Download citation
Download citation
link to html
In the title coordination polymer, [Ba(1,3-BDOA)(H2O)2]n (where 1,3-BDOA2− is the m-phenylenedioxydiacetate dianion, C10H8O6), each BaII ion is ten-coordinated by six carboxyl O atoms and two ether O atoms from different 1,3-BDOA2− ligands, as well as by two water mol­ecules, thus defining a dodeca­hedron. The BaII atoms are covalently linked by 1,3-BDOA2− ligands in different crystallographic directions, giving rise to a three-dimensional open framework. The crystal structure is further stabilized by hydrogen bonds and π–π stacking inter­actions. In previously studied polymers of this type, the 1,3-BDOA2− ligand showed multiple bridging modes with metal ions, including bi-, tri-, tetra- and hexa­dentate. The title BaII complex represents a novel three-dimensional coordination polymer constructed by octa­dentate bridging 1,3-BDOA2− ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105017828/fg1847sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105017828/fg1847Isup2.hkl
Contains datablock I

CCDC reference: 255994

Comment top

The field of metal-ion-directed assembly of organic molecular building blocks is giving access to new open-framework solid-state materials (Andrea, 2003). Compared with the extensively investigated transition metal coordination polymers, it is surprising to see the relatively small number of alkali earth coordination polymers in the literature (Guo et al., 2002). The oxidation states and atomic radii of alkali earth metals are comparable with those of the late divalent transition metals, which could, in principle, lead to similar networks in the solid state. However, the lack of d-orbital electrons in alkali earth metals could result in coordination numbers greater than six, and for the larger alkali earth metals, a higher coordination number is expected (Huo et al., 2004). Benzene-1,3-dioxyacetic acid (1,3-BDOAH2) is a potential flexible multidentate ligand containing two oxyacetate groups, which could be used as a terminal ligand or a bridging ligand with different coordination modes when coordinated to various metal ions (see scheme). In addition to its versatile coordination modes, 1,3-BDOAH2 may take part in hydrogen-bonding interactions by functioning as either a hydrogen-bond donor or an acceptor, and in ππ stacking interactions via its benzene ring. Recently, we have reported the structures of three one-dimensional chain polymers, namely [Cu(1,3-BDOA)(bipy)(H2O)]n (Liu et al., 2004), {[Zn(1,3-BDOA)(H2O)2](H2O)2}n (Gao, Li et al., 2004) and {[Cu(1,3-BDOA)(phen)(H2O)]·2H2O}n (Gao, Liu et al., 2004a), as well as three two-dimensional layer polymers, namely [Cd(1,3-BDOA)]n (Gao, Liu et al., 2004b), [Cd(1,3-BDOA)(imidazole)2]n (Gao, Liu et al., 2004c) and [Mn(1,3-BDOA)(H2O)3]n (Gao, Liu et al., 2004d), within which the metal ions have tetrahedral, square-pyramidal and octahedral configurations. The work described here is an investigation into the hydrothermal synthesis and structural characterization of the title novel three-dimensional BaII coordination polymer, [Ba(1,3-BDOA)(H2O)2]n, (I), in which the BaII atom has tenfold coordination and the 1,3-BDOA2− dianion adopts a novel octadentate bridging mode.

As shown in Fig. 1, the asymmetric building unit of complex (I) consists of one BaII atom, one 1,3-BDOA2− dianion and two coordinated water molecules. Each BaII atom is ten-coordinated by two ether O atoms, six carboxyl O atoms from different 1,3-BDOA2− ligands and two water molecules. The coordination geometry can best be described as a dodecahedron (Fig. 2). The O—Ba—O angles are distributed over a broad range, 43.13 (6)–148.23 (7)°. The Ba—Ocarboxyl distances fall in the range 2.736 (2)–3.218 (2) Å (Table 1), within which the Ba—O3 and Ba—O6iii [symmetry code: (iii) x − 1, 3/2 − y, z − 1/2] distances are considerably longer than the maximum Ba—O value of 3.161 (2) Å in the complex [Ba(H2O)5][Cu(C2O4)2(H2O)] (Bouayad et al., 1995). The Ba—Owater distances are similar to those of the complex [Ba(Hbtc)(H2O)2]·0.5H2O [2.860 (6) and 2.877 (6) Å; Hbtc is benzene-1,3,5-tricarboxylate; Platers et al., 1997], (II). In (II), the Ba ion is coordinated by two bidentate carboxylate groups, three monodentate carboxylate groups and two water molecules.

In (I), the 1,3-BDOA2− group adopts two coordination modes, namely bridging tridentate and bridging pentadentate. In the first case, the phenoxyacetate group (O1/C1/O2), in a bidentate chelating mode, is coordinated to atom Ba1 through ether atom O3 and carboxyl atom O1, and joins the adjacent atom Ba1A through the bridging atom O2, with a Ba1···Ba1A separation of 6.734 (3) Å [symmetry code: (A) x, 3/2 − y, z + 1/2]. In the second case, the phenoxyacetate group (O5/C10/O6) chelates to atom Ba1C through carboxyl atoms O5 and O6, bridges to a neighbouring atom Ba1D through atom O6, and chelates to atom Ba1B through ether atom O4 and carboxyl atom O5, with the Ba1B···Ba1C and Ba1C···Ba1D separations being 4.755 (3) Å [symmetry codes: (B) 1 − x, 1 − y, 1 − z; (C) x + 1, 3/2 − y, z + 1/2; (D) 1 − x, 2 − y, 1 − z]. The Ba1···Ba1C separation is 12.895 (3) Å. Thus, the 1,3-BDOA2− ligand provides a total of eight binding sites to link five Ba atoms and give two five-membered chelate rings (O1/C1/C2/O3/Ba1 and O4/C9/C10/O5/Ba1B) and one four-membered ring (C10/O5/Ba1C/O6). The two five-membered chelate rings are non-planar, while the four-membered chelate ring is essentially planar, with an r.m.s. deviation of 0.07 (3) Å. The dihedral angles between the carboxyl groups and the aromatic ring are 11.30 (7)° (O1/C1/O2) and 62.28 (7)° (O6/C10/O5), respectively. One oxyacetate group and aromatic ring are almost coplanar, with a torsion angle of −177.7 (3) (C3—O3—C2—C1), while another oxyacetate group and benzene ring are not perfectly coplanar, with a torsion angle of −153.1 (3) ° (C7—O4—C9—C10).

Adjacent BaII atoms share the carboxyl atoms O6iv and O5iii [symmetry code: (iv) 1 − x, 2 − y, 1 − z], to afford a Ba2O2 four-membered ring [Ba···Ba 4.755 (3) Å], and are further linked by a pair of 1,3-BDOA2− ligands to produce a centrosymmetric macrocyclic structure. As a consequence of the 1,3-BDOA2− bridges, polymer (I) has an extended three-dimensional open framework, with alternating `organic' and `inorganic' sheets (Fig. 3). There are inorganic sheets lying parallel to the (011) plane at x = −1, 0, 1, etc., and which contain all the hydrogen bonds (Table 2). Intermolecular hydrogen-bond interactions are found between the water molecule and the carboxylate O atoms [O···O 2.748 (3)–3.085 (4) Å and O—H···O 127 (4)–176 (4)°]. Between these inorganic sheets there are organic sheets, which are also parallel to (011) at x = −1/2, 1/2, 3/2, etc. The shortest centroid–centroid separation between inversion-related aromatic rings is 3.495 (3) Å and the shortest plane–plane separation between aromatic rings at (x, y, z) and (1 − x, 1 − y, 1 − z) is 3.341 (3) Å, indicating some ππ stacking interactions between organic sheets. These weak supramolecular interactions, together with the coordinate-covalent interactions between metal ions and organic ligands, strengthen the stability of the whole crystal structure.

Experimental top

Benzene-1,3-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). BaCl2·2H2O (2.40 g, 10 mmol), pyridine (1 ml) and 1,3-BDOAH2 (2.26 g, 10 mmol) were dissolved in water (30 ml). The mixture was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 393 K for 5 d. The bomb was cooled naturally to room temperature, and colourless prismatic crystals of (I) were obtained. CH analysis: calculated for C10H12O8Ba: C 30.21, H 3.04%; found: C 30.17, H 3.08%.

Refinement top

Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C), and were refined in the riding-model approximation. The largest residual peak (1.172 e Å−3) is close to the Ba atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. A view of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 3/2 − y, z − 1/2; (iii) x − 1, 3/2 − y, z − 1/2; (iv) 1 − x, 2 − y, 1 − z; (A) x, 3/2 − y, z + 1/2; (B) 1 − x, 1 − y, 1 − z; (C) x + 1, 3/2 − y, z + 1/2; (D) 1 − x, 2 − y, 1 − z.]
[Figure 2] Fig. 2. The coordination dodecahedron of the Ba atom in (I). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, 3/2 − y, z − 1/2; (iii) x − 1, 3/2 − y, z − 1/2; (iv) 1 − x, 2 − y, 1 − z].
[Figure 3] Fig. 3. A packing diagram for (I). Intramolecular hydrogen bonds are shown as dashed lines. H atoms attached to C atoms have been omitted.
Poly[bisaquabarium(II)-µ-benzene-1,3-dioxyacetato-κ3O,O':O''] top
Crystal data top
[Ba(C10H8O6)(H2O)2]F(000) = 768
Mr = 397.53Dx = 2.158 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10381 reflections
a = 13.476 (3) Åθ = 3.2–27.4°
b = 7.3396 (15) ŵ = 3.28 mm1
c = 13.166 (3) ÅT = 295 K
β = 110.00 (3)°Prism, colourless
V = 1223.7 (5) Å30.38 × 0.25 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2787 independent reflections
Radiation source: fine-focus sealed tube2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.379, Tmax = 0.535l = 1717
10955 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.631P]
where P = (Fo2 + 2Fc2)/3
2787 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 1.17 e Å3
6 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Ba(C10H8O6)(H2O)2]V = 1223.7 (5) Å3
Mr = 397.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.476 (3) ŵ = 3.28 mm1
b = 7.3396 (15) ÅT = 295 K
c = 13.166 (3) Å0.38 × 0.25 × 0.19 mm
β = 110.00 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2787 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2553 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.535Rint = 0.045
10955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0286 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.17 e Å3
2787 reflectionsΔρmin = 0.99 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.120172 (12)0.65340 (2)0.302207 (13)0.01977 (8)
O10.15957 (18)0.8953 (3)0.47376 (19)0.0316 (5)
O20.22264 (19)0.8979 (4)0.6535 (2)0.0413 (6)
O30.34616 (17)0.7914 (3)0.46229 (17)0.0276 (5)
O40.72382 (18)0.6765 (3)0.6157 (2)0.0310 (5)
O50.91956 (17)0.7007 (3)0.7640 (2)0.0288 (5)
O60.89359 (19)0.9954 (3)0.78365 (19)0.0339 (5)
O1W0.1167 (2)0.4928 (3)0.4933 (2)0.0355 (5)
O2W0.0107 (2)0.6677 (3)0.0780 (2)0.0322 (5)
C10.2321 (2)0.8814 (4)0.5630 (3)0.0233 (6)
C20.3444 (2)0.8428 (4)0.5663 (3)0.0250 (7)
C30.4437 (2)0.7466 (4)0.4565 (2)0.0225 (6)
C40.4441 (3)0.6965 (5)0.3556 (3)0.0300 (7)
C50.5379 (3)0.6398 (5)0.3441 (3)0.0329 (8)
C60.6321 (3)0.6377 (5)0.4315 (3)0.0285 (7)
C70.6297 (2)0.6901 (4)0.5309 (3)0.0231 (6)
C80.5367 (2)0.7454 (5)0.5447 (2)0.0261 (6)
C90.7427 (2)0.8128 (4)0.6972 (3)0.0283 (7)
C100.8613 (2)0.8368 (4)0.7515 (3)0.0215 (6)
H1W10.111 (3)0.525 (5)0.553 (2)0.053*
H1W20.082 (3)0.395 (4)0.472 (3)0.053*
H2W10.055 (2)0.583 (4)0.054 (3)0.048*
H2W20.039 (2)0.658 (5)0.053 (4)0.048*
H2A0.38740.95070.59090.030*
H2B0.37450.74550.61750.030*
H40.38220.70070.29600.036*
H50.53780.60230.27660.040*
H60.69500.60200.42280.034*
H80.53670.78130.61240.031*
H9A0.71130.77660.75030.034*
H9B0.71100.92700.66520.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01834 (12)0.01959 (12)0.02083 (12)0.00071 (6)0.00598 (8)0.00118 (6)
O10.0230 (11)0.0365 (12)0.0293 (12)0.0080 (10)0.0012 (9)0.0089 (10)
O20.0306 (13)0.0694 (17)0.0291 (12)0.0079 (13)0.0168 (10)0.0004 (13)
O30.0174 (10)0.0454 (13)0.0193 (10)0.0072 (10)0.0054 (8)0.0007 (10)
O40.0180 (11)0.0376 (12)0.0309 (13)0.0064 (9)0.0001 (9)0.0135 (10)
O50.0188 (10)0.0262 (10)0.0389 (13)0.0007 (9)0.0067 (9)0.0037 (10)
O60.0397 (13)0.0230 (10)0.0318 (12)0.0067 (10)0.0027 (10)0.0026 (10)
O1W0.0388 (14)0.0379 (13)0.0338 (13)0.0016 (11)0.0176 (11)0.0013 (11)
O2W0.0280 (12)0.0321 (12)0.0370 (14)0.0070 (9)0.0117 (11)0.0115 (10)
C10.0186 (14)0.0238 (13)0.0279 (16)0.0009 (11)0.0084 (12)0.0043 (12)
C20.0191 (15)0.0357 (18)0.0191 (15)0.0026 (11)0.0049 (12)0.0021 (12)
C30.0151 (13)0.0278 (15)0.0245 (14)0.0013 (11)0.0067 (11)0.0005 (12)
C40.0212 (15)0.0471 (18)0.0210 (15)0.0014 (14)0.0062 (12)0.0001 (14)
C50.0266 (17)0.053 (2)0.0202 (16)0.0040 (14)0.0099 (13)0.0008 (14)
C60.0208 (15)0.0413 (19)0.0261 (16)0.0035 (13)0.0115 (13)0.0001 (13)
C70.0165 (13)0.0261 (14)0.0230 (15)0.0020 (11)0.0022 (11)0.0021 (12)
C80.0196 (14)0.0365 (17)0.0212 (14)0.0029 (12)0.0057 (11)0.0064 (13)
C90.0167 (14)0.0321 (15)0.0325 (17)0.0023 (12)0.0038 (12)0.0121 (14)
C100.0226 (15)0.0212 (14)0.0216 (15)0.0028 (10)0.0088 (12)0.0019 (11)
Geometric parameters (Å, º) top
Ba1—O12.778 (2)O6—Ba1vii3.173 (3)
Ba1—O2i2.781 (3)O6—C101.264 (3)
Ba1—O33.218 (2)O1W—H1W10.85 (3)
Ba1—O4ii3.146 (2)O1W—H1W20.85 (3)
Ba1—O5iii2.789 (2)O2W—H2W10.85 (3)
Ba1—O5ii2.736 (2)O2W—H2W20.84 (3)
Ba1—O6iv2.795 (2)C1—C21.526 (4)
Ba1—O6iii3.173 (3)C2—H2A0.9700
Ba1—O1W2.794 (2)C2—H2B0.9700
Ba1—O2W2.876 (3)C3—C41.380 (4)
Ba1—Ba1v4.7752 (9)C3—C81.386 (4)
Ba1—C10iii3.320 (3)C4—C51.387 (5)
O1—C11.249 (4)C4—H40.9300
O2—Ba1vi2.781 (3)C5—C61.391 (5)
O2—C11.246 (4)C5—H50.9300
O3—C21.428 (4)C6—C71.375 (5)
O3—C31.383 (4)C6—H60.9300
O4—Ba1ii3.146 (2)C7—C81.388 (4)
O4—C71.377 (4)C8—H80.9300
O4—C91.425 (4)C9—C101.522 (4)
O5—Ba1ii2.736 (2)C9—H9A0.9700
O5—Ba1vii2.789 (2)C9—H9B0.9700
O5—C101.245 (4)C10—Ba1vii3.320 (3)
O6—Ba1iv2.795 (2)
O1—Ba1—O2i131.02 (8)O3—C3—C8124.0 (3)
O1—Ba1—O352.50 (6)O4ii—Ba1—Ba1v79.35 (5)
O1—Ba1—O4ii107.05 (7)O4ii—Ba1—C10iii128.21 (7)
O1—Ba1—O5iii78.77 (7)O4—C7—C8122.5 (3)
O1—Ba1—O6iv72.98 (7)O4—C9—C10108.9 (2)
O1—Ba1—O6iii101.18 (7)O4—C9—H9A109.9
O1—Ba1—O1W66.08 (8)O4—C9—H9B109.9
O1—Ba1—O2W133.69 (7)O5iii—Ba1—Ba1v73.91 (5)
O2i—Ba1—O385.25 (7)O5ii—Ba1—Ba1v30.51 (5)
O2i—Ba1—O4ii72.74 (8)O5iii—Ba1—C10iii21.33 (6)
O2i—Ba1—O5iii127.52 (8)O5ii—Ba1—C10iii83.04 (7)
O2i—Ba1—O6iv79.64 (8)O5—C10—Ba1vii54.54 (16)
O2i—Ba1—O6iii126.57 (7)O5—C10—O6124.4 (3)
O2i—Ba1—O1W137.96 (8)O5—C10—C9118.8 (3)
O2i—Ba1—O2W63.91 (7)O6—C10—Ba1vii72.27 (18)
O4ii—Ba1—O369.24 (6)O6iii—Ba1—Ba1v34.22 (4)
O4ii—Ba1—O6iii105.90 (6)O6iv—Ba1—Ba1v130.36 (5)
O5ii—Ba1—O1145.96 (8)O6iv—Ba1—C10iii88.79 (7)
O5ii—Ba1—O2i74.76 (8)O6iii—Ba1—C10iii22.30 (6)
O5ii—Ba1—O3123.10 (6)O6—C10—C9116.7 (3)
O5iii—Ba1—O3129.74 (7)O1W—Ba1—Ba1v73.53 (6)
O5ii—Ba1—O4ii54.07 (6)O1W—Ba1—C10iii81.38 (8)
O5iii—Ba1—O4ii148.23 (7)O2W—Ba1—Ba1v67.36 (5)
O5ii—Ba1—O5iii103.61 (5)O2W—Ba1—C10iii63.86 (8)
O5ii—Ba1—O6iv140.23 (7)C1—O1—Ba1125.7 (2)
O5iii—Ba1—O6iv69.32 (7)C1—O2—Ba1vi153.8 (2)
O5ii—Ba1—O6iii64.53 (6)C1—C2—H2A109.4
O5iii—Ba1—O6iii43.13 (6)C1—C2—H2B109.4
O5ii—Ba1—O1W79.89 (7)C2—O3—Ba1112.88 (17)
O5iii—Ba1—O1W90.60 (8)C3—O3—Ba1126.45 (18)
O5ii—Ba1—O2W73.93 (7)C3—O3—C2116.3 (2)
O5iii—Ba1—O2W65.45 (8)C3—C4—C5119.2 (3)
O6iv—Ba1—O383.78 (7)C3—C4—H4120.4
O6iii—Ba1—O3146.02 (6)C3—C8—C7119.3 (3)
O6iv—Ba1—O4ii142.45 (7)C3—C8—H8120.3
O6iv—Ba1—O6iii110.94 (6)C4—C3—O3115.6 (3)
O6iv—Ba1—O2W67.59 (6)C4—C3—C8120.3 (3)
O1W—Ba1—O381.17 (7)C4—C5—C6121.4 (3)
O1W—Ba1—O4ii65.23 (7)C4—C5—H5119.3
O1W—Ba1—O6iv137.23 (7)C5—C4—H4120.4
O1W—Ba1—O6iii67.16 (7)C5—C6—H6120.9
O1W—Ba1—O2W138.28 (7)C6—C5—H5119.3
O2W—Ba1—O3140.50 (7)C6—C7—O4115.9 (3)
O2W—Ba1—O4ii118.94 (6)C6—C7—C8121.5 (3)
O2W—Ba1—O6iii72.38 (7)C7—O4—Ba1ii131.01 (17)
Ba1ii—O5—Ba1vii119.62 (8)C7—O4—C9116.0 (2)
Ba1iv—O6—Ba1vii106.12 (8)C7—C6—C5118.1 (3)
Ba1—O1W—H1W1139 (3)C7—C6—H6120.9
Ba1—O1W—H1W2103 (3)C7—C8—H8120.3
Ba1—O2W—H2W1118 (3)C9—O4—Ba1ii110.81 (18)
Ba1—O2W—H2W296 (3)C9—C10—Ba1vii163.6 (2)
O1—Ba1—Ba1v130.36 (6)C10iii—Ba1—Ba1v52.87 (5)
O1—Ba1—C10iii92.59 (7)C10—O5—Ba1ii132.36 (19)
O1—C1—C2119.4 (3)C10—O5—Ba1vii104.12 (18)
O2i—Ba1—Ba1v98.31 (6)C10—O6—Ba1iv138.3 (2)
O2i—Ba1—C10iii127.00 (8)C10—O6—Ba1vii85.42 (19)
O2—C1—O1126.0 (3)C10—C9—H9A109.9
O2—C1—C2114.5 (3)C10—C9—H9B109.9
O3—C2—H2B109.4H1W1—O1W—H1W2109 (4)
O3—Ba1—Ba1v145.83 (4)H2W1—O2W—H2W2110 (4)
O3—Ba1—C10iii144.97 (7)H2A—C2—H2B108.0
O3—C2—C1111.3 (3)H9A—C9—H9B108.3
O3—C2—H2A109.4
Ba1v—Ba1—O1—C196.1 (3)O4—C7—C8—C3176.6 (3)
Ba1v—Ba1—O3—C281.7 (2)O4—C9—C10—Ba1vii26.4 (9)
Ba1v—Ba1—O3—C373.8 (2)O4—C9—C10—O535.2 (4)
Ba1—O1—C1—O2132.4 (3)O4—C9—C10—O6146.6 (3)
Ba1—O1—C1—C248.3 (4)O5ii—Ba1—O1—C155.7 (3)
Ba1vi—O2—C1—O140.4 (8)O5iii—Ba1—O1—C1153.5 (3)
Ba1vi—O2—C1—C2140.3 (4)O5ii—Ba1—O3—C2111.15 (19)
Ba1—O3—C2—C119.6 (3)O5iii—Ba1—O3—C244.0 (2)
Ba1—O3—C3—C425.0 (4)O5ii—Ba1—O3—C344.4 (3)
Ba1—O3—C3—C8153.3 (2)O6iv—Ba1—O1—C1134.9 (3)
Ba1ii—O4—C7—C653.4 (4)O6iii—Ba1—O1—C1116.4 (3)
Ba1ii—O4—C7—C8123.9 (3)O6iv—Ba1—O3—C2100.43 (19)
Ba1ii—O4—C9—C1041.9 (3)O6iii—Ba1—O3—C218.4 (2)
Ba1ii—O5—C10—Ba1vii156.8 (3)O6iv—Ba1—O3—C3104.1 (2)
Ba1ii—O5—C10—O6176.6 (2)O6iii—Ba1—O3—C3137.2 (2)
Ba1vii—O5—C10—O619.7 (4)O1W—Ba1—O1—C157.7 (3)
Ba1ii—O5—C10—C95.5 (4)O1W—Ba1—O3—C239.40 (19)
Ba1vii—O5—C10—C9162.3 (2)O1W—Ba1—O3—C3116.1 (2)
Ba1iv—O6—C10—Ba1vii109.2 (3)O2W—Ba1—O1—C1167.4 (2)
Ba1iv—O6—C10—O5126.0 (3)O2W—Ba1—O3—C2143.12 (18)
Ba1vii—O6—C10—O516.8 (3)O2W—Ba1—O3—C361.4 (3)
Ba1iv—O6—C10—C956.0 (4)C2—O3—C3—C4179.7 (3)
Ba1vii—O6—C10—C9165.2 (3)C2—O3—C3—C81.4 (5)
O1—Ba1—O3—C227.15 (18)C3—O3—C2—C1177.7 (3)
O1—Ba1—O3—C3177.3 (3)C3—C4—C5—C62.0 (5)
O1—C1—C2—O311.7 (4)C4—C3—C8—C71.2 (5)
O2i—Ba1—O1—C176.0 (3)C4—C5—C6—C71.4 (5)
O2i—Ba1—O3—C2179.5 (2)C5—C6—C7—O4176.7 (3)
O2i—Ba1—O3—C324.0 (2)C5—C6—C7—C80.6 (5)
O2—C1—C2—O3168.9 (3)C6—C7—C8—C30.6 (5)
O5iii—Ba1—O3—C3160.5 (2)C7—O4—C9—C10153.1 (3)
O3—Ba1—O1—C139.6 (2)C8—C3—C4—C51.9 (5)
O3—C3—C4—C5176.5 (3)C9—O4—C7—C6145.4 (3)
O3—C3—C8—C7177.0 (3)C9—O4—C7—C837.4 (4)
O4ii—Ba1—O1—C15.7 (3)C10iii—Ba1—O1—C1137.1 (3)
O4ii—Ba1—O3—C2106.2 (2)C10iii—Ba1—O3—C221.5 (2)
O4ii—Ba1—O3—C349.3 (2)C10iii—Ba1—O3—C3177.0 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+2, z+1; (v) x, y1/2, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6viii0.85 (3)2.18 (2)2.986 (4)158 (4)
O1W—H1W2···O2Wv0.85 (3)1.93 (3)2.775 (4)176 (4)
O2W—H2W1···O1v0.85 (3)1.91 (3)2.748 (3)168 (4)
O2W—H2W2···O1i0.84 (3)2.25 (4)3.085 (4)173 (3)
O2W—H2W2···O2i0.84 (3)2.41 (4)2.995 (4)127 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (v) x, y1/2, z+1/2; (viii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ba(C10H8O6)(H2O)2]
Mr397.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.476 (3), 7.3396 (15), 13.166 (3)
β (°) 110.00 (3)
V3)1223.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.38 × 0.25 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.379, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
10955, 2787, 2553
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.05
No. of reflections2787
No. of parameters184
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.17, 0.99

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), Please provide missing details.

Selected bond lengths (Å) top
Ba1—O12.778 (2)Ba1—O5ii2.736 (2)
Ba1—O2i2.781 (3)Ba1—O6iv2.795 (2)
Ba1—O33.218 (2)Ba1—O6iii3.173 (3)
Ba1—O4ii3.146 (2)Ba1—O1W2.794 (2)
Ba1—O5iii2.789 (2)Ba1—O2W2.876 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6v0.85 (3)2.18 (2)2.986 (4)158 (4)
O1W—H1W2···O2Wvi0.85 (3)1.93 (3)2.775 (4)176 (4)
O2W—H2W1···O1vi0.85 (3)1.91 (3)2.748 (3)168 (4)
O2W—H2W2···O1i0.84 (3)2.25 (4)3.085 (4)173 (3)
O2W—H2W2···O2i0.84 (3)2.41 (4)2.995 (4)127 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds