Download citation
Download citation
link to html
A P212121 polymorph of the title compound, [Cu(CH3CN)4]BF4, is reported. The crystal structure is very similar to the structure of the Pna21 polymorph reported by Jones & Crespo [Acta Cryst. (1998), C54, 18–20]. The anions and one of the three independent cations occupy similar positions in both polymorphs. Two of the four symmetry-related positions of the other two cations are also identical in the two polymorphs, and the other two positions are related by mirror symmetry. The crystal used for the structure determination contained a volume fraction of 0.088 (7) of the Pna21 polymorph.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109001139/fg3075sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109001139/fg3075Isup2.hkl
Contains datablock I

CCDC reference: 724193

Comment top

Recently we have produced CuII complexes with N,N,N,N-tetramethylethylenediamide (tmeda) or N,N,N,N,N-pentamethyldiethylenetriamine (pmdta) as starting materials in the synthesis of hydroquinone-based dinuclear CuII complexes (Margraf et al., 2005). The title compound, (I), was obtained as a minor by-product in the preparation of [Cu(tmeda)(CH3CN)3](BF4)2 from tmeda and Cu(BF4)2 in acetonitrile. We report here the crystal structure of (I).

The asymmetric unit of (I) contains three independent molecules. The molecular structure with the atomic numbering scheme is shown in Fig. 1. Each Cu atom has a tetrahedral coordination of acetonitrile ligands. The N—Cu—N angles range from 105.69 (15) to 112.98 (15)°. The Cu—N bond lengths vary between 1.971 (3) and 2.020 (4) Å with an average length of 1.994 Å. The BF4- anions also have a tetrahedral conformation. The B—F bond distances range from 1.341 (6) to 1.418 (6) Å, with an average value of 1.377 Å. The BF4- anions show rather large librational motion. The average B—F distance, corrected for libration, is 1.415 Å. The crystal packing of (I) is shown in Fig. 2. The cations are connected to the anions by a 26 different intermolecular C—H···F contacts with H···F distances less than 2.75 Å. The shortest H···F distances are 2.36, 2.37, 2.41 and 2.42 Å. There are also two intermolecular C—H···N contacts with H···N distances of 2.61 and 2.64.Å.

The crystal structure of a polymorph of (I) has been reported by Jones & Crespo (1998). Surprisingly, the cell constants reported for that polymorph are almost identical to those observed in our study. The a, b and c axes are, respectively, 0.01, 0.05 and 0.06 Å shorter in the present determination. This difference may result from small differences in the temperatures of the measurements or from small experimental errors in the Bragg angles. Thus, at first glance, it appears that the same crystal structure has been determined in both studies. The space group reported by Jones & Crespo, however, is Pna21, while in our study we found P212121. Moreover, starting with the fractional coordinates of Jones & Crespo, the structure could not be refined with our reflection data to a low R value. For a direct comparison of the crystal packing in the two structures, the structure of Jones & Crespo has been transferred to the non-standard setting Pc21n. The resulting crystal packing is shown in Fig. 3. The resemblance to the packing shown in Fig. 2 is striking, apart from an origin shift of (0 0 1/4). The difference between the packings of the two polymorphs can only be seen on close inspection. For this purpose, the packing diagrams in Figs. 2 and 3 have been divided into segments. The segments labelled A and A' contain the cation with atom Cu1 and the three independent BF4- anions. The anions are positioned directly over three of the terminal methyl groups of this cation. The molecules within these segments show pseudo-mirror symmetry, with atoms Cu1, B1, F2, F4, N2, N3, C3, C4, C5 and C6 approximately on a pseudo-mirror plane perpendicular to the b axis. The segments labelled B and B' contain the cations with atoms Cu2 and Cu3. The two independent cations are related by a pseudo-twofold screw axis about (x, 1/4, 1/4) in Fig. 2 and about (x, 1/4, 0) in Fig. 3. The arrangement of these cations in each segment is extended in the b-axis direction by a crystallographic screw axis. The atoms in segment B are related to the atoms in segment B' by an additional screw axis in the P212121 polymorph, but by a glide plane in the Pc21n polymorph. The structure of the latter polymorph can be derived from the structure of the title compound if the atoms in segment B' are replaced by their mirror image about the a axis.

From the close similarity of the two polymorphs the question arises whether the crystal could be a mixture of the two polymorphs. In that case the observed intensities would be the sum of the contributions from two crystal structures: F2(obs) = xF2(calc, P212121) + (1 - x)F2(calc, Pc21n). Using the observed reflections, x was calculated by a least-squares procedure as x = 0.912 (7). Thus, the crystal used for the structure determination contains a volume fraction of 0.088 (7) of the second polymorph. A similar calculation, using the observed reflections of the Pc21n polymorph showed the crystal used by Jones & Crespo to contain a volume fraction of 0.044 (7) of the P212121 polymorph.

A number of isomorphous crystal structures of related compounds have been reported: [Cu(H3CCN)4]ClO4 (Bowmaker et al., 2004), [Ag(H3CCN)4]ClO4 (Jones & Bembenek, 1993), [Ag(H3CCN)4]BF4 (Aly et al., 2004), [Zn(H3CCN)4]SO4 (Yang et al., 2004) and [Li(H3CCN)4]ClO4 (Yokota et al., 1999). All these structures have the space group Pna21. No isomorphous structure has been reported for the P212121 polymorph. A crystal structure with space group P212121 and also having Z' = 3 has been reported for [Cu(H3CCN)4]PF6 acetonitrile solvate (Black et al., 1995; Dakin et al., 2000). The crystal packing of this compound, however, differs from the packing of the title compound.

Related literature top

For related literature, see: Aly et al. (2004); Black et al. (1995); Bowmaker et al. (2004); Dakin et al. (2000); Jones & Bembenek (1993); Jones & Crespo (1998); Margraf et al. (2005); Sheldrick (2008); Yang et al. (2004); Yokota et al. (1999).

Experimental top

N,N,N,N-Tetramethylethylenediamide (1.16 g, 10 mmol) was added under stirring to a solution of Cu(BF4)2 (2.91 g, 10 mmol) in dry acetonitrile. After a few days of slow evaporation, blue crystals of [Cu(tmeda)(CH3CN)3](BF4)2 and colorless crystals of (I) were obtained (yield 5%).

Refinement top

H atoms at the acetonitrile groups were positioned and refined with the AFIX 137 option in SHELXL97 (Sheldrick, 2008), using a fixed distance [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)]. Friedel opposites were not merged. The value of the Flack (1983) parameter showed the crystal to be a racemic twin. The volume fraction of the major polymorph included in the crystal was calculated by minimizing the sum Σw[Fo2 - xFc12 - (1 - x)Fc22]2, where Fo, Fc1 and Fc2 are the observed structure factor and the calculated structure factors for the P212121 and Pc21n polymorphs, respectively, and w = σ-2(Fo2). The resulting formula is x = Σw(Fo2 - Fc22)(Fc12 - Fc22)/Σw(Fc12 - Fc22)2. The R values and structural parameters reported in this work are based on a refinement using the original intensities, which contain a small contribution of the second polymorph.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the three independent cations and anions of (I), shown with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the P212121 polymorph of (I), viewed down the a axis.
[Figure 3] Fig. 3. The crystal packing of the Pc21n polymorph of (I), viewed down the a axis.
tetrakis(acetonitrile-κN)copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C2H3N)4]BF4F(000) = 1896
Mr = 314.57Dx = 1.559 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 508 reflections
a = 8.3184 (7) Åθ = 3–26°
b = 20.2887 (15) ŵ = 1.66 mm1
c = 23.822 (3) ÅT = 156 K
V = 4020.4 (7) Å3Block, colorless
Z = 120.50 × 0.34 × 0.32 mm
Data collection top
SIEMENS SMART 1K CCD
diffractometer
13482 independent reflections
Radiation source: normal-focus sealed tube11521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 32.6°, θmin = 1.3°
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
h = 1211
Tmin = 0.467, Tmax = 0.638k = 2629
54515 measured reflectionsl = 3335
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.04P)2 + 1P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max = 0.008
S = 1.15Δρmax = 1.84 e Å3
13482 reflectionsΔρmin = 0.99 e Å3
501 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00126 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 5847 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.265 (15)
Crystal data top
[Cu(C2H3N)4]BF4V = 4020.4 (7) Å3
Mr = 314.57Z = 12
Orthorhombic, P212121Mo Kα radiation
a = 8.3184 (7) ŵ = 1.66 mm1
b = 20.2887 (15) ÅT = 156 K
c = 23.822 (3) Å0.50 × 0.34 × 0.32 mm
Data collection top
SIEMENS SMART 1K CCD
diffractometer
13482 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
11521 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.638Rint = 0.041
54515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142Δρmax = 1.84 e Å3
S = 1.15Δρmin = 0.99 e Å3
13482 reflectionsAbsolute structure: Flack (1983), 5847 Friedel pairs
501 parametersAbsolute structure parameter: 0.265 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30105 (6)0.49941 (2)0.460963 (19)0.02451 (10)
Cu20.70170 (7)0.17782 (2)0.28865 (2)0.02650 (11)
Cu30.22334 (6)0.33442 (2)0.20580 (2)0.02612 (11)
N10.2242 (5)0.57928 (18)0.50033 (15)0.0293 (7)
N20.2304 (4)0.50131 (18)0.38103 (14)0.0278 (6)
N30.5414 (4)0.4992 (2)0.46080 (15)0.0278 (7)
N40.2283 (4)0.41769 (18)0.49884 (15)0.0288 (7)
N50.6150 (4)0.25924 (16)0.32477 (14)0.0262 (7)
N60.6185 (4)0.16882 (16)0.21079 (15)0.0305 (7)
N70.9400 (4)0.17326 (19)0.29036 (17)0.0311 (7)
N80.6188 (4)0.09848 (17)0.33091 (15)0.0279 (7)
N90.1349 (5)0.41043 (17)0.16168 (15)0.0278 (7)
N100.4601 (4)0.33650 (19)0.20415 (17)0.0317 (7)
N110.1382 (4)0.33729 (17)0.28455 (14)0.0291 (7)
N120.1323 (5)0.25339 (18)0.17012 (15)0.0292 (7)
C10.1999 (5)0.62837 (19)0.52199 (15)0.0244 (7)
C20.1649 (6)0.6908 (2)0.54958 (19)0.0320 (9)
H2A0.08790.71580.52690.048*
H2B0.26440.71620.55360.048*
H2C0.11890.68230.58680.048*
C30.2114 (5)0.50393 (18)0.33403 (15)0.0251 (7)
C40.1858 (6)0.5072 (2)0.27369 (16)0.0334 (9)
H4A0.09810.47750.26320.050*
H4B0.28440.49400.25420.050*
H4C0.15780.55240.26300.050*
C50.6791 (5)0.49917 (19)0.46082 (16)0.0245 (7)
C60.8522 (5)0.4996 (3)0.4612 (2)0.0323 (9)
H6A0.89060.53810.48210.048*
H6B0.89220.50160.42250.048*
H6C0.89170.45930.47920.048*
C70.2095 (5)0.36879 (18)0.52034 (15)0.0243 (7)
C80.1877 (6)0.3063 (2)0.54857 (19)0.0345 (9)
H8A0.23880.30800.58560.052*
H8B0.23690.27110.52620.052*
H8C0.07260.29740.55300.052*
C90.5652 (5)0.30195 (19)0.34953 (17)0.0255 (8)
C100.5041 (7)0.3569 (2)0.3825 (2)0.0406 (11)
H10A0.56440.36010.41770.061*
H10B0.39000.34970.39070.061*
H10C0.51670.39790.36120.061*
C110.5603 (5)0.1608 (2)0.16766 (17)0.0260 (7)
C120.4898 (6)0.1500 (2)0.11289 (19)0.0336 (9)
H12A0.56060.16820.08390.050*
H12B0.38480.17180.11100.050*
H12C0.47620.10250.10660.050*
C131.0760 (5)0.1701 (2)0.29056 (18)0.0281 (7)
C141.2516 (4)0.1653 (2)0.2916 (2)0.0327 (9)
H14A1.28730.15410.32960.049*
H14B1.29830.20770.28040.049*
H14C1.28660.13090.26540.049*
C150.5603 (5)0.05302 (19)0.34991 (17)0.0250 (7)
C160.4866 (7)0.0053 (2)0.3731 (2)0.0431 (12)
H16A0.43700.03090.34280.065*
H16B0.40410.00750.40030.065*
H16C0.56870.03210.39180.065*
C170.0762 (5)0.4527 (2)0.13848 (17)0.0267 (8)
C180.0022 (7)0.5074 (3)0.1098 (2)0.0426 (12)
H18A0.11670.50800.11950.064*
H18B0.00960.50200.06910.064*
H18C0.04760.54900.12140.064*
C190.5965 (5)0.3372 (2)0.20461 (17)0.0251 (7)
C200.7705 (5)0.3378 (2)0.2063 (2)0.0312 (8)
H20A0.80730.37590.22800.047*
H20B0.81280.34050.16800.047*
H20C0.80920.29720.22410.047*
C210.0815 (5)0.3346 (2)0.32769 (17)0.0260 (7)
C220.0064 (7)0.3304 (3)0.38327 (18)0.0398 (11)
H22A0.09790.35290.38250.060*
H22B0.07620.35160.41110.060*
H22C0.00920.28400.39340.060*
C230.0642 (5)0.2137 (2)0.14551 (17)0.0252 (7)
C240.0201 (5)0.1633 (3)0.1147 (2)0.0349 (10)
H24A0.05610.13910.09100.052*
H24B0.10270.18370.09110.052*
H24C0.07100.13270.14110.052*
B10.7356 (5)0.5024 (3)0.2926 (2)0.0314 (9)
B20.7280 (6)0.3364 (3)0.5468 (2)0.0301 (10)
B30.7213 (6)0.6658 (3)0.5447 (2)0.0296 (9)
F10.7963 (7)0.55689 (18)0.31896 (15)0.0701 (11)
F20.7897 (5)0.50156 (17)0.23767 (12)0.0545 (8)
F30.8039 (5)0.44662 (17)0.31943 (14)0.0576 (9)
F40.5745 (4)0.4987 (3)0.2954 (2)0.0908 (14)
F50.7841 (6)0.39049 (15)0.57611 (14)0.0567 (9)
F60.7841 (6)0.34153 (16)0.49250 (13)0.0623 (10)
F70.5668 (4)0.3344 (2)0.5472 (2)0.0849 (15)
F80.7866 (5)0.27883 (14)0.57125 (13)0.0469 (7)
F90.7648 (6)0.60983 (16)0.57453 (15)0.0730 (15)
F100.5561 (5)0.6704 (3)0.5413 (2)0.0856 (14)
F110.7860 (5)0.66086 (16)0.49160 (12)0.0530 (8)
F120.7788 (5)0.72050 (15)0.57212 (15)0.0537 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0223 (2)0.0254 (2)0.0258 (2)0.0001 (2)0.0005 (2)0.00116 (19)
Cu20.0267 (2)0.0247 (2)0.0281 (2)0.0009 (2)0.0001 (2)0.00064 (18)
Cu30.0241 (2)0.0272 (2)0.0271 (2)0.00312 (19)0.0011 (2)0.00017 (19)
N10.0255 (17)0.0304 (17)0.0320 (17)0.0009 (14)0.0007 (14)0.0029 (13)
N20.0252 (16)0.0284 (15)0.0297 (16)0.0018 (14)0.0003 (12)0.0000 (13)
N30.0253 (16)0.0268 (16)0.0314 (16)0.0011 (14)0.0010 (14)0.0018 (18)
N40.0236 (16)0.0315 (17)0.0313 (17)0.0049 (14)0.0014 (13)0.0040 (13)
N50.0277 (17)0.0245 (16)0.0263 (16)0.0016 (13)0.0006 (13)0.0007 (13)
N60.0338 (16)0.0264 (16)0.0312 (17)0.0003 (14)0.0017 (14)0.0006 (15)
N70.0277 (16)0.0315 (18)0.0341 (18)0.0018 (15)0.0005 (15)0.0019 (17)
N80.0299 (18)0.0245 (16)0.0291 (17)0.0018 (14)0.0001 (14)0.0015 (13)
N90.0260 (16)0.0272 (16)0.0301 (18)0.0006 (13)0.0040 (13)0.0006 (13)
N100.0241 (15)0.0348 (18)0.0362 (18)0.0028 (14)0.0036 (14)0.0019 (18)
N110.0324 (16)0.0273 (15)0.0277 (17)0.0013 (13)0.0055 (13)0.0002 (14)
N120.0297 (18)0.0280 (16)0.0298 (17)0.0015 (14)0.0024 (14)0.0040 (14)
C10.0219 (16)0.0286 (17)0.0227 (16)0.0057 (16)0.0031 (15)0.0016 (13)
C20.037 (2)0.0237 (19)0.035 (2)0.0061 (16)0.0006 (17)0.0058 (15)
C30.0250 (16)0.0220 (15)0.0282 (17)0.0021 (17)0.0005 (15)0.0007 (13)
C40.039 (2)0.035 (2)0.0259 (18)0.014 (2)0.0061 (17)0.0009 (15)
C50.0295 (19)0.0208 (15)0.0234 (15)0.0015 (16)0.0023 (15)0.0011 (15)
C60.0200 (17)0.035 (2)0.042 (2)0.0001 (18)0.0008 (17)0.003 (2)
C70.0248 (17)0.0254 (17)0.0225 (16)0.0066 (16)0.0014 (15)0.0013 (13)
C80.041 (2)0.0257 (19)0.037 (2)0.0038 (18)0.012 (2)0.0057 (15)
C90.0234 (18)0.0243 (17)0.0287 (19)0.0009 (14)0.0041 (15)0.0025 (15)
C100.049 (3)0.028 (2)0.045 (3)0.004 (2)0.005 (2)0.0075 (19)
C110.0255 (17)0.0240 (17)0.0284 (18)0.0003 (14)0.0034 (14)0.0028 (15)
C120.030 (2)0.036 (2)0.034 (2)0.0059 (19)0.0032 (18)0.0047 (18)
C130.0297 (18)0.0262 (18)0.0283 (18)0.0006 (16)0.0019 (16)0.0013 (17)
C140.0234 (18)0.035 (2)0.040 (2)0.0023 (15)0.0012 (16)0.006 (2)
C150.0219 (17)0.0244 (17)0.0287 (19)0.0045 (14)0.0012 (14)0.0003 (15)
C160.043 (3)0.022 (2)0.063 (3)0.001 (2)0.016 (3)0.007 (2)
C170.0247 (18)0.031 (2)0.0245 (18)0.0022 (16)0.0022 (15)0.0014 (15)
C180.038 (3)0.051 (3)0.039 (2)0.011 (2)0.003 (2)0.016 (2)
C190.0243 (17)0.0262 (17)0.0249 (16)0.0019 (14)0.0004 (15)0.0034 (17)
C200.0198 (16)0.037 (2)0.037 (2)0.0072 (15)0.0027 (16)0.0033 (19)
C210.0228 (16)0.0254 (18)0.0298 (18)0.0027 (15)0.0030 (14)0.0000 (15)
C220.047 (3)0.046 (3)0.026 (2)0.007 (3)0.007 (2)0.003 (2)
C230.0233 (18)0.0273 (18)0.0249 (18)0.0004 (15)0.0031 (14)0.0028 (15)
C240.0215 (19)0.039 (2)0.044 (2)0.0047 (18)0.0037 (17)0.014 (2)
B10.0224 (19)0.036 (2)0.035 (2)0.0063 (17)0.0008 (18)0.008 (2)
B20.025 (2)0.031 (2)0.035 (2)0.0010 (19)0.0020 (17)0.0019 (19)
B30.026 (2)0.031 (2)0.032 (2)0.009 (2)0.0033 (18)0.0014 (18)
F10.102 (3)0.0512 (19)0.057 (2)0.008 (2)0.003 (3)0.0154 (16)
F20.075 (2)0.0534 (18)0.0348 (14)0.001 (2)0.0045 (15)0.0016 (13)
F30.064 (2)0.0540 (19)0.0546 (19)0.0255 (19)0.0037 (19)0.0123 (15)
F40.0302 (17)0.122 (4)0.120 (4)0.002 (2)0.004 (2)0.026 (4)
F50.086 (3)0.0333 (15)0.0509 (18)0.0059 (18)0.013 (2)0.0122 (13)
F60.113 (3)0.0387 (15)0.0355 (15)0.010 (2)0.0086 (19)0.0005 (12)
F70.0199 (14)0.086 (3)0.149 (4)0.0012 (19)0.004 (2)0.021 (3)
F80.0549 (19)0.0323 (14)0.0534 (17)0.0065 (15)0.0020 (17)0.0105 (12)
F90.137 (5)0.0363 (16)0.0461 (19)0.026 (2)0.008 (2)0.0088 (14)
F100.040 (2)0.103 (4)0.114 (4)0.003 (2)0.005 (2)0.017 (3)
F110.075 (2)0.0456 (16)0.0388 (15)0.0034 (19)0.0196 (16)0.0018 (13)
F120.063 (2)0.0375 (15)0.061 (2)0.0032 (16)0.0005 (18)0.0153 (14)
Geometric parameters (Å, º) top
Cu1—N11.978 (4)C10—H10B0.9800
Cu1—N41.982 (4)C10—H10C0.9800
Cu1—N21.993 (3)C11—C121.447 (6)
Cu1—N32.000 (3)C12—H12A0.9800
Cu2—N71.985 (4)C12—H12B0.9800
Cu2—N61.988 (4)C12—H12C0.9800
Cu2—N51.997 (3)C13—C141.464 (5)
Cu2—N82.020 (4)C14—H14A0.9800
Cu3—N101.971 (3)C14—H14B0.9800
Cu3—N122.000 (4)C14—H14C0.9800
Cu3—N92.006 (4)C15—C161.442 (6)
Cu3—N112.006 (4)C16—H16A0.9800
N1—C11.140 (5)C16—H16B0.9800
N2—C31.132 (5)C16—H16C0.9800
N3—C51.145 (5)C17—C181.457 (6)
N4—C71.127 (5)C18—H18A0.9800
N5—C91.127 (5)C18—H18B0.9800
N6—C111.147 (5)C18—H18C0.9800
N7—C131.133 (5)C19—C201.448 (5)
N8—C151.137 (5)C20—H20A0.9800
N9—C171.132 (5)C20—H20B0.9800
N10—C191.135 (5)C20—H20C0.9800
N11—C211.132 (5)C21—C221.466 (6)
N12—C231.146 (5)C22—H22A0.9800
C1—C21.456 (5)C22—H22B0.9800
C2—H2A0.9800C22—H22C0.9800
C2—H2B0.9800C23—C241.441 (6)
C2—H2C0.9800C24—H24A0.9800
C3—C41.455 (5)C24—H24B0.9800
C4—H4A0.9800C24—H24C0.9800
C4—H4B0.9800B1—F41.343 (6)
C4—H4C0.9800B1—F11.368 (7)
C5—C61.440 (6)B1—F21.384 (6)
C6—H6A0.9800B1—F31.418 (6)
C6—H6B0.9800B2—F71.341 (6)
C6—H6C0.9800B2—F61.379 (6)
C7—C81.447 (5)B2—F51.382 (6)
C8—H8A0.9800B2—F81.393 (6)
C8—H8B0.9800B3—F121.375 (6)
C8—H8C0.9800B3—F111.377 (6)
C9—C101.455 (6)B3—F101.380 (7)
C10—H10A0.9800B3—F91.388 (6)
N1—Cu1—N4111.75 (15)C11—C12—H12A109.5
N1—Cu1—N2109.98 (15)C11—C12—H12B109.5
N4—Cu1—N2111.16 (15)H12A—C12—H12B109.5
N1—Cu1—N3109.01 (16)C11—C12—H12C109.5
N4—Cu1—N3107.72 (16)H12A—C12—H12C109.5
N2—Cu1—N3107.05 (14)H12B—C12—H12C109.5
N7—Cu2—N6111.25 (16)N7—C13—C14179.1 (6)
N7—Cu2—N5112.98 (15)C13—C14—H14A109.5
N6—Cu2—N5110.62 (14)C13—C14—H14B109.5
N7—Cu2—N8107.07 (16)H14A—C14—H14B109.5
N6—Cu2—N8105.83 (14)C13—C14—H14C109.5
N5—Cu2—N8108.73 (14)H14A—C14—H14C109.5
N10—Cu3—N12112.80 (16)H14B—C14—H14C109.5
N10—Cu3—N9109.85 (16)N8—C15—C16178.9 (5)
N12—Cu3—N9105.69 (15)C15—C16—H16A109.5
N10—Cu3—N11111.78 (16)C15—C16—H16B109.5
N12—Cu3—N11106.71 (15)H16A—C16—H16B109.5
N9—Cu3—N11109.78 (15)C15—C16—H16C109.5
C1—N1—Cu1171.0 (4)H16A—C16—H16C109.5
C3—N2—Cu1170.7 (3)H16B—C16—H16C109.5
C5—N3—Cu1179.8 (5)N9—C17—C18178.6 (5)
C7—N4—Cu1170.1 (4)C17—C18—H18A109.5
C9—N5—Cu2173.7 (3)C17—C18—H18B109.5
C11—N6—Cu2174.5 (3)H18A—C18—H18B109.5
C13—N7—Cu2178.9 (4)C17—C18—H18C109.5
C15—N8—Cu2172.4 (4)H18A—C18—H18C109.5
C17—N9—Cu3175.7 (4)H18B—C18—H18C109.5
C19—N10—Cu3178.2 (4)N10—C19—C20178.9 (5)
C21—N11—Cu3174.1 (3)C19—C20—H20A109.5
C23—N12—Cu3169.2 (4)C19—C20—H20B109.5
N1—C1—C2178.7 (5)H20A—C20—H20B109.5
C1—C2—H2A109.5C19—C20—H20C109.5
C1—C2—H2B109.5H20A—C20—H20C109.5
H2A—C2—H2B109.5H20B—C20—H20C109.5
C1—C2—H2C109.5N11—C21—C22179.2 (5)
H2A—C2—H2C109.5C21—C22—H22A109.5
H2B—C2—H2C109.5C21—C22—H22B109.5
N2—C3—C4179.6 (5)H22A—C22—H22B109.5
C3—C4—H4A109.5C21—C22—H22C109.5
C3—C4—H4B109.5H22A—C22—H22C109.5
H4A—C4—H4B109.5H22B—C22—H22C109.5
C3—C4—H4C109.5N12—C23—C24179.4 (5)
H4A—C4—H4C109.5C23—C24—H24A109.5
H4B—C4—H4C109.5C23—C24—H24B109.5
N3—C5—C6179.5 (5)H24A—C24—H24B109.5
C5—C6—H6A109.5C23—C24—H24C109.5
C5—C6—H6B109.5H24A—C24—H24C109.5
H6A—C6—H6B109.5H24B—C24—H24C109.5
C5—C6—H6C109.5F4—B1—F1113.0 (5)
H6A—C6—H6C109.5F4—B1—F2111.7 (5)
H6B—C6—H6C109.5F1—B1—F2108.9 (4)
N4—C7—C8179.0 (5)F4—B1—F3109.5 (5)
C7—C8—H8A109.5F1—B1—F3106.9 (4)
C7—C8—H8B109.5F2—B1—F3106.6 (4)
H8A—C8—H8B109.5F7—B2—F6110.3 (5)
C7—C8—H8C109.5F7—B2—F5110.9 (5)
H8A—C8—H8C109.5F6—B2—F5107.4 (4)
H8B—C8—H8C109.5F7—B2—F8108.8 (5)
N5—C9—C10178.6 (5)F6—B2—F8109.7 (4)
C9—C10—H10A109.5F5—B2—F8109.7 (4)
C9—C10—H10B109.5F12—B3—F11111.1 (4)
H10A—C10—H10B109.5F12—B3—F10108.6 (5)
C9—C10—H10C109.5F11—B3—F10110.0 (5)
H10A—C10—H10C109.5F12—B3—F9109.0 (4)
H10B—C10—H10C109.5F11—B3—F9108.0 (4)
N6—C11—C12178.8 (5)F10—B3—F9110.2 (5)

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)4]BF4
Mr314.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)156
a, b, c (Å)8.3184 (7), 20.2887 (15), 23.822 (3)
V3)4020.4 (7)
Z12
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.50 × 0.34 × 0.32
Data collection
DiffractometerSIEMENS SMART 1K CCD
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.467, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
54515, 13482, 11521
Rint0.041
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.15
No. of reflections13482
No. of parameters501
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.84, 0.99
Absolute structureFlack (1983), 5847 Friedel pairs
Absolute structure parameter0.265 (15)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds