Download citation
Download citation
link to html
The structures of 1H-phenanthro[9,10-d]imidazole, C15H10N2, (I), and 3,6-dibromo-1H-phenanthro[9,10-d]imidazole hemihydrate, C15H8Br2N2·0.5H2O, (II), contain hydrogen-bonded polymeric chains linked by columns of π–π stacked essentially planar phenanthroimidazole monomers. In the structure of (I), the asymmetric unit consists of two independent mol­ecules, denoted (Ia) and (Ib), of 1H-phenanthro[9,10-d]imid­azole. Alternating mol­ecules of (Ia) and (Ib), canted by 79.07 (3)°, form hydrogen-bonded zigzag polymer chains along the a-cell direction. The chains are linked by π–π stacking of mol­ecules of (Ia) and (Ib) along the b-cell direction. In the structure of (II), the asymmetric unit consists of two independent mol­ecules of 3,6-dibromo-1H-phenanthro[9,10-d]imidazole, denoted (IIa) and (IIb), along with a mol­ecule of water. Alternating mol­ecules of (IIa), (IIb) and water form hydrogen-bonded polymer chains along the [110] direction. The donor–acceptor distances in these N(imine)...H—O(water)...H—N(amine) hydrogen bonds are the shortest thus far reported for imidazole amine and imine hydrogen-bond inter­actions with water. Centrosymmetrically related mol­ecules of (IIa) and (IIb) alternate in columns along the a-cell direction and are canted by 48.27 (3)°. The present study provides the first examples of structurally characterized 1H-phenanthroimidazoles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109025165/fg3095sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025165/fg3095Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109025165/fg3095IIsup3.hkl
Contains datablock II

CCDC references: 746088; 746089

Comment top

Bis(imidazoles) and bis(benzimidazoles) are versatile species with numerous applications. Structurally, they have been used as geometrically constraining ligands (Stibrany et al., 2004) and in the formation of metal–organic copolymers (Stibrany & Potenza, 2008). Functionally, they have been shown to act as proton sponges (Stibrany et al., 2002), and when complexed to copper, as polymerization catalysts (Stibrany et al., 2003; Stibrany & Kacker, 2002). Analytically, they have been used as agents in the study of electron transfer (Knapp et al., 1990), and fluorinated versions have been used as 19F NMR probes to study the active sites of copper polymerization catalysts (Stibrany, 2003). In the present study, we have investigated the structures of 1-H-phenanthroimidazoles, expanded-ring imidazoles, as potential building blocks for bis(phenanthroimidazoles). We have previously shown that 1-methylbenzimidazole can be used in the synthesis of bis(benzimidazole)ketones, which were found to be useful ligands for the chelation of metals (Gorun et al., 1996).

Crystals of 1-H-phenanthro[9,10-d]imidazole, (I), contain two independent molecules, (Ia) and (Ib), in the asymmetric unit, linked by N(amine)—H···N(imine) hydrogen bonds (Fig. 1, Table 1). Analysis of the structure reveals a two-site H-atom disorder, corresponding to overlapping N(imine)···H—N(amine) and N(amine)—H···N(imine) bonds and their associated molecules. Occupancy factors for the two H atoms, which were refined and constrained to add to 1, were 0.60 (3) and 0.40 (3). These data and the structure described below are consistent with racemic twinning in which the twins are related by rotation of 180° about the a unit-cell axis. We describe the structure below using the major component (60% occupancy) twin.

In the structure of (I), alternating molecules of (Ia) and I(b) are essentially planar, canted by 79.07 (3)°, and linked by the hydrogen bonds mentioned above to create zigzag polymeric chains which extend along the a cell direction (Fig. 2). In these chains, molecules of (Ia) and (Ib) stack along the b cell direction to yield columns in which the phenanthroimidazole planes are separated by interplanar distances consistent with ππ interactions, which have been taken as inter-ring contacts less than 3.8 Å (Janiak, 2000). The inter-ring contacts are listed in Table 3 and the several rings are enumerated in the second scheme. In each column, the planes of the rings are canted with respect to the ac plane such that, when viewed down the a axis along the polymer chains, the phenanthroimidazole columns appear as a criss-cross array of molecules of (Ia) and (Ib) in profile.

Crystals of 3,6-dibromo-1-H-phenanthro[9,10-d]imidazole hemihydrate, (II), contain a water molecule and two independent phenanthroimidazole molecules, (IIa) and (IIb), in the asymmetric unit (Fig. 3). The water molecule acts as both a donor (O—H) and an acceptor (O) to form two hydrogen bonds (Table 2), one to the N(amine) H atom of molecule (IIb) and the other to the N(imine) atom of molecule (IIa). In (II), the N···O distances (Table 2) in the N(imine)···H—O(H2O)···H—N(amine) fragments are shorter than the corresponding N(imine)···O(H2O) and N(amine)···O(H2O) distances in similar hydrogen-bond networks, in which they range from 2.770–2.914 and 2.802–2.946 Å, respectively, for the imine and amine linkages [Cambridge Structural database (CSD), Version 5.30; Allen, 2002] (Botana et al., 2007; Freire et al., 2003; Fridman et al., 2006; Meng et al., 2006; Molina et al., 1998; Zhang et al., 2005). In (II), the hydrogen bonds lead to polymer chains consisting sequentially of molecules of (IIa), (IIb) and water. These hydrogen-bond chains extend along the [110] direction (Fig. 4), while centrosymmetrically related molecules of (IIa) and (IIb) stack in columns along the a-axis direction. The planes of (IIa) and (IIb) are canted by 48.27 (3)°. In the structure of (II), there are four ππ interactions and two short atom-to-ring interactions (Table 3; see also second scheme).

Compounds (I) and (II) are technically defined as extended-ring imidazole systems. The title compounds, which are 1,2-dihydro-substituted, are the first such to be structurally characterized. A total of 22 crystal structures containing phenanthroimidazoles reported in the CSD contain aromatic substitution at the 2-position. Synthetically, aromatic aldehydes facilitate the formation of phenanthroimidazole ring systems.

Experimental top

1-H-Phenanthro[9,10-d]imidazole, (I), was prepared according to the procedure of Steck & Day (1943). Into a 250 ml round-bottomed flask, phenanthroquinone (2.08 g, 9.99 mmol), hexamethylenetetramine (2.80 g, 20.0 mmol) and ammonium acetate (15.5 g) were placed. The solids were suspended in glacial acetic acid and refluxed for 1 h. The mixture was cooled and neutralized with concentrated ammonium hydroxide, followed by the addition of water to precipitate the product fully. The product was collected by filtration, washed with water and dried to constant weight in a vacuum oven to give the product as an off-white solid (yield 2.01 g, 92.2%; m.p. 564 K). Analysis: C15H10N2, Mr = 218.25; 1H NMR (400 MHz, CD3SOCD3, 298 K, δ, p.p.m.): 8.86 (br m, 2H), 8.51 (br m, 2H), 8.37 (s, 1H), 7.72 (br m, 2H), 7.64 (br m, 2H); 13C NMR (CD3SOCD3, δ, p.p.m.): 139.6, 136.2, 127.9, 127.8, 127.4, 125.4, 124.3, 122.0; Rf = 0.38 (ethyl acetate/silica). Single crystals of (I) were obtained by slow evaporation of a dimethylsulfoxide (DMSO) solution of the compound (m.p. 581 K).

Crystals of 3,6-dibromo-1-H-phenanthro[9,10-d]imidazole hemihydrate, (II), were prepared by following a procedure similar to that for (I). Into a 250 ml round-bottomed flask, 3,6-dibromophenanthro-9,10-quinone (2.08 g, 5.68 mmol) (Schmidt & Eitel, 1932; Bhatt, 1964), hexamethylenetetramine (1.59 g, 11.34 mmol) and ammonium acetate (14.0 g) were placed. The solids were suspended in glacial acetic acid and refluxed for 1 h. The mixture was cooled and neutralized with concentrated ammonium hydroxide, followed by the addition of water to precipitate the product fully. The product was collected by filtration, washed with water and dried to constant weight in a vacuum oven to give anhydrous (II) as a pale-gray solid (yield 2.02 g, 94.4%; m.p. 546 K). Analysis: C15H8Br2N2, Mr = 376.91; 1H NMR (400 MHz, 323 K, CD3SOCD3, δ, p.p.m.): 8.85 (s, 2H), 8.19 (d, J = 6.4 Hz, 2H), 8.04 (s, 1H), 7.78 (dd, J = 1.8 and 8.6 Hz, 2H); 13C NMR (CD3SOCD3, 323 K, δ, p.p.m.): 139.7, 139.5, 130.6, 128.6, 126.7, 124.3, 119.1. Rf = 0.37 (ethyl acetate/silica). Single crystals of (II) were obtained by slow evaporation of a DMSO solution of of the compound [m.p. 453 K (opaque), 572 K (soften), 583 K (melt)]. The hemihydrate formed owing to the adventitious presence of water in the DMSO solvent.

Refinement top

C-bound H atoms were positioned geometrically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule in (II) were located in a difference Fourier map and were allowed to refine with O—H distance restraints.

Friedel pairs in structure (I) were merged. Disordered atoms H11 and H43 (Fig. 1), which participate in the N—H···N hydrogen bonds, were located in a difference Fourier map. Their occupancy factors were constrained to add to unity and refined to 0.60 (3) and 0.40 (3). Refinement of the two-site model reduced the weighted R factor, wRF2(all), from 0.116 for the one-site model to 0.112. In several other structures containing benzimidazole units incapable of forming hydrogen bonds, residuals (Q-peaks) were located 0.44 to 0.88 Å from the N(imine) atoms and in the planes of the imidazole rings, and were refined for comparison with the present structure. Refinement as H atoms decreased the R factors in some instances and increased them in others. In imidazole-containing structures, approximate differences between the C2—N(amine) and C2—N(imine) bond lengths are 0.04 Å for systems with no amine–imine hydrogen bonding, while for dialkyl-substituted imidazolium ions, there is essentially no difference within experimental error. In the present structure, the difference is 0.020 Å, which is not inconsistent with the two-site disordered model described above. Taken together, these data provide moderate support for the disordered/twinned model.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme for the repeat unit of (Ia) and (Ib). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines represent the superimposed N11—H11···H43 and N43—H43···N11 hydrogen bonds.
[Figure 2] Fig. 2. A view of the packing of (I), down the b axis, showing the hydrogen-bonded polymer chains (dashed lines). See Table 1 for symmetry code.
[Figure 3] Fig. 3. A view of the asymmetric unit of (II), showing the atom-numbering scheme for the repeat unit of (IIa), (IIb) and water. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. A view of the packing of (II), showing the hydrogen-bonded polymer chains (dashed lines). See Table 1 for symmetry code.
(I) 1-H-phenanthro[9,10-d]imidazole top
Crystal data top
C15H10N2Dx = 1.426 Mg m3
Mr = 218.25Melting point: 581 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 966 reflections
a = 19.559 (3) Åθ = 2.9–25.0°
b = 5.2321 (8) ŵ = 0.09 mm1
c = 19.871 (3) ÅT = 298 K
V = 2033.5 (5) Å3Plate, pale-brown
Z = 80.47 × 0.37 × 0.10 mm
F(000) = 912
Data collection top
Bruker SMART CCD area-detector
diffractometer
2095 independent reflections
Radiation source: sealed tube1803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 2324
Tmin = 0.856, Tmax = 1.000k = 66
18138 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2 + 0.260P]
where P = (Fo2 + 2Fc2)/3
2095 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C15H10N2V = 2033.5 (5) Å3
Mr = 218.25Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 19.559 (3) ŵ = 0.09 mm1
b = 5.2321 (8) ÅT = 298 K
c = 19.871 (3) Å0.47 × 0.37 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2095 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
1803 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.035
18138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2095 reflectionsΔρmin = 0.12 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Friedel pairs in structure (I) were merged. Disordered atoms H11 and H43 (Fig. 1), which participate in the N—H···N hydrogen bonds, were located in a difference Fourier map. Their occupancy factors were constrained to add to unity and refined to 0.60 (3) and 0.40 (3). Refinement of the two-site model reduced the weighted R factor, wRF2(all), from 0.116 for the one-site model to 0.112. In several other structures containing benzimidazole units incapable of forming hydrogen bonds, residuals (Q-peaks) were located 0.44 to 0.88 Å from the N(imine) atoms and in the planes of the imidazole rings, and were refined for comparison with the present structure. Refinement as H atoms decreased the R factors in some instances and increased them in others. In imidazole-containing structures, approximate differences between the C2—N(amine) and C2—N(imine) bond lengths are 0.04 Å for systems with no amine–imine hydrogen bonding, while for dialkyl-substituted imidazolium ions, there is essentially no difference within experimental error. In the present structure, the difference is 0.020 Å, which is not inconsistent with the two-site disordered model described above. Taken together, these data provide moderate support for the disordered/twinned model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.14125 (13)0.4788 (5)0.17659 (14)0.0430 (6)
H110.18360.47000.18780.052*0.60 (3)
N130.02974 (13)0.3877 (5)0.17243 (14)0.0444 (6)
H130.00890.31480.18010.053*0.40 (3)
C110.11102 (13)0.6514 (6)0.13345 (15)0.0370 (6)
C120.08998 (15)0.3276 (6)0.19714 (17)0.0461 (7)
H120.09650.19130.22650.055*
C130.04282 (15)0.5965 (6)0.13091 (16)0.0385 (7)
C140.00325 (16)0.7413 (6)0.08938 (15)0.0402 (7)
C150.02497 (16)0.9427 (6)0.05082 (17)0.0418 (7)
C160.09839 (16)0.9970 (6)0.05263 (16)0.0409 (7)
C170.14227 (15)0.8501 (6)0.09424 (16)0.0376 (7)
C210.01985 (17)1.0895 (6)0.01158 (18)0.0483 (8)
H210.00261.22430.01370.058*
C220.08843 (18)1.0389 (7)0.0097 (2)0.0555 (9)
H220.11701.13910.01690.067*
C230.11560 (17)0.8415 (7)0.0467 (2)0.0555 (9)
H230.16230.80790.04490.067*
C240.07379 (16)0.6944 (7)0.08605 (17)0.0479 (8)
H240.09240.56130.11100.057*
C310.12841 (18)1.1899 (6)0.01361 (18)0.0480 (8)
H310.10091.28880.01430.058*
C320.19750 (18)1.2364 (7)0.01560 (18)0.0518 (8)
H320.21601.36490.01110.062*
C330.23962 (17)1.0944 (7)0.05677 (19)0.0521 (9)
H330.28621.12880.05810.062*
C340.21293 (15)0.9026 (7)0.09573 (17)0.0469 (8)
H340.24160.80680.12330.056*
N410.40116 (12)0.4153 (4)0.22151 (14)0.0409 (6)
H410.43980.34330.21310.049*0.60 (3)
N430.28930 (12)0.4958 (5)0.21919 (13)0.0417 (6)
H430.24660.48440.20940.050*0.40 (3)
C410.38937 (14)0.6213 (5)0.26271 (15)0.0366 (6)
C420.33959 (15)0.3502 (6)0.19720 (17)0.0453 (7)
H420.33300.21490.16760.054*
C430.32034 (14)0.6706 (5)0.26146 (15)0.0378 (6)
C440.28936 (14)0.8671 (6)0.30040 (15)0.0380 (7)
C450.33355 (15)1.0193 (6)0.34101 (16)0.0379 (6)
C460.40754 (14)0.9693 (5)0.34161 (15)0.0375 (6)
C470.43603 (15)0.7688 (6)0.30290 (15)0.0364 (7)
C510.45302 (16)1.1174 (6)0.38034 (18)0.0458 (8)
H510.43581.25230.40560.055*
C520.52135 (16)1.0693 (6)0.38192 (19)0.0498 (8)
H520.55001.17000.40830.060*
C530.54821 (16)0.8708 (7)0.3443 (2)0.0504 (8)
H530.59490.83820.34540.060*
C540.50629 (16)0.7226 (6)0.30570 (17)0.0453 (7)
H540.52480.58880.28090.054*
C610.30349 (16)1.2136 (6)0.38032 (17)0.0455 (7)
H610.33131.31740.40670.055*
C620.23426 (17)1.2528 (7)0.38043 (18)0.0517 (8)
H620.21551.38120.40700.062*
C630.19211 (17)1.1015 (7)0.3411 (2)0.0521 (8)
H630.14511.12810.34160.063*
C640.21929 (14)0.9128 (7)0.30129 (17)0.0462 (8)
H640.19050.81420.27460.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0403 (14)0.0430 (14)0.0459 (15)0.0000 (11)0.0001 (12)0.0044 (12)
N130.0416 (14)0.0466 (15)0.0451 (15)0.0023 (11)0.0009 (11)0.0014 (12)
C110.0338 (14)0.0385 (14)0.0388 (16)0.0020 (12)0.0003 (13)0.0004 (13)
C120.0493 (19)0.0446 (16)0.0446 (18)0.0004 (14)0.0015 (14)0.0044 (14)
C130.0370 (14)0.0405 (15)0.0382 (16)0.0010 (12)0.0030 (13)0.0042 (14)
C140.0374 (16)0.0423 (16)0.0407 (16)0.0009 (12)0.0022 (13)0.0068 (14)
C150.0407 (16)0.0435 (16)0.0410 (17)0.0044 (13)0.0033 (14)0.0089 (15)
C160.0435 (16)0.0402 (15)0.0389 (16)0.0005 (13)0.0008 (14)0.0034 (13)
C170.0383 (16)0.0371 (15)0.0376 (16)0.0007 (12)0.0024 (13)0.0055 (13)
C210.0485 (18)0.0458 (16)0.0507 (19)0.0037 (14)0.0056 (15)0.0026 (15)
C220.049 (2)0.059 (2)0.058 (2)0.0119 (16)0.0134 (17)0.0048 (18)
C230.0354 (17)0.066 (2)0.065 (2)0.0020 (15)0.0019 (16)0.0080 (19)
C240.0411 (17)0.0527 (18)0.0497 (19)0.0048 (14)0.0011 (15)0.0009 (16)
C310.053 (2)0.0431 (16)0.048 (2)0.0005 (14)0.0038 (17)0.0061 (15)
C320.055 (2)0.0472 (18)0.054 (2)0.0101 (16)0.0039 (16)0.0090 (17)
C330.0368 (17)0.0548 (19)0.065 (2)0.0083 (14)0.0005 (16)0.0019 (18)
C340.0401 (18)0.0491 (18)0.0514 (19)0.0020 (13)0.0006 (15)0.0049 (16)
N410.0403 (13)0.0412 (13)0.0410 (14)0.0030 (11)0.0016 (12)0.0021 (12)
N430.0347 (13)0.0452 (13)0.0451 (15)0.0010 (10)0.0045 (12)0.0020 (12)
C410.0379 (15)0.0353 (14)0.0365 (15)0.0012 (11)0.0026 (12)0.0064 (13)
C420.0491 (19)0.0463 (17)0.0405 (17)0.0014 (14)0.0021 (14)0.0037 (14)
C430.0354 (14)0.0366 (14)0.0413 (16)0.0018 (12)0.0009 (13)0.0069 (13)
C440.0355 (15)0.0361 (15)0.0425 (16)0.0001 (12)0.0039 (13)0.0056 (13)
C450.0414 (15)0.0354 (14)0.0369 (15)0.0014 (12)0.0035 (14)0.0085 (13)
C460.0382 (16)0.0367 (14)0.0376 (15)0.0025 (11)0.0012 (13)0.0060 (13)
C470.0327 (15)0.0371 (15)0.0394 (17)0.0018 (12)0.0010 (13)0.0082 (13)
C510.0481 (18)0.0407 (16)0.0487 (19)0.0023 (13)0.0012 (15)0.0014 (15)
C520.0424 (18)0.0523 (19)0.055 (2)0.0122 (14)0.0033 (16)0.0025 (17)
C530.0324 (15)0.062 (2)0.056 (2)0.0027 (14)0.0029 (16)0.0069 (19)
C540.0376 (16)0.0452 (17)0.0531 (18)0.0021 (13)0.0038 (14)0.0025 (16)
C610.0489 (18)0.0416 (16)0.0461 (18)0.0030 (13)0.0015 (15)0.0004 (15)
C620.0535 (19)0.0487 (18)0.0529 (19)0.0135 (16)0.0088 (17)0.0020 (17)
C630.0371 (16)0.058 (2)0.061 (2)0.0116 (14)0.0067 (16)0.0024 (18)
C640.0314 (16)0.0520 (19)0.055 (2)0.0019 (12)0.0006 (15)0.0011 (17)
Geometric parameters (Å, º) top
N11—C121.341 (4)N41—C421.341 (4)
N11—C111.379 (4)N41—C411.373 (4)
N11—H110.8600N41—H410.8600
N13—C121.315 (4)N43—C421.318 (4)
N13—C131.393 (4)N43—C431.382 (4)
N13—H130.8600N43—H430.8600
C11—C131.365 (4)C41—C431.375 (4)
C11—C171.436 (4)C41—C471.437 (4)
C12—H120.9300C42—H420.9300
C13—C141.438 (4)C43—C441.422 (4)
C14—C241.403 (5)C44—C641.391 (4)
C14—C151.415 (4)C44—C451.426 (4)
C15—C211.402 (4)C45—C611.411 (4)
C15—C161.464 (4)C45—C461.471 (4)
C16—C311.402 (5)C46—C511.409 (4)
C16—C171.418 (4)C46—C471.415 (4)
C17—C341.409 (4)C47—C541.396 (4)
C21—C221.368 (5)C51—C521.360 (5)
C21—H210.9300C51—H510.9300
C22—C231.374 (5)C52—C531.383 (5)
C22—H220.9300C52—H520.9300
C23—C241.369 (5)C53—C541.365 (5)
C23—H230.9300C53—H530.9300
C24—H240.9300C54—H540.9300
C31—C321.374 (5)C61—C621.369 (4)
C31—H310.9300C61—H610.9300
C32—C331.378 (5)C62—C631.385 (5)
C32—H320.9300C62—H620.9300
C33—C341.371 (5)C63—C641.372 (5)
C33—H330.9300C63—H630.9300
C34—H340.9300C64—H640.9300
C12—N11—C11104.8 (2)C42—N41—C41105.3 (2)
C12—N11—H11127.6C42—N41—H41127.4
C11—N11—H11127.6C41—N41—H41127.4
C12—N13—C13104.1 (3)C42—N43—C43104.8 (2)
C12—N13—H13127.9C42—N43—H43127.6
C13—N13—H13127.9C43—N43—H43127.6
C13—C11—N11107.7 (3)N41—C41—C43107.5 (3)
C13—C11—C17123.2 (3)N41—C41—C47130.3 (3)
N11—C11—C17129.0 (3)C43—C41—C47122.2 (3)
N13—C12—N11114.6 (3)N43—C42—N41113.8 (3)
N13—C12—H12122.7N43—C42—H42123.1
N11—C12—H12122.7N41—C42—H42123.1
C11—C13—N13108.8 (3)C41—C43—N43108.5 (3)
C11—C13—C14121.5 (3)C41—C43—C44123.0 (3)
N13—C13—C14129.7 (3)N43—C43—C44128.5 (2)
C24—C14—C15119.2 (3)C64—C44—C43123.4 (3)
C24—C14—C13123.5 (3)C64—C44—C45119.6 (3)
C15—C14—C13117.3 (3)C43—C44—C45117.0 (2)
C21—C15—C14117.7 (3)C61—C45—C44117.6 (3)
C21—C15—C16121.4 (3)C61—C45—C46122.3 (3)
C14—C15—C16120.9 (3)C44—C45—C46120.1 (3)
C31—C16—C17117.3 (3)C51—C46—C47117.1 (3)
C31—C16—C15122.5 (3)C51—C46—C45121.9 (3)
C17—C16—C15120.2 (3)C47—C46—C45121.0 (3)
C34—C17—C16120.0 (3)C54—C47—C46119.6 (3)
C34—C17—C11123.2 (3)C54—C47—C41123.6 (3)
C16—C17—C11116.8 (3)C46—C47—C41116.7 (3)
C22—C21—C15121.5 (3)C52—C51—C46122.1 (3)
C22—C21—H21119.3C52—C51—H51118.9
C15—C21—H21119.3C46—C51—H51118.9
C21—C22—C23120.7 (3)C51—C52—C53120.0 (3)
C21—C22—H22119.7C51—C52—H52120.0
C23—C22—H22119.7C53—C52—H52120.0
C24—C23—C22119.8 (3)C54—C53—C52120.1 (3)
C24—C23—H23120.1C54—C53—H53119.9
C22—C23—H23120.1C52—C53—H53119.9
C23—C24—C14121.1 (3)C53—C54—C47121.0 (3)
C23—C24—H24119.5C53—C54—H54119.5
C14—C24—H24119.5C47—C54—H54119.5
C32—C31—C16121.6 (3)C62—C61—C45121.4 (3)
C32—C31—H31119.2C62—C61—H61119.3
C16—C31—H31119.2C45—C61—H61119.3
C31—C32—C33120.6 (3)C61—C62—C63120.2 (3)
C31—C32—H32119.7C61—C62—H62119.9
C33—C32—H32119.7C63—C62—H62119.9
C34—C33—C32120.2 (3)C64—C63—C62120.4 (3)
C34—C33—H33119.9C64—C63—H63119.8
C32—C33—H33119.9C62—C63—H63119.8
C33—C34—C17120.3 (3)C63—C64—C44120.8 (3)
C33—C34—H34119.9C63—C64—H64119.6
C17—C34—H34119.9C44—C64—H64119.6
C12—N11—C11—C130.7 (3)C42—N41—C41—C430.2 (3)
C12—N11—C11—C17176.7 (3)C42—N41—C41—C47179.1 (3)
C13—N13—C12—N110.8 (4)C43—N43—C42—N410.1 (4)
C11—N11—C12—N131.0 (4)C41—N41—C42—N430.1 (4)
N11—C11—C13—N130.2 (3)N41—C41—C43—N430.3 (3)
C17—C11—C13—N13177.4 (3)C47—C41—C43—N43179.2 (3)
N11—C11—C13—C14179.3 (3)N41—C41—C43—C44177.8 (3)
C17—C11—C13—C141.7 (4)C47—C41—C43—C441.1 (4)
C12—N13—C13—C110.4 (3)C42—N43—C43—C410.2 (3)
C12—N13—C13—C14178.6 (3)C42—N43—C43—C44177.8 (3)
C11—C13—C14—C24178.9 (3)C41—C43—C44—C64177.7 (3)
N13—C13—C14—C242.2 (5)N43—C43—C44—C640.0 (5)
C11—C13—C14—C150.3 (4)C41—C43—C44—C451.2 (4)
N13—C13—C14—C15178.5 (3)N43—C43—C44—C45178.9 (3)
C24—C14—C15—C211.0 (4)C64—C44—C45—C610.6 (4)
C13—C14—C15—C21178.3 (3)C43—C44—C45—C61179.5 (3)
C24—C14—C15—C16179.7 (3)C64—C44—C45—C46178.7 (3)
C13—C14—C15—C161.0 (4)C43—C44—C45—C460.3 (4)
C21—C15—C16—C312.6 (5)C61—C45—C46—C511.6 (4)
C14—C15—C16—C31178.1 (3)C44—C45—C46—C51179.1 (3)
C21—C15—C16—C17178.2 (3)C61—C45—C46—C47178.4 (3)
C14—C15—C16—C171.1 (4)C44—C45—C46—C470.8 (4)
C31—C16—C17—C340.7 (5)C51—C46—C47—C541.4 (4)
C15—C16—C17—C34179.9 (3)C45—C46—C47—C54178.6 (3)
C31—C16—C17—C11179.4 (3)C51—C46—C47—C41179.0 (3)
C15—C16—C17—C110.2 (4)C45—C46—C47—C410.9 (4)
C13—C11—C17—C34178.5 (3)N41—C41—C47—C540.8 (5)
N11—C11—C17—C341.5 (5)C43—C41—C47—C54179.5 (3)
C13—C11—C17—C161.6 (4)N41—C41—C47—C46178.7 (3)
N11—C11—C17—C16178.6 (3)C43—C41—C47—C460.0 (4)
C14—C15—C21—C220.8 (5)C47—C46—C51—C521.1 (5)
C16—C15—C21—C22179.9 (3)C45—C46—C51—C52178.9 (3)
C15—C21—C22—C230.2 (5)C46—C51—C52—C530.4 (5)
C21—C22—C23—C240.3 (6)C51—C52—C53—C540.1 (5)
C22—C23—C24—C140.1 (5)C52—C53—C54—C470.4 (5)
C15—C14—C24—C230.6 (5)C46—C47—C54—C531.1 (5)
C13—C14—C24—C23178.7 (3)C41—C47—C54—C53179.4 (3)
C17—C16—C31—C320.3 (5)C44—C45—C61—C621.0 (5)
C15—C16—C31—C32179.4 (3)C46—C45—C61—C62178.2 (3)
C16—C31—C32—C330.5 (6)C45—C61—C62—C630.5 (5)
C31—C32—C33—C340.7 (5)C61—C62—C63—C640.5 (6)
C32—C33—C34—C170.3 (5)C62—C63—C64—C440.9 (5)
C16—C17—C34—C330.4 (5)C43—C44—C64—C63178.5 (3)
C11—C17—C34—C33179.7 (3)C45—C44—C64—C630.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N430.862.163.018 (3)173
N41—H41···N13i0.862.283.129 (3)168
N13—H13···N41ii0.862.283.129 (3)167
N43—H43···N110.862.163.018 (3)175
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.
(II) 3,6-dibromo-1-H-phenanthro[9,10-d]imidazole hemihydrate top
Crystal data top
C15H8Br2N2·0.5H2OZ = 4
Mr = 385.04F(000) = 748
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Melting point: 583 K
a = 8.415 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.139 (2) ÅCell parameters from 824 reflections
c = 17.227 (4) Åθ = 2.2–23.9°
α = 101.683 (4)°µ = 6.00 mm1
β = 101.398 (5)°T = 298 K
γ = 104.109 (5)°Plate, pale-yellow
V = 1347.9 (5) Å30.40 × 0.37 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5330 independent reflections
Radiation source: sealed tube3658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1010
Tmin = 0.359, Tmax = 1.000k = 1212
12857 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0728P)2]
where P = (Fo2 + 2Fc2)/3
5330 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 1.29 e Å3
2 restraintsΔρmin = 0.77 e Å3
Crystal data top
C15H8Br2N2·0.5H2Oγ = 104.109 (5)°
Mr = 385.04V = 1347.9 (5) Å3
Triclinic, P1Z = 4
a = 8.415 (2) ÅMo Kα radiation
b = 10.139 (2) ŵ = 6.00 mm1
c = 17.227 (4) ÅT = 298 K
α = 101.683 (4)°0.40 × 0.37 × 0.19 mm
β = 101.398 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5330 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
3658 reflections with I > 2σ(I)
Tmin = 0.359, Tmax = 1.000Rint = 0.040
12857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.29 e Å3
5330 reflectionsΔρmin = 0.77 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1756 (6)0.6635 (7)0.2421 (4)0.1129 (19)
H1O1.112 (11)0.724 (9)0.244 (7)0.18 (5)*
H2O1.201 (13)0.718 (10)0.208 (5)0.20 (5)*
Br530.43103 (6)0.24240 (6)0.61777 (3)0.06234 (18)
Br631.04163 (10)0.97232 (6)0.67120 (4)0.0945 (3)
N410.9268 (4)0.5002 (4)0.2891 (2)0.0479 (9)
H411.00100.56560.27950.057*
N430.7364 (5)0.2939 (4)0.2688 (2)0.0508 (9)
C410.8716 (5)0.5075 (4)0.3588 (3)0.0427 (10)
C420.8439 (5)0.3722 (5)0.2384 (3)0.0521 (11)
H420.86070.34170.18690.063*
C430.7523 (5)0.3785 (4)0.3461 (3)0.0438 (10)
C440.6710 (5)0.3458 (4)0.4076 (3)0.0417 (10)
C450.7172 (5)0.4499 (4)0.4833 (2)0.0376 (9)
C460.8385 (5)0.5888 (4)0.4952 (3)0.0409 (10)
C470.9164 (5)0.6165 (4)0.4320 (3)0.0413 (10)
C510.5564 (6)0.2153 (5)0.3976 (3)0.0526 (12)
H510.52740.14750.34780.063*
C520.4848 (6)0.1836 (5)0.4588 (3)0.0535 (12)
H520.40680.09630.45100.064*
C530.5320 (5)0.2856 (5)0.5329 (3)0.0473 (11)
C540.6426 (5)0.4157 (4)0.5453 (3)0.0435 (10)
H540.66870.48230.59530.052*
C611.0320 (6)0.7490 (5)0.4423 (3)0.0497 (11)
H611.08370.76590.40090.060*
C621.0686 (6)0.8534 (5)0.5135 (3)0.0570 (12)
H621.14470.94130.52080.068*
C630.9901 (6)0.8255 (5)0.5743 (3)0.0530 (12)
C640.8789 (6)0.6966 (4)0.5671 (3)0.0494 (11)
H640.83090.68140.61000.059*
Br230.32947 (6)0.35521 (6)0.23022 (3)0.06483 (18)
Br330.33555 (9)0.34459 (6)0.16606 (4)0.0839 (2)
N110.4763 (5)0.0408 (4)0.1674 (2)0.0502 (9)
H110.56350.11300.19110.060*
N130.2838 (5)0.1650 (4)0.1477 (2)0.0537 (10)
C110.3671 (5)0.0154 (4)0.0922 (2)0.0413 (9)
C120.4198 (7)0.0696 (5)0.1969 (3)0.0591 (13)
H120.47280.07760.24770.071*
C130.2492 (5)0.1118 (4)0.0804 (3)0.0434 (10)
C140.1146 (5)0.1736 (4)0.0077 (3)0.0420 (10)
C150.1036 (5)0.0967 (4)0.0522 (3)0.0412 (9)
C160.2310 (5)0.0396 (4)0.0397 (3)0.0419 (10)
C170.3651 (5)0.0964 (4)0.0336 (3)0.0412 (9)
C210.0044 (6)0.3057 (4)0.0068 (3)0.0491 (11)
H210.00520.35700.03200.059*
C220.1333 (6)0.3602 (5)0.0765 (3)0.0542 (12)
H220.21150.44790.08560.065*
C230.1457 (5)0.2820 (4)0.1340 (3)0.0461 (10)
C240.0316 (5)0.1545 (4)0.1234 (3)0.0479 (11)
H240.04310.10560.16340.057*
C310.4856 (6)0.2249 (4)0.0442 (3)0.0476 (11)
H310.57260.26170.09240.057*
C320.4793 (6)0.2983 (5)0.0141 (3)0.0534 (12)
H320.56110.38350.00640.064*
C330.3486 (6)0.2427 (5)0.0847 (3)0.0515 (11)
C340.2254 (6)0.1181 (4)0.0980 (3)0.0505 (11)
H340.13770.08530.14590.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.078 (3)0.144 (5)0.131 (5)0.005 (3)0.031 (3)0.098 (4)
Br530.0566 (3)0.0768 (4)0.0568 (3)0.0101 (2)0.0176 (2)0.0336 (3)
Br630.1571 (7)0.0495 (3)0.0525 (4)0.0014 (3)0.0144 (4)0.0078 (3)
N410.045 (2)0.049 (2)0.053 (2)0.0097 (16)0.0176 (17)0.0227 (18)
N430.049 (2)0.054 (2)0.046 (2)0.0104 (17)0.0133 (17)0.0111 (18)
C410.034 (2)0.046 (2)0.052 (3)0.0137 (18)0.0075 (19)0.021 (2)
C420.047 (3)0.062 (3)0.048 (3)0.015 (2)0.018 (2)0.014 (2)
C430.039 (2)0.048 (3)0.042 (3)0.0104 (19)0.0065 (19)0.013 (2)
C440.034 (2)0.046 (2)0.043 (2)0.0109 (18)0.0053 (18)0.0149 (19)
C450.031 (2)0.043 (2)0.041 (2)0.0126 (17)0.0049 (17)0.0182 (18)
C460.040 (2)0.039 (2)0.044 (2)0.0150 (18)0.0012 (18)0.0155 (19)
C470.037 (2)0.042 (2)0.046 (2)0.0132 (18)0.0036 (18)0.0185 (19)
C510.050 (3)0.054 (3)0.044 (3)0.002 (2)0.011 (2)0.007 (2)
C520.046 (3)0.053 (3)0.052 (3)0.001 (2)0.009 (2)0.016 (2)
C530.042 (2)0.063 (3)0.046 (3)0.015 (2)0.0166 (19)0.028 (2)
C540.042 (2)0.049 (2)0.040 (2)0.0146 (19)0.0077 (18)0.0153 (19)
C610.050 (3)0.046 (2)0.056 (3)0.014 (2)0.012 (2)0.022 (2)
C620.066 (3)0.042 (3)0.057 (3)0.010 (2)0.004 (2)0.019 (2)
C630.067 (3)0.041 (2)0.041 (3)0.012 (2)0.002 (2)0.011 (2)
C640.058 (3)0.046 (2)0.042 (3)0.013 (2)0.003 (2)0.018 (2)
Br230.0575 (3)0.0680 (3)0.0549 (3)0.0085 (2)0.0037 (2)0.0080 (2)
Br330.1271 (5)0.0599 (3)0.0626 (4)0.0119 (3)0.0183 (3)0.0372 (3)
N110.058 (2)0.043 (2)0.041 (2)0.0030 (17)0.0073 (17)0.0143 (17)
N130.064 (2)0.051 (2)0.045 (2)0.0088 (19)0.0119 (19)0.0224 (18)
C110.047 (2)0.042 (2)0.039 (2)0.0146 (18)0.0145 (19)0.0152 (18)
C120.074 (3)0.057 (3)0.046 (3)0.013 (3)0.013 (2)0.024 (2)
C130.057 (3)0.038 (2)0.042 (2)0.0156 (19)0.021 (2)0.0170 (19)
C140.048 (2)0.035 (2)0.044 (2)0.0115 (18)0.0160 (19)0.0123 (18)
C150.048 (2)0.039 (2)0.040 (2)0.0149 (18)0.0150 (19)0.0104 (18)
C160.050 (2)0.041 (2)0.041 (2)0.0162 (19)0.0190 (19)0.0137 (19)
C170.047 (2)0.039 (2)0.040 (2)0.0146 (18)0.0152 (19)0.0098 (18)
C210.059 (3)0.044 (2)0.049 (3)0.014 (2)0.018 (2)0.019 (2)
C220.056 (3)0.044 (3)0.060 (3)0.006 (2)0.018 (2)0.014 (2)
C230.043 (2)0.047 (2)0.043 (3)0.0118 (19)0.0102 (19)0.0045 (19)
C240.055 (3)0.047 (3)0.044 (3)0.017 (2)0.014 (2)0.012 (2)
C310.054 (3)0.043 (2)0.043 (3)0.007 (2)0.013 (2)0.0134 (19)
C320.065 (3)0.038 (2)0.061 (3)0.010 (2)0.023 (2)0.019 (2)
C330.074 (3)0.045 (3)0.043 (3)0.015 (2)0.024 (2)0.022 (2)
C340.068 (3)0.046 (2)0.037 (2)0.015 (2)0.013 (2)0.015 (2)
Geometric parameters (Å, º) top
O1—H1O0.91 (10)C64—H640.9300
O1—H2O0.91 (10)Br23—C231.903 (4)
Br53—C531.902 (4)Br33—C331.904 (4)
Br63—C631.894 (5)N11—C121.343 (6)
N41—C421.339 (6)N11—C111.367 (5)
N41—C411.366 (5)N11—H110.8600
N41—H410.8600N13—C121.307 (6)
N43—C421.314 (6)N13—C131.384 (5)
N43—C431.392 (5)C11—C131.371 (5)
C41—C431.387 (6)C11—C171.425 (6)
C41—C471.413 (6)C12—H120.9300
C42—H420.9300C13—C141.422 (6)
C43—C441.421 (6)C14—C211.403 (5)
C44—C511.389 (6)C14—C151.415 (6)
C44—C451.418 (6)C15—C241.405 (6)
C45—C541.400 (6)C15—C161.473 (5)
C45—C461.472 (5)C16—C341.403 (6)
C46—C641.396 (6)C16—C171.423 (6)
C46—C471.419 (6)C17—C311.394 (6)
C47—C611.407 (6)C21—C221.360 (6)
C51—C521.369 (6)C21—H210.9300
C51—H510.9300C22—C231.391 (6)
C52—C531.386 (6)C22—H220.9300
C52—H520.9300C23—C241.363 (6)
C53—C541.364 (6)C24—H240.9300
C54—H540.9300C31—C321.367 (6)
C61—C621.373 (7)C31—H310.9300
C61—H610.9300C32—C331.377 (6)
C62—C631.383 (7)C32—H320.9300
C62—H620.9300C33—C341.369 (6)
C63—C641.375 (6)C34—H340.9300
H1O—O1—H2O72 (8)C12—N11—C11106.1 (4)
C42—N41—C41107.2 (4)C12—N11—H11126.9
C42—N41—H41126.4C11—N11—H11126.9
C41—N41—H41126.4C12—N13—C13103.8 (4)
C42—N43—C43104.5 (4)N11—C11—C13106.0 (3)
N41—C41—C43105.8 (4)N11—C11—C17130.7 (4)
N41—C41—C47131.4 (4)C13—C11—C17123.3 (4)
C43—C41—C47122.8 (4)N13—C12—N11114.0 (4)
N43—C42—N41113.4 (4)N13—C12—H12123.0
N43—C42—H42123.3N11—C12—H12123.0
N41—C42—H42123.3C11—C13—N13110.1 (4)
C41—C43—N43109.2 (4)C11—C13—C14122.1 (4)
C41—C43—C44121.7 (4)N13—C13—C14127.8 (4)
N43—C43—C44129.1 (4)C21—C14—C15119.6 (4)
C51—C44—C45119.6 (4)C21—C14—C13123.1 (4)
C51—C44—C43122.8 (4)C15—C14—C13117.3 (4)
C45—C44—C43117.5 (4)C24—C15—C14118.0 (4)
C54—C45—C44117.6 (4)C24—C15—C16121.4 (4)
C54—C45—C46121.9 (4)C14—C15—C16120.6 (4)
C44—C45—C46120.5 (4)C34—C16—C17117.6 (4)
C64—C46—C47118.1 (4)C34—C16—C15122.2 (4)
C64—C46—C45122.1 (4)C17—C16—C15120.2 (4)
C47—C46—C45119.8 (4)C31—C17—C16119.5 (4)
C61—C47—C41121.9 (4)C31—C17—C11123.9 (4)
C61—C47—C46120.5 (4)C16—C17—C11116.6 (4)
C41—C47—C46117.6 (4)C22—C21—C14121.4 (4)
C52—C51—C44122.0 (4)C22—C21—H21119.3
C52—C51—H51119.0C14—C21—H21119.3
C44—C51—H51119.0C21—C22—C23118.5 (4)
C51—C52—C53117.9 (4)C21—C22—H22120.7
C51—C52—H52121.0C23—C22—H22120.7
C53—C52—H52121.0C24—C23—C22122.3 (4)
C54—C53—C52122.2 (4)C24—C23—Br23118.9 (3)
C54—C53—Br53119.8 (3)C22—C23—Br23118.8 (3)
C52—C53—Br53118.0 (3)C23—C24—C15120.1 (4)
C53—C54—C45120.6 (4)C23—C24—H24119.9
C53—C54—H54119.7C15—C24—H24119.9
C45—C54—H54119.7C32—C31—C17121.8 (4)
C62—C61—C47120.1 (4)C32—C31—H31119.1
C62—C61—H61119.9C17—C31—H31119.1
C47—C61—H61119.9C31—C32—C33118.2 (4)
C61—C62—C63118.8 (4)C31—C32—H32120.9
C61—C62—H62120.6C33—C32—H32120.9
C63—C62—H62120.6C34—C33—C32122.6 (4)
C64—C63—C62122.8 (4)C34—C33—Br33118.5 (3)
C64—C63—Br63119.5 (4)C32—C33—Br33118.9 (3)
C62—C63—Br63117.7 (3)C33—C34—C16120.2 (4)
C63—C64—C46119.7 (4)C33—C34—H34119.9
C63—C64—H64120.2C16—C34—H34119.9
C46—C64—H64120.2
C42—N41—C41—C430.4 (5)C12—N11—C11—C130.2 (5)
C42—N41—C41—C47179.6 (4)C12—N11—C11—C17179.9 (5)
C43—N43—C42—N410.5 (5)C13—N13—C12—N110.0 (6)
C41—N41—C42—N430.6 (5)C11—N11—C12—N130.1 (6)
N41—C41—C43—N430.1 (5)N11—C11—C13—N130.2 (5)
C47—C41—C43—N43179.9 (4)C17—C11—C13—N13180.0 (4)
N41—C41—C43—C44177.8 (4)N11—C11—C13—C14179.5 (4)
C47—C41—C43—C442.2 (6)C17—C11—C13—C140.3 (7)
C42—N43—C43—C410.2 (5)C12—N13—C13—C110.2 (5)
C42—N43—C43—C44177.3 (4)C12—N13—C13—C14179.6 (5)
C41—C43—C44—C51177.3 (4)C11—C13—C14—C21177.9 (4)
N43—C43—C44—C510.1 (7)N13—C13—C14—C211.8 (7)
C41—C43—C44—C450.5 (6)C11—C13—C14—C151.6 (6)
N43—C43—C44—C45176.7 (4)N13—C13—C14—C15178.7 (4)
C51—C44—C45—C540.4 (6)C21—C14—C15—C242.3 (6)
C43—C44—C45—C54177.3 (4)C13—C14—C15—C24178.2 (4)
C51—C44—C45—C46180.0 (4)C21—C14—C15—C16177.6 (4)
C43—C44—C45—C463.1 (6)C13—C14—C15—C161.9 (6)
C54—C45—C46—C643.5 (6)C24—C15—C16—C340.5 (6)
C44—C45—C46—C64176.0 (4)C14—C15—C16—C34179.3 (4)
C54—C45—C46—C47177.2 (4)C24—C15—C16—C17179.1 (4)
C44—C45—C46—C473.2 (6)C14—C15—C16—C171.0 (6)
N41—C41—C47—C613.0 (7)C34—C16—C17—C310.8 (6)
C43—C41—C47—C61177.0 (4)C15—C16—C17—C31179.5 (4)
N41—C41—C47—C46177.9 (4)C34—C16—C17—C11179.4 (4)
C43—C41—C47—C462.1 (6)C15—C16—C17—C110.3 (6)
C64—C46—C47—C610.4 (6)N11—C11—C17—C310.7 (7)
C45—C46—C47—C61179.7 (4)C13—C11—C17—C31179.1 (4)
C64—C46—C47—C41178.7 (4)N11—C11—C17—C16179.6 (4)
C45—C46—C47—C410.6 (6)C13—C11—C17—C160.7 (6)
C45—C44—C51—C520.4 (7)C15—C14—C21—C221.8 (7)
C43—C44—C51—C52177.1 (4)C13—C14—C21—C22178.8 (4)
C44—C51—C52—C531.0 (7)C14—C21—C22—C230.0 (7)
C51—C52—C53—C541.8 (7)C21—C22—C23—C241.3 (7)
C51—C52—C53—Br53179.4 (4)C21—C22—C23—Br23178.3 (3)
C52—C53—C54—C451.9 (7)C22—C23—C24—C150.8 (7)
Br53—C53—C54—C45179.5 (3)Br23—C23—C24—C15178.8 (3)
C44—C45—C54—C531.1 (6)C14—C15—C24—C231.1 (6)
C46—C45—C54—C53179.3 (4)C16—C15—C24—C23178.8 (4)
C41—C47—C61—C62178.2 (4)C16—C17—C31—C320.3 (7)
C46—C47—C61—C620.8 (6)C11—C17—C31—C32179.4 (4)
C47—C61—C62—C630.0 (7)C17—C31—C32—C330.6 (7)
C61—C62—C63—C641.2 (7)C31—C32—C33—C340.4 (7)
C61—C62—C63—Br63179.4 (3)C31—C32—C33—Br33179.1 (4)
C62—C63—C64—C461.6 (7)C32—C33—C34—C161.6 (7)
Br63—C63—C64—C46179.0 (3)Br33—C33—C34—C16179.7 (3)
C47—C46—C64—C630.7 (6)C17—C16—C34—C331.8 (6)
C45—C46—C64—C63178.5 (4)C15—C16—C34—C33178.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N430.862.052.892 (5)165
N41—H41···O10.861.872.702 (5)164
O1—H2O···N13i0.91 (10)1.83 (10)2.731 (8)172 (13)
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H10N2C15H8Br2N2·0.5H2O
Mr218.25385.04
Crystal system, space groupOrthorhombic, Pna21Triclinic, P1
Temperature (K)298298
a, b, c (Å)19.559 (3), 5.2321 (8), 19.871 (3)8.415 (2), 10.139 (2), 17.227 (4)
α, β, γ (°)90, 90, 90101.683 (4), 101.398 (5), 104.109 (5)
V3)2033.5 (5)1347.9 (5)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.096.00
Crystal size (mm)0.47 × 0.37 × 0.100.40 × 0.37 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Multi-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.856, 1.0000.359, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18138, 2095, 1803 12857, 5330, 3658
Rint0.0350.040
(sin θ/λ)max1)0.6200.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.00 0.047, 0.128, 1.00
No. of reflections20955330
No. of parameters308360
No. of restraints12
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.121.29, 0.77

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N430.862.163.018 (3)173
N41—H41···N13i0.862.283.129 (3)168
N13—H13···N41ii0.862.283.129 (3)167
N43—H43···N110.862.163.018 (3)175
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N430.862.052.892 (5)165
N41—H41···O10.861.872.702 (5)164
O1—H2O···N13i0.91 (10)1.83 (10)2.731 (8)172 (13)
Symmetry code: (i) x+1, y+1, z.
Geometric parameters of Cg···Cg and Cg···atom interactions (Å, °) top
StructureCgCg/AtomDistanceAngle
(I)Cg(I)1Cg(I)2i3.581 (2)2.8 (2)
(I)Cg(I)3Cg(I)4ii3.604 (2)2.8 (2)
(II)Cg(II)1Cg(II)2iii3.594 (3)1.0 (3)
(II)Cg(II)3Cg(II)4iv3.689 (3)1.7 (2)
(II)Cg(II)4Cg(II)2iv3.631 (3)2.5 (3)
(II)Cg(II)5Cg(II)6v3.536 (3)2.5 (2)
(II)Cg(II)4H42vi2.89 (1)159
(II)Cg(II)6Br53vi3.639 (2)86.1 (1)
Symmetry codes: (i) x, -1 + y, z; (ii) x, 1 + y, z; (iii) 1 - x, -y, -z; (iv) 1 - x, -y, -z; (v) 2 - x, -y, -z; (vi) 2 - x, 2 - y, 1 - z. Cg(I)1 is the centroid of N11/C11/C13/N13/C12. Cg(I)2 is the centroid of C16/C17/C34/C33/C32/C31 Cg(I)3 is the centroid of C44/C45/C61–C64 Cg(I)4 is the centroid of N41/C41/C43/N43/C42 Cg(II)1 is the centroid of N11/C11/C13/N13/C12 Cg(II)2 is the centroid of C16/C17/C31–C34 Cg(II)3 is the centroid of C11/C13–C17 Cg(II)4 is the centroid of C14/C15/C24/C23/C22/C21 Cg(II)5 is the centroid of C41/C43–C47 Cg(II)6 is the centroid of C46/C47/C61–C64
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds