N10—C19—N9179.3 (3)
O2—Fe1—N2—C693.7 (3)N11—N10—C18—C174.8 (6)
N1—Fe1—N2—N3177.8 (4)C19—N10—C18—N80.8 (4)
N1—Fe1—N2—C62.6 (3)N11—N10—C19—C205.6 (6)
N7—Fe1—N2—N32.2 (4)C24—N12—C20—C19175.0 (4)
N7—Fe1—N2—C6177.4 (3)C24—N12—C20—C211.3 (6)
O1—Fe1—N7—C1390.8 (3)C20—N12—C24—C230.1 (7)
O1—Fe1—N7—C1790.2 (3)N1—C1—C2—C30.3 (6)
O2—Fe1—N7—C1390.1 (3)C1—C2—C3—C40.8 (6)
O2—Fe1—N7—C1788.9 (3)C2—C3—C4—C51.6 (6)
N2—Fe1—N7—C130.3 (3)C3—C4—C5—C6179.6 (4)
N2—Fe1—N7—C17178.8 (3)C3—C4—C5—N12.0 (6)
N8—Fe1—N7—C13179.7 (3)C4—C5—C6—N2178.5 (4)
N8—Fe1—N7—C171.3 (3)N1—C5—C6—N4178.7 (4)
O1—Fe1—N8—N984.6 (3)N1—C5—C6—N20.0 (5)
O1—Fe1—N8—C1892.5 (3)C4—C5—C6—N40.2 (7)
O2—Fe1—N8—N995.8 (3)N3—C7—C8—C94.5 (6)
O2—Fe1—N8—C1887.1 (3)N4—C7—C8—N64.6 (6)
N1—Fe1—N8—N94.7 (4)N4—C7—C8—C9178.0 (4)
N1—Fe1—N8—C18178.2 (3)N3—C7—C8—N6172.9 (4)
N7—Fe1—N8—N9175.3 (4)C7—C8—C9—C10177.3 (4)
N7—Fe1—N8—C181.8 (3)N6—C8—C9—C100.1 (6)
C32—S1—C25—C2626.2 (4)C8—C9—C10—C110.7 (6)
C32—S1—C25—C29155.6 (3)C9—C10—C11—C120.9 (7)
C40—S2—C33—C37158.3 (3)C10—C11—C12—N60.4 (8)
C40—S2—C33—C3421.9 (4)N7—C13—C14—C151.2 (6)
C1—N1—C5—C41.6 (5)C13—C14—C15—C160.8 (6)
C1—N1—C5—C6179.9 (3)C14—C15—C16—C170.5 (6)
Fe1—N1—C1—C2178.0 (3)C15—C16—C17—C18179.2 (4)
C5—N1—C1—C20.7 (5)C15—C16—C17—N70.6 (6)
Fe1—N1—C5—C62.4 (4)N7—C17—C18—N81.1 (5)
Fe1—N1—C5—C4179.1 (3)N7—C17—C18—N10177.1 (4)
C6—N2—N3—C70.3 (4)C16—C17—C18—N104.2 (7)
N3—N2—C6—N41.0 (4)C16—C17—C18—N8179.8 (4)
Fe1—N2—N3—C7179.3 (3)N9—C19—C20—N12170.2 (3)
Fe1—N2—C6—N4178.7 (2)N9—C19—C20—C216.3 (5)
Fe1—N2—C6—C52.4 (5)N10—C19—C20—N124.3 (5)
N3—N2—C6—C5177.9 (3)N10—C19—C20—C21179.2 (3)
N2—N3—C7—C8177.4 (3)C19—C20—C21—C22174.5 (3)
N2—N3—C7—N40.5 (4)N12—C20—C21—C221.7 (6)
N5—N4—C6—N2178.6 (3)C20—C21—C22—C230.5 (6)
N5—N4—C6—C52.6 (6)C21—C22—C23—C240.8 (7)
C6—N4—C7—N31.1 (4)C22—C23—C24—N121.2 (7)
C6—N4—C7—C8176.7 (4)S1—C25—C26—C27158.4 (3)
C7—N4—C6—N21.3 (4)C29—C25—C26—C28153.7 (4)
C7—N4—C6—C5177.5 (4)S1—C25—C29—C30165.4 (3)
N5—N4—C7—N3178.8 (3)S1—C25—C29—C3110.0 (5)
N5—N4—C7—C83.4 (6)C26—C25—C29—C3012.9 (6)
C12—N6—C8—C7178.0 (4)C26—C25—C29—C31171.8 (4)
C8—N6—C12—C110.5 (7)S1—C25—C26—C2824.4 (6)
C12—N6—C8—C90.7 (6)C29—C25—C26—C2723.5 (6)
Fe1—N7—C17—C180.7 (4)S2—C33—C34—C35156.3 (3)
C13—N7—C17—C161.0 (5)S2—C33—C34—C3624.1 (6)
Fe1—N7—C17—C16178.1 (3)C37—C33—C34—C3524.0 (6)
Fe1—N7—C13—C14177.7 (3)C37—C33—C34—C36155.7 (4)
C13—N7—C17—C18179.7 (3)S2—C33—C37—C38161.8 (3)
C17—N7—C13—C141.3 (5)S2—C33—C37—C3914.3 (5)
C18—N8—N9—C190.9 (4)C34—C33—C37—C3818.0 (6)
N9—N8—C18—C17175.7 (3)C34—C33—C37—C39165.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N180.84 (3)2.02 (3)2.847 (4)167 (3)
O1—H1B···N13i0.81 (3)2.10 (3)2.888 (4)166 (4)
O2—H2A···N140.85 (3)2.00 (3)2.824 (4)161 (3)
O2—H2B···N17ii0.82 (3)2.09 (3)2.899 (4)169 (3)
N5—H5B···N60.912.182.852 (5)130
N5—H5C···N15i0.912.163.008 (5)154
N11—H11A···N19ii0.912.163.004 (5)155
N11—H11B···N120.912.152.847 (4)132
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+2, z.

Experimental details

Crystal data
Chemical formula[Fe(C12H10N6)2(H2O)2](C8H3N4S)2
Mr942.81
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)170
a, b, c (Å)17.0060 (4), 7.9570 (2), 31.7600 (5)
V3)4297.66 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerOxford Xcalibur 2 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.859, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
91385, 9408, 6273
Rint0.055
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.12
No. of reflections9408
No. of parameters603
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.32
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.546 (17)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N180.84 (3)2.02 (3)2.847 (4)167 (3)
O1—H1B···N13i0.81 (3)2.10 (3)2.888 (4)166 (4)
O2—H2A···N140.85 (3)2.00 (3)2.824 (4)161 (3)
O2—H2B···N17ii0.82 (3)2.09 (3)2.899 (4)169 (3)
N5—H5B···N60.912.182.852 (5)130
N5—H5C···N15i0.912.163.008 (5)154
N11—H11A···N19ii0.912.163.004 (5)155
N11—H11B···N120.912.152.847 (4)132
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds