Download citation
Download citation
link to html
The tris­(1H-benzimidazol-2-yl­meth­yl)­amine (ntb) mol­ecule crystallizes in different solvent systems, resulting in two kinds of adduct, namely the monohydrate, C24H21N7·H2O or ntb·H2O, (I), and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O or ntb·1.5H2O·0.5MeOH·MeCN, (II). In both cases, ntb adopts a tripodal mode to form hydrogen bonds with a solvent water mol­ecule via two N—H...O and one O—H...N hydrogen bond. In (I), the ntb·H2O adduct is further assembled into a two-dimensional network by N—H...N and O—H...N hydrogen bonds, while in (II), a double-stranded one-dimensional chain structure is assembled via N—H...O and O—H...O hydrogen bonds, with the acetonitrile mol­ecules located inside the cavities of the chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023553/fg1867sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023553/fg1867Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023553/fg1867IIsup3.hkl
Contains datablock II

CCDC references: 285654; 285655

Comment top

The tripodal compound tris(2-benzimidazolylmethyl)amine (ntb) is a versatile ligand which possesses three imine N atoms and three amine NH groups. The three imine N atoms can act as coodination donors to form various metal complexes (Moon et al., 2002; Su, Kang, Mu et al., 1998), while the three amine NH groups are potential hydrogen-bond donors (Su, Kang, Liu et al., 1998; Su et al., 2000). Since the three benzimidazolyl (Bim) arms can rotate freely about methylene (–CH2–) groups, and the three imine N atoms can also behave as hydrogen-bond acceptors, ntb is a good candidate for formation of hydrogen-bonded adducts via specific steric intermolecular recognition. We have been interested in assembly of supramolecular aggregates with ntb-related compounds, and we report here two kinds of ntb–solvent adducts formed via multiple hydrogen bonds. The adduct (I) has been reported previously (Zhou et al., 1999), but the reported structure was not fully determined or refined as no allowance was made for any of the H atoms in the structure. We have redetermined the structure and located all H atoms. The crystal structural analyses of the adducts C24H21N7·H2O, ntb·H2O, (I), and C24H21N7·1.5(H2O)·0.5(CH4O)·C2H3N), ntb·1.5(H2O)·0.5(MeOH)·MeCN, (II), revealed that the recognition of water molecule by ntb is specific in both adducts, but the extension of the hydrogen bonds are different depending on inclusion of different solvent molecules.

Our structure determination of (I) shows that all imine and amine groups of ntb and the water molecules are involved in hydrogen-bond formation (Table 1). The ntb molecule takes on a tripodal mode, with two NH groups and one imine N atom directed towards the water molecule, which is held by forming two D···A-type N—H···O and one A···D-type N···H—O hydrogen bonds, as shown in Fig. 1. Such a hydrogen-bonding environment is specific for recognition of the water molecule because of its tetrahedral hydrogen-bonding geometry. The remaining H atom of the water molecule forms an O—H···N hydrogen bond with one `outside' imine N atom belonging to a neighbouring ntb molecule. In addition, there is one more imine N atom and one NH group of a neighbouring ntb molecule, which form N—H···N hydrogen bonds resulting in a two-dimensional network parallel to (10–1), as depicted in Fig. 2.

When ntb crystallized in the hydrated MeOH/MeCN solution, the adduct ntb·1.5(H2O)·0.5(MeOH)·MeCN, (II), was obtained. In this compound, all imine and amine groups of ntb are involved in hydrogen bonding (Table 2). Our structure determination shows that the water molecule was recognized by ntb in exactly the same way as in (I) (details are in Table 2). As in (I), there are two D···A-type N—H···O and one A···D-type N···H—O hydrogen bonds, as shown in Fig. 3. The ntb molecule takes on the same tripodal conformation in both (I) and (II), with one imine N atom and two NH groups pointing `inside' and leaving two imine N atoms and one NH group directed `outside' of the ntb-H2O moiety.

The analysis of (II) was slightly complicated by disorder. The methanol molecule (O3/C4 in Fig. 3) lies adjacent to an inversion centre with the methyl C atom at such a short intermolecular distance [2.298 (7) Å from C4 at (2 − x, −y, −z)] that it can be present with an occupancy of no more than 0.5. Occupancy refinement showed unequivocally that while methanol atom C4 is only present with 0.5 occupancy, the O-atom site has unit occupancy, implying that this site (labelled as O2 and O3 in Fig. 3) must contain a 0.5-occupancy water molecule (O2) as well as the 0.5-occupancy methanol atom O3.

One of the two outside imine N atom forms an N···H—O hydrogen bond with the 0.5-occupancy methanol/water site (Fig. 3). Water molecule O1 forms its fourth O—H···O hydrogen bond with a neighbouring 0.5-occupancy methanol/water site, thus generating a one-dimensional ntb·(H2O)···(MeOH/H2O)···ntb·(H2O)···(MeOH/H2O) chain, as depicted in Fig. 4. Since there remains one outside imine N atom and one outside NH group for each ntb molecule, two such one-dimensional chains are connected by the formation of N—H···N hydrogen bonds to result in a double-stranded chain along the a axis (Fig. 4). The acetonitrile molecules are located inside the cavities of such double-stranded chains, with only van der Waals contacts to the hydrogen-bonded chains.

The difference between (I) and (II) is that there is in (II) an additional site equally occupied by methanol and water O atoms, which disrupts the direct hydrogen bonding of the `enclosed' water molecule to a neighbouring ntb molecule as in (I).

Experimental top

ntb was prepared from the condensation reaction between nitrilotriacetate and 1,2-diaminobenzene in diethylene glycol (yield 85%). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation from 98% methanol solution at room tempearture. The single-crystal of (II) was obtained by slow evaporation from 98% methanol/acetonitrile solution at room temperature.

Refinement top

All H atoms, except those on O– and N atoms involved in hydrogen-bond formation, were included as riding atoms. The O– and N-bound H atoms were located in difference Fourier maps and refined with isotropic displacement parameters [for the OH group in (II), Uiso(H) = 1.5Ueq(O)]. In (II) (as noted in the Comment section), the methanol O atom was found to share a site with a water O atom. The site occupancy refinement of the methyl C atom indicated an occupancy of 1/2, while that of the O atom was close to unity. The water (O2) and methanol (O3) O atoms were then assigned occupancies of 0.5 and constrained to lie at the same site. Only one H atom could be located at the O2/O3 site, and this was assigned unit occupancy. The missing 0.5-occupancy water H atom is presumably disordered. Difference maps showed that the H atoms of the methanol and acetonitrile methyl groups in (II) were diffuse, and these were allowed for as six H-atom sites with appropriate occupancy. C-bound H atoms were treated as riding, with C—H distances of 0.93–0.97 Å and Uiso(H) values set at 1.5 (methyl H atoms) and 1.2 (other H atoms) times Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1993) for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II). Cell refinement: SAINT (Siemens, 1995) for (I); CAD-4 EXPRESS for (II). Data reduction: SAINT for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A view of the hydrogen-bonded two-dimensional network in (I) in the (101) plane. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) −1/2 + x, 1/2 − y, 1/2 + z; (ii) 1/2 − x, −1/2 + y, 1/2 − z; (iii) 1 − x, −y, 1 − z; (iv) 1 − x, 1 − y, 1 − z.]
[Figure 3] Fig. 3. A view of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Atoms O2 and O3 were constrained to share the same site.
[Figure 4] Fig. 4. A view of the hydrogen-bonded chain structure in (II), along the a axis. Dashed lines indicate hydrogen bonds and guest MeCN molecules are in space filling mode. [Symmetry code: (i) x − 1, y, z.]
(I) tris(1H-benzimidazol-2-ylmethyl)amine monohydrate top
Crystal data top
C24H21N7·H2OF(000) = 896
Mr = 425.49Dx = 1.261 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7855 reflections
a = 9.9731 (6) Åθ = 4.2–26.3°
b = 12.3273 (7) ŵ = 0.08 mm1
c = 18.2323 (11) ÅT = 293 K
β = 91.508 (1)°Block, colorless
V = 2240.7 (2) Å30.28 × 0.2 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
6455 independent reflections
Radiation source: fine-focus sealed tube4526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.0°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.873, Tmax = 1.000k = 1617
15554 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6455 reflectionsΔρmax = 0.20 e Å3
310 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (11)
Crystal data top
C24H21N7·H2OV = 2240.7 (2) Å3
Mr = 425.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9731 (6) ŵ = 0.08 mm1
b = 12.3273 (7) ÅT = 293 K
c = 18.2323 (11) Å0.28 × 0.2 × 0.18 mm
β = 91.508 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
6455 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4526 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 1.000Rint = 0.019
15554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
6455 reflectionsΔρmin = 0.16 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63260 (8)0.41576 (6)0.13152 (4)0.03462 (18)
N110.80183 (9)0.33068 (7)0.24444 (5)0.0417 (2)
N130.73681 (9)0.45544 (7)0.32475 (5)0.0431 (2)
N210.83170 (9)0.34272 (7)0.03248 (5)0.0410 (2)
N230.81665 (8)0.50075 (7)0.02644 (5)0.0387 (2)
N330.47316 (8)0.21656 (7)0.13303 (5)0.0395 (2)
N310.29342 (9)0.30999 (8)0.09342 (5)0.0416 (2)
C10.60385 (10)0.44366 (9)0.20748 (5)0.0406 (2)
H1A0.52260.40680.22170.049*
H1B0.58830.52110.21100.049*
C120.71609 (10)0.41264 (8)0.25909 (5)0.0371 (2)
C140.84133 (12)0.39439 (9)0.35607 (6)0.0453 (3)
C150.90344 (15)0.40110 (12)0.42565 (7)0.0634 (4)
H150.87440.45040.46040.076*
C161.00875 (16)0.33226 (13)0.44067 (8)0.0743 (4)
H161.05110.33500.48670.089*
C171.05402 (16)0.25861 (12)0.38920 (9)0.0709 (4)
H171.12690.21450.40130.085*
C180.99338 (13)0.24921 (10)0.32035 (8)0.0575 (3)
H181.02340.20000.28580.069*
C190.88477 (11)0.31771 (8)0.30587 (6)0.0435 (2)
C20.72401 (10)0.49399 (8)0.09909 (6)0.0388 (2)
H2A0.79230.51470.13530.047*
H2B0.67450.55870.08470.047*
C220.78937 (9)0.44718 (8)0.03367 (5)0.0352 (2)
C240.88181 (10)0.42593 (9)0.07038 (5)0.0390 (2)
C250.93140 (12)0.43728 (11)0.14071 (6)0.0538 (3)
H250.92440.50260.16610.065*
C260.99128 (14)0.34770 (13)0.17113 (7)0.0642 (4)
H261.02540.35290.21800.077*
C271.00189 (14)0.25018 (12)0.13365 (7)0.0655 (4)
H271.04440.19210.15590.079*
C280.95170 (13)0.23636 (10)0.06465 (7)0.0573 (3)
H280.95770.17040.04000.069*
C290.89165 (10)0.32649 (8)0.03408 (6)0.0404 (2)
C30.51076 (10)0.40531 (8)0.08606 (6)0.0400 (2)
H3A0.53510.39950.03510.048*
H3B0.45720.47040.09110.048*
C320.42790 (10)0.30895 (8)0.10574 (5)0.0362 (2)
C340.35888 (10)0.15160 (8)0.13862 (5)0.0382 (2)
C350.34504 (12)0.04587 (9)0.16376 (6)0.0482 (3)
H350.41900.00640.18070.058*
C360.21837 (13)0.00148 (10)0.16283 (7)0.0578 (3)
H360.20730.06960.17860.069*
C370.10616 (13)0.06042 (11)0.13880 (7)0.0616 (3)
H370.02190.02830.13970.074*
C380.11787 (12)0.16505 (10)0.11382 (7)0.0550 (3)
H380.04330.20440.09750.066*
C390.24604 (10)0.20945 (9)0.11398 (6)0.0401 (2)
O10.75169 (8)0.17648 (6)0.13143 (4)0.04413 (19)
H120.6596 (17)0.1839 (12)0.1325 (8)0.074 (4)*
H110.7672 (14)0.1097 (13)0.1413 (7)0.065 (4)*
H210.8074 (14)0.2859 (12)0.0667 (8)0.070 (4)*
H310.2491 (13)0.3664 (10)0.0721 (7)0.056 (4)*
H11A0.7963 (13)0.2848 (11)0.2051 (7)0.059 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0329 (4)0.0347 (4)0.0361 (4)0.0001 (3)0.0003 (3)0.0020 (3)
N110.0453 (5)0.0381 (5)0.0413 (5)0.0022 (4)0.0075 (4)0.0050 (4)
N130.0490 (5)0.0406 (5)0.0396 (5)0.0072 (4)0.0011 (4)0.0051 (4)
N210.0473 (5)0.0345 (4)0.0413 (5)0.0054 (4)0.0039 (4)0.0036 (4)
N230.0347 (4)0.0384 (4)0.0428 (5)0.0024 (3)0.0006 (3)0.0062 (4)
N330.0343 (4)0.0368 (4)0.0471 (5)0.0001 (3)0.0044 (3)0.0072 (4)
N310.0331 (4)0.0411 (5)0.0503 (5)0.0029 (4)0.0045 (4)0.0108 (4)
C10.0390 (5)0.0434 (6)0.0396 (5)0.0038 (4)0.0035 (4)0.0006 (4)
C120.0391 (5)0.0338 (5)0.0385 (5)0.0043 (4)0.0024 (4)0.0008 (4)
C140.0521 (6)0.0431 (6)0.0404 (6)0.0120 (5)0.0050 (5)0.0011 (4)
C150.0776 (9)0.0680 (8)0.0440 (6)0.0171 (7)0.0117 (6)0.0004 (6)
C160.0854 (10)0.0796 (10)0.0562 (8)0.0187 (8)0.0309 (7)0.0163 (7)
C170.0689 (9)0.0629 (8)0.0792 (10)0.0054 (7)0.0317 (7)0.0201 (7)
C180.0562 (7)0.0453 (6)0.0698 (8)0.0000 (5)0.0167 (6)0.0047 (6)
C190.0464 (6)0.0379 (5)0.0457 (6)0.0076 (5)0.0102 (4)0.0042 (4)
C20.0381 (5)0.0332 (5)0.0453 (5)0.0017 (4)0.0038 (4)0.0002 (4)
C220.0315 (5)0.0333 (5)0.0409 (5)0.0013 (4)0.0008 (4)0.0027 (4)
C240.0317 (5)0.0458 (6)0.0394 (5)0.0001 (4)0.0031 (4)0.0006 (4)
C250.0498 (7)0.0682 (8)0.0434 (6)0.0018 (6)0.0031 (5)0.0047 (6)
C260.0577 (8)0.0915 (10)0.0438 (7)0.0010 (7)0.0084 (6)0.0119 (7)
C270.0653 (9)0.0729 (9)0.0584 (8)0.0139 (7)0.0053 (6)0.0218 (7)
C280.0657 (8)0.0488 (7)0.0574 (7)0.0132 (6)0.0006 (6)0.0093 (5)
C290.0383 (5)0.0425 (6)0.0404 (5)0.0032 (4)0.0016 (4)0.0023 (4)
C30.0379 (5)0.0384 (5)0.0434 (5)0.0003 (4)0.0053 (4)0.0089 (4)
C320.0331 (5)0.0381 (5)0.0371 (5)0.0007 (4)0.0035 (4)0.0036 (4)
C340.0361 (5)0.0377 (5)0.0405 (5)0.0007 (4)0.0017 (4)0.0016 (4)
C350.0483 (6)0.0390 (6)0.0572 (7)0.0004 (5)0.0016 (5)0.0049 (5)
C360.0585 (8)0.0439 (6)0.0710 (8)0.0101 (6)0.0033 (6)0.0069 (6)
C370.0453 (7)0.0643 (8)0.0750 (9)0.0174 (6)0.0016 (6)0.0062 (7)
C380.0350 (6)0.0615 (8)0.0682 (8)0.0031 (5)0.0039 (5)0.0088 (6)
C390.0358 (5)0.0422 (5)0.0421 (5)0.0002 (4)0.0019 (4)0.0035 (4)
O10.0429 (5)0.0324 (4)0.0569 (5)0.0030 (3)0.0025 (3)0.0052 (3)
Geometric parameters (Å, º) top
N1—C31.4585 (12)C18—H180.93
N1—C21.4626 (12)C2—C221.4904 (14)
N1—C11.4627 (12)C2—H2A0.97
N11—C121.3548 (13)C2—H2B0.97
N11—C191.3841 (13)C24—C251.3935 (14)
N11—H11A0.913 (14)C24—C291.3952 (15)
N13—C121.3195 (13)C25—C261.3787 (18)
N13—C141.3957 (14)C25—H250.93
N21—C221.3554 (12)C26—C271.386 (2)
N21—C291.3814 (13)C26—H260.93
N21—H210.973 (15)C27—C281.3767 (19)
N23—C221.3142 (12)C27—H270.93
N23—C241.3937 (13)C28—C291.3861 (15)
N33—C321.3179 (13)C28—H280.93
N33—C341.3988 (13)C3—C321.4961 (14)
N31—C321.3541 (12)C3—H3A0.97
N31—C391.3817 (14)C3—H3B0.97
N31—H310.906 (13)C34—C351.3898 (15)
C1—C121.4929 (14)C34—C391.3965 (14)
C1—H1A0.97C35—C361.3764 (16)
C1—H1B0.97C35—H350.93
C14—C191.3927 (16)C36—C371.3951 (18)
C14—C151.3993 (16)C36—H360.93
C15—C161.372 (2)C37—C381.3739 (18)
C15—H150.93C37—H370.93
C16—C171.390 (2)C38—C391.3905 (15)
C16—H160.93C38—H380.93
C17—C181.3837 (18)O1—H120.924 (17)
C17—H170.93O1—H110.856 (15)
C18—C191.3932 (16)
C3—N1—C2110.32 (8)N23—C22—C2125.26 (9)
C3—N1—C1112.19 (8)N21—C22—C2121.58 (8)
C2—N1—C1111.57 (8)C25—C24—N23130.14 (10)
C12—N11—C19107.07 (9)C25—C24—C29120.16 (10)
C12—N11—H11A126.2 (8)N23—C24—C29109.69 (9)
C19—N11—H11A125.9 (8)C26—C25—C24117.24 (12)
C12—N13—C14104.67 (9)C26—C25—H25121.4
C22—N21—C29107.09 (8)C24—C25—H25121.4
C22—N21—H21126.2 (8)C25—C26—C27121.66 (11)
C29—N21—H21125.4 (8)C25—C26—H26119.2
C22—N23—C24104.87 (8)C27—C26—H26119.2
C32—N33—C34104.51 (8)C28—C27—C26122.21 (12)
C32—N31—C39106.91 (8)C28—C27—H27118.9
C32—N31—H31123.2 (8)C26—C27—H27118.9
C39—N31—H31129.7 (8)C27—C28—C29116.08 (12)
N1—C1—C12111.97 (8)C27—C28—H28122.0
N1—C1—H1A109.2C29—C28—H28122.0
C12—C1—H1A109.2N21—C29—C28132.13 (10)
N1—C1—H1B109.2N21—C29—C24105.23 (9)
C12—C1—H1B109.2C28—C29—C24122.63 (10)
H1A—C1—H1B107.9N1—C3—C32113.02 (8)
N13—C12—N11113.10 (9)N1—C3—H3A109.0
N13—C12—C1124.49 (9)C32—C3—H3A109.0
N11—C12—C1122.24 (9)N1—C3—H3B109.0
C19—C14—N13109.81 (9)C32—C3—H3B109.0
C19—C14—C15119.86 (11)H3A—C3—H3B107.8
N13—C14—C15130.32 (11)N33—C32—N31113.50 (9)
C16—C15—C14117.56 (13)N33—C32—C3126.22 (9)
C16—C15—H15121.2N31—C32—C3120.24 (9)
C14—C15—H15121.2C35—C34—C39119.93 (10)
C15—C16—C17121.98 (13)C35—C34—N33130.47 (10)
C15—C16—H16119.0C39—C34—N33109.60 (9)
C17—C16—H16119.0C36—C35—C34117.89 (11)
C18—C17—C16121.69 (13)C36—C35—H35121.1
C18—C17—H17119.2C34—C35—H35121.1
C16—C17—H17119.2C35—C36—C37121.69 (11)
C17—C18—C19116.12 (13)C35—C36—H36119.2
C17—C18—H18121.9C37—C36—H36119.2
C19—C18—H18121.9C38—C37—C36121.23 (11)
N11—C19—C14105.30 (9)C38—C37—H37119.4
N11—C19—C18131.95 (11)C36—C37—H37119.4
C14—C19—C18122.72 (11)C37—C38—C39117.07 (11)
N1—C2—C22111.02 (8)C37—C38—H38121.5
N1—C2—H2A109.4C39—C38—H38121.5
C22—C2—H2A109.4N31—C39—C38132.33 (10)
N1—C2—H2B109.4N31—C39—C34105.48 (9)
C22—C2—H2B109.4C38—C39—C34122.18 (10)
H2A—C2—H2B108.0H12—O1—H11105.4 (13)
N23—C22—N21113.11 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O10.913 (14)1.938 (14)2.8380 (12)168.2 (12)
N31—H31···N23i0.906 (13)1.943 (13)2.8406 (12)170.4 (11)
N21—H21···O10.973 (15)1.886 (15)2.8579 (12)177.3 (13)
O1—H12···N330.924 (17)1.903 (17)2.8223 (12)173.4 (13)
O1—H11···N13ii0.856 (15)2.000 (16)2.8410 (12)167.0 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2.
(II) tris(1H-benzimidazol-2-ylmethyl)amine–water–methanol–acetonitrile (1/1.5/0.5/1) top
Crystal data top
C24H21N7·1.5H2O·0.5CH4O·C2H3NZ = 2
Mr = 491.58F(000) = 520
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.778 (4) ÅCell parameters from 28 reflections
b = 9.995 (2) Åθ = 4.6–12.6°
c = 14.397 (6) ŵ = 0.08 mm1
α = 103.34 (1)°T = 293 K
β = 98.16 (1)°Block, colorless
γ = 102.34 (1)°0.75 × 0.65 × 0.50 mm
V = 1310.1 (8) Å3
Data collection top
Siemens P4
diffractometer
3752 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω–2θ scansh = 112
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.885, Tmax = 0.938l = 1717
5999 measured reflections3 standard reflections every 197 reflections
5066 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.303P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5066 reflectionsΔρmax = 0.15 e Å3
358 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.106 (6)
Crystal data top
C24H21N7·1.5H2O·0.5CH4O·C2H3Nγ = 102.34 (1)°
Mr = 491.58V = 1310.1 (8) Å3
Triclinic, P1Z = 2
a = 9.778 (4) ÅMo Kα radiation
b = 9.995 (2) ŵ = 0.08 mm1
c = 14.397 (6) ÅT = 293 K
α = 103.34 (1)°0.75 × 0.65 × 0.50 mm
β = 98.16 (1)°
Data collection top
Siemens P4
diffractometer
3752 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.885, Tmax = 0.9383 standard reflections every 197 reflections
5999 measured reflections intensity decay: none
5066 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
5066 reflectionsΔρmin = 0.17 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.46775 (14)0.09622 (13)0.32640 (9)0.0410 (3)
N110.42220 (16)0.17957 (16)0.15069 (10)0.0476 (4)
N130.63075 (14)0.14835 (15)0.11873 (10)0.0463 (3)
N210.32256 (17)0.29001 (17)0.42981 (12)0.0522 (4)
N230.49937 (16)0.34372 (14)0.55785 (10)0.0489 (4)
N310.30286 (16)0.27384 (14)0.31017 (10)0.0456 (3)
N330.20816 (14)0.12802 (14)0.24167 (10)0.0465 (3)
C10.54940 (18)0.05535 (18)0.25195 (12)0.0476 (4)
H1A0.51570.04630.22220.057*
H1B0.64920.07570.28270.057*
C120.53723 (17)0.13091 (17)0.17470 (11)0.0427 (4)
C140.57116 (17)0.21022 (17)0.05195 (11)0.0449 (4)
C150.6204 (2)0.24917 (19)0.02667 (13)0.0556 (5)
H150.70700.23570.04110.067*
C160.5374 (2)0.3079 (2)0.08185 (14)0.0639 (5)
H160.56850.33390.13480.077*
C170.4082 (2)0.3297 (2)0.06126 (14)0.0660 (5)
H170.35500.37030.10040.079*
C180.3574 (2)0.2924 (2)0.01587 (14)0.0590 (5)
H180.27120.30740.03020.071*
C190.44045 (17)0.23165 (18)0.07119 (12)0.0460 (4)
C20.54805 (17)0.22778 (17)0.39910 (12)0.0459 (4)
H2A0.58720.29730.36630.055*
H2B0.62720.20930.43850.055*
C220.45679 (18)0.28734 (16)0.46352 (12)0.0439 (4)
C240.3836 (2)0.38694 (18)0.58822 (13)0.0531 (4)
C250.3693 (3)0.4527 (2)0.68176 (16)0.0713 (6)
H250.44380.47520.73530.086*
C260.2415 (4)0.4825 (3)0.6913 (2)0.0914 (8)
H260.22910.52740.75260.110*
C270.1298 (3)0.4477 (3)0.6123 (2)0.0962 (9)
H270.04420.46920.62220.115*
C280.1407 (3)0.3820 (3)0.5187 (2)0.0823 (7)
H280.06520.35850.46580.099*
C290.2721 (2)0.35344 (19)0.50921 (15)0.0566 (5)
C30.42587 (17)0.01741 (17)0.37257 (11)0.0439 (4)
H3A0.39210.01990.43090.053*
H3B0.50860.05110.39190.053*
C320.31146 (17)0.13875 (17)0.30614 (11)0.0414 (4)
C340.12468 (17)0.26664 (18)0.20032 (12)0.0459 (4)
C350.00123 (19)0.3188 (2)0.12913 (14)0.0590 (5)
H350.03950.25820.10070.071*
C360.0591 (2)0.4622 (2)0.10184 (15)0.0685 (6)
H360.14210.49940.05410.082*
C370.0009 (2)0.5531 (2)0.14388 (16)0.0695 (6)
H370.04280.65010.12330.083*
C380.1231 (2)0.5046 (2)0.21504 (15)0.0614 (5)
H380.16310.56600.24300.074*
C390.18385 (18)0.35803 (18)0.24313 (12)0.0457 (4)
N40.8059 (3)0.0332 (4)0.4728 (2)0.1275 (10)
C50.8497 (2)0.0232 (3)0.4118 (2)0.0844 (7)
C60.9041 (3)0.0956 (3)0.3333 (2)0.1098 (9)
H6A0.85940.19570.31640.165*0.50
H6B1.00560.08000.35280.165*0.50
H6C0.88400.05990.27780.165*0.50
H6D0.97330.02800.31490.165*0.50
H6E0.82710.14380.27850.165*0.50
H6F0.94860.16380.35360.165*0.50
O10.16774 (14)0.13860 (15)0.23467 (10)0.0566 (3)
H110.076 (3)0.129 (2)0.2038 (17)0.085*
H120.180 (2)0.053 (3)0.2375 (17)0.085*
C40.9105 (5)0.0356 (5)0.0349 (3)0.0778 (12)0.50
H4A0.97610.11610.02640.117*0.25
H4B0.82200.01430.01080.117*0.25
H4C0.95050.04500.02400.117*0.25
H4D0.85630.05920.00000.117*0.25
H4E1.01040.04260.03720.117*0.25
H4F0.88190.10200.00240.117*0.25
O20.88523 (18)0.0672 (2)0.13064 (13)0.0935 (6)0.50
H20.796 (4)0.092 (3)0.123 (2)0.140*
O30.88523 (18)0.0672 (2)0.13064 (13)0.0935 (6)0.50
H310.363 (2)0.2983 (19)0.3538 (14)0.060 (5)*
H210.275 (2)0.2506 (19)0.3711 (15)0.056 (6)*
H11A0.344 (3)0.170 (2)0.1776 (17)0.087 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0441 (7)0.0429 (7)0.0396 (7)0.0132 (6)0.0130 (6)0.0135 (6)
N110.0441 (8)0.0613 (9)0.0439 (8)0.0170 (7)0.0149 (6)0.0200 (7)
N130.0426 (8)0.0543 (8)0.0418 (8)0.0115 (6)0.0132 (6)0.0103 (6)
N210.0535 (9)0.0577 (9)0.0510 (9)0.0228 (7)0.0116 (7)0.0169 (8)
N230.0631 (9)0.0426 (8)0.0463 (8)0.0197 (7)0.0139 (7)0.0151 (6)
N310.0512 (8)0.0463 (8)0.0447 (8)0.0179 (7)0.0117 (7)0.0168 (6)
N330.0448 (8)0.0480 (8)0.0478 (8)0.0130 (6)0.0076 (6)0.0153 (6)
C10.0511 (10)0.0533 (10)0.0452 (9)0.0212 (8)0.0159 (8)0.0155 (8)
C120.0409 (9)0.0472 (9)0.0381 (8)0.0102 (7)0.0087 (7)0.0087 (7)
C140.0470 (9)0.0457 (9)0.0376 (8)0.0067 (7)0.0100 (7)0.0068 (7)
C150.0613 (11)0.0593 (11)0.0453 (10)0.0107 (9)0.0211 (8)0.0108 (8)
C160.0878 (15)0.0629 (12)0.0444 (10)0.0155 (11)0.0224 (10)0.0188 (9)
C170.0849 (15)0.0689 (13)0.0498 (11)0.0251 (11)0.0097 (10)0.0245 (10)
C180.0592 (11)0.0682 (12)0.0546 (11)0.0217 (9)0.0102 (9)0.0220 (9)
C190.0452 (9)0.0499 (9)0.0403 (9)0.0082 (7)0.0092 (7)0.0105 (7)
C20.0460 (9)0.0452 (9)0.0475 (9)0.0125 (7)0.0121 (7)0.0118 (7)
C220.0507 (10)0.0394 (8)0.0466 (9)0.0156 (7)0.0121 (7)0.0161 (7)
C240.0752 (12)0.0439 (9)0.0554 (11)0.0271 (9)0.0269 (9)0.0236 (8)
C250.1106 (18)0.0592 (12)0.0624 (12)0.0347 (12)0.0405 (12)0.0260 (10)
C260.140 (2)0.0820 (16)0.0933 (19)0.0582 (17)0.0766 (19)0.0437 (15)
C270.110 (2)0.104 (2)0.124 (2)0.0666 (17)0.081 (2)0.0566 (18)
C280.0783 (15)0.0952 (17)0.1046 (19)0.0490 (14)0.0422 (14)0.0484 (15)
C290.0661 (12)0.0562 (11)0.0664 (12)0.0310 (9)0.0308 (10)0.0290 (9)
C30.0467 (9)0.0482 (9)0.0391 (8)0.0139 (7)0.0072 (7)0.0158 (7)
C320.0433 (9)0.0452 (9)0.0406 (8)0.0153 (7)0.0130 (7)0.0149 (7)
C340.0451 (9)0.0499 (10)0.0438 (9)0.0119 (8)0.0143 (7)0.0118 (7)
C350.0506 (11)0.0678 (12)0.0544 (11)0.0107 (9)0.0093 (9)0.0131 (9)
C360.0562 (12)0.0757 (14)0.0575 (12)0.0017 (11)0.0118 (9)0.0008 (11)
C370.0711 (14)0.0546 (11)0.0675 (13)0.0028 (10)0.0237 (11)0.0017 (10)
C380.0746 (13)0.0483 (10)0.0643 (12)0.0152 (10)0.0276 (11)0.0133 (9)
C390.0484 (9)0.0469 (9)0.0427 (9)0.0112 (8)0.0175 (7)0.0094 (7)
N40.0998 (18)0.204 (3)0.115 (2)0.084 (2)0.0478 (16)0.058 (2)
C50.0633 (14)0.118 (2)0.0972 (19)0.0385 (14)0.0320 (13)0.0550 (16)
C60.124 (2)0.121 (2)0.112 (2)0.0518 (19)0.0586 (19)0.0451 (19)
O10.0439 (7)0.0609 (8)0.0724 (9)0.0176 (6)0.0108 (6)0.0290 (7)
C40.083 (3)0.081 (3)0.068 (3)0.025 (2)0.020 (2)0.013 (2)
O20.0672 (10)0.1297 (15)0.0911 (12)0.0509 (10)0.0099 (9)0.0239 (10)
O30.0672 (10)0.1297 (15)0.0911 (12)0.0509 (10)0.0099 (9)0.0239 (10)
Geometric parameters (Å, º) top
N1—C31.458 (2)C26—C271.382 (4)
N1—C21.460 (2)C26—H260.93
N1—C11.461 (2)C27—C281.385 (4)
N11—C121.350 (2)C27—H270.93
N11—C191.381 (2)C28—C291.393 (3)
N11—H11A0.90 (2)C28—H280.93
N13—C121.312 (2)C3—C321.489 (2)
N13—C141.384 (2)C3—H3A0.97
N21—C221.341 (2)C3—H3B0.97
N21—C291.382 (2)C34—C351.383 (2)
N21—H210.86 (2)C34—C391.391 (2)
N23—C221.312 (2)C35—C361.367 (3)
N23—C241.387 (2)C35—H350.93
N31—C321.350 (2)C36—C371.384 (3)
N31—C391.372 (2)C36—H360.93
N31—H310.91 (2)C37—C381.374 (3)
N33—C321.311 (2)C37—H370.93
N33—C341.392 (2)C38—C391.396 (2)
C1—C121.487 (2)C38—H380.93
C1—H1A0.97N4—C51.121 (3)
C1—H1B0.97C5—C61.429 (4)
C14—C151.394 (2)C6—H6A0.96
C14—C191.395 (2)C6—H6B0.96
C15—C161.367 (3)C6—H6C0.96
C15—H150.93C6—H6D0.96
C16—C171.388 (3)C6—H6E0.96
C16—H160.93C6—H6F0.96
C17—C181.374 (3)O1—H110.91 (2)
C17—H170.93O1—H120.90 (2)
C18—C191.383 (2)C4—O21.410 (5)
C18—H180.93C4—H4A0.96
C2—C221.489 (2)C4—H4B0.96
C2—H2A0.97C4—H4C0.96
C2—H2B0.97C4—H4D0.96
C24—C291.382 (3)C4—H4E0.96
C24—C251.396 (3)C4—H4F0.96
C25—C261.363 (3)O2—H20.95 (3)
C25—H250.93
C3—N1—C2110.75 (12)C26—C27—C28122.5 (2)
C3—N1—C1111.29 (12)C26—C27—H27118.8
C2—N1—C1110.97 (13)C28—C27—H27118.8
C12—N11—C19107.19 (14)C27—C28—C29115.6 (3)
C12—N11—H11A126.0 (15)C27—C28—H28122.2
C19—N11—H11A126.5 (15)C29—C28—H28122.2
C12—N13—C14104.75 (13)C24—C29—N21105.52 (16)
C22—N21—C29106.70 (16)C24—C29—C28122.1 (2)
C22—N21—H21125.7 (13)N21—C29—C28132.4 (2)
C29—N21—H21127.2 (13)N1—C3—C32111.82 (13)
C22—N23—C24104.78 (15)N1—C3—H3A109.3
C32—N31—C39106.81 (14)C32—C3—H3A109.3
C32—N31—H31123.8 (12)N1—C3—H3B109.3
C39—N31—H31129.3 (12)C32—C3—H3B109.3
C32—N33—C34105.03 (13)H3A—C3—H3B107.9
N1—C1—C12112.74 (13)N33—C32—N31113.18 (15)
N1—C1—H1A109.0N33—C32—C3125.39 (14)
C12—C1—H1A109.0N31—C32—C3121.39 (14)
N1—C1—H1B109.0C35—C34—C39120.53 (16)
C12—C1—H1B109.0C35—C34—N33130.48 (16)
H1A—C1—H1B107.8C39—C34—N33109.00 (14)
N13—C12—N11113.20 (15)C36—C35—C34117.99 (19)
N13—C12—C1124.03 (15)C36—C35—H35121.0
N11—C12—C1122.60 (14)C34—C35—H35121.0
N13—C14—C15130.51 (16)C35—C36—C37121.4 (2)
N13—C14—C19110.08 (14)C35—C36—H36119.3
C15—C14—C19119.41 (16)C37—C36—H36119.3
C16—C15—C14117.92 (18)C38—C37—C36122.07 (19)
C16—C15—H15121.0C38—C37—H37119.0
C14—C15—H15121.0C36—C37—H37119.0
C15—C16—C17122.00 (18)C37—C38—C39116.42 (19)
C15—C16—H16119.0C37—C38—H38121.8
C17—C16—H16119.0C39—C38—H38121.8
C18—C17—C16121.20 (18)N31—C39—C34105.99 (14)
C18—C17—H17119.4N31—C39—C38132.37 (17)
C16—C17—H17119.4C34—C39—C38121.64 (17)
C17—C18—C19116.91 (18)N4—C5—C6179.4 (3)
C17—C18—H18121.5C5—C6—H6A109.5
C19—C18—H18121.5C5—C6—H6B109.5
N11—C19—C18132.67 (16)H6A—C6—H6B109.5
N11—C19—C14104.77 (14)C5—C6—H6C109.5
C18—C19—C14122.56 (16)H6A—C6—H6C109.5
N1—C2—C22111.81 (13)H6B—C6—H6C109.5
N1—C2—H2A109.3C5—C6—H6D109.5
C22—C2—H2A109.3H6A—C6—H6D141.1
N1—C2—H2B109.3H6B—C6—H6D56.3
C22—C2—H2B109.3H6C—C6—H6D56.3
H2A—C2—H2B107.9C5—C6—H6E109.5
N23—C22—N21113.38 (15)H6A—C6—H6E56.3
N23—C22—C2123.84 (15)H6B—C6—H6E141.1
N21—C22—C2122.77 (16)H6C—C6—H6E56.3
C29—C24—N23109.61 (16)H6D—C6—H6E109.5
C29—C24—C25121.04 (19)C5—C6—H6F109.5
N23—C24—C25129.34 (19)H6A—C6—H6F56.3
C26—C25—C24117.1 (2)H6B—C6—H6F56.3
C26—C25—H25121.4H6C—C6—H6F141.1
C24—C25—H25121.4H6D—C6—H6F109.5
C25—C26—C27121.7 (2)H6E—C6—H6F109.5
C25—C26—H26119.2H11—O1—H12110 (2)
C27—C26—H26119.2C4—O2—H2104 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O10.86 (2)2.03 (2)2.886 (2)174.0 (18)
N11—H11A···O10.90 (2)2.01 (2)2.910 (2)177 (2)
O1—H12···N330.90 (2)1.90 (2)2.798 (2)179 (2)
O2—H2···N130.95 (3)1.82 (3)2.772 (2)176 (3)
O1—H11···O2i0.91 (2)1.91 (3)2.806 (2)168 (2)
O1—H11···O3i0.91 (2)1.91 (3)2.806 (2)168 (2)
N31—H31···N23ii0.91 (2)1.91 (2)2.826 (2)176.3 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC24H21N7·H2OC24H21N7·1.5H2O·0.5CH4O·C2H3N
Mr425.49491.58
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)9.9731 (6), 12.3273 (7), 18.2323 (11)9.778 (4), 9.995 (2), 14.397 (6)
α, β, γ (°)90, 91.508 (1), 90103.34 (1), 98.16 (1), 102.34 (1)
V3)2240.7 (2)1310.1 (8)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.28 × 0.2 × 0.180.75 × 0.65 × 0.50
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Siemens P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
ψ scan
(North et al., 1968)
Tmin, Tmax0.873, 1.0000.885, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
15554, 6455, 4526 5999, 5066, 3752
Rint0.0190.047
(sin θ/λ)max1)0.7040.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.03 0.045, 0.113, 1.01
No. of reflections64555066
No. of parameters310358
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.160.15, 0.17

Computer programs: SMART (Siemens, 1993), CAD-4 EXPRESS (Enraf–Nonius, 1994), SAINT (Siemens, 1995), CAD-4 EXPRESS, SAINT, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O10.913 (14)1.938 (14)2.8380 (12)168.2 (12)
N31—H31···N23i0.906 (13)1.943 (13)2.8406 (12)170.4 (11)
N21—H21···O10.973 (15)1.886 (15)2.8579 (12)177.3 (13)
O1—H12···N330.924 (17)1.903 (17)2.8223 (12)173.4 (13)
O1—H11···N13ii0.856 (15)2.000 (16)2.8410 (12)167.0 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O10.86 (2)2.03 (2)2.886 (2)174.0 (18)
N11—H11A···O10.90 (2)2.01 (2)2.910 (2)177 (2)
O1—H12···N330.90 (2)1.90 (2)2.798 (2)179 (2)
O2—H2···N130.95 (3)1.82 (3)2.772 (2)176 (3)
O1—H11···O2i0.91 (2)1.91 (3)2.806 (2)168 (2)
O1—H11···O3i0.91 (2)1.91 (3)2.806 (2)168 (2)
N31—H31···N23ii0.91 (2)1.91 (2)2.826 (2)176.3 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds