Download citation
Download citation
link to html
The title ionic zinc–acetate complex, [Zn(C2H3O2)(C12H12N2)2]2(S3O6)·5H2O, contains a ZnN4O2 nucleus provided by the three bidentate ligands acting in a chelating mode. The trithio­nate unit, in turn, acts as an isolated charge-balancing counter-ion. The structure has a three-dimensional assembly achieved through three different inter­action types, viz. Coulomb, hydrogen bonding and π–π. The trithio­nate group and one of the solvent water mol­ecules are disordered around inversion centers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105012515/fg1836sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105012515/fg1836Isup2.hkl
Contains datablock I

CCDC reference: 275501

Comment top

Many synthetic routes are available for the preparation of polythionate anions (O3SnO32−, 2 < = n), even though mechanistic details are frequently obscured due to the numerous simultaneous and competing redox, catenation and/or disproportionation reactions that may occur. We have recently commented (Díaz de Vivar et al., 2004, 2005) on the feasibility of producing novel thiosulfate complexes of group XII metals, complexes that are difficult to obtain by conventional methods, through the decomposition of less common sulfur oxoanions, such as dithionite and/or pyrosulfite. One of the reported ways to obtain trithionate (O3S3O32−) is the reaction between aqueous thiosulfate and sulfur dioxide (Remy, 1956), but structures containing the anion are rare, as a survey in the current structural databases reveals. In the November 2004 update of the Cambridge Structural Database (CSD; Allen, 2002), out of a total of 132 structures containing polythionates of diverse chain lengths (2 < = n < = 6), the most common species by far were dithionates (n = 2), with 112 entries; only one trithionate, viz. cis-amminebromobis(ethylenediamine)cobalt(III) trithionate, hereafter (II) (Chun et al., 2000), was found. Similarly scarce was the outcome of a search of the 2004 release of the ICSD (2001), with only one fully reported structure, dipotassium trithionate, hereafter (III) (Christidis & Rentzeperis, 1985). We report here only the third reported structure containing a trithionate anion, viz. [Zn(dmbpy)2(acet)+]2(S3O62−)·5H2O (dmbpy is 4,4'-dimethyl-2,2'-bipyridyl and acet is acetate), (I), which was prepared serendipitously.

Fig. 1 shows an ellipsoid diagram of (I). The structure is ionic, and consists of monomeric [Zn(dmbpy)2(acet)]+ cations, balanced by S3O62− anions in a 2:1 ratio, and two and a half independent solvent water molecules.

The six-coordinate Zn cation binds to three chelating ligands and, as a result of the angular restraints in force, the ZnN4O2 polyhedron appears highly distorted. However, the mean values of the Zn—N and Zn—O distances [2.110 (14) and 2.22 (3) Å, respectively] depart only slightly from the corresponding means in similar coordination spheres with no geometric restraints [2.14 (8) and 2.19 (15) Å, respectively, for 264 cases found in the CSD].

In spite of its being disordered about an inversion centre, the trithionate ion could be adequately refined. When compared with the only other two reported structures containing this (counter) anion no significant differences could be detected, as the following values given in a (I)/(II)/(III) sequence confirm: <S—O>: 1.43 (3)/1.443 (5)/1.45 (2) Å; <S—S>: 2.10 (4)/2.102 (14)/2.08 (2) Å; S—S—S angle: 107.1 (1)/107.1 (1)/106.4 (1)°. It is noteworthy that the anion shows the same characteristic feature frequently observed in many peroxodisulfates (Harvey, Baggio, Garland, Burton & Baggio, 2001; Harvey, Baggio, Garland & Baggio, 2001). The S—S—S—O groups that are more nearly planar (with a torsion angle of 155–180°) are those that present a terminal S—S—O angle some 10° smaller than the other two S—S—O angles involving the remaining terminal O atoms (Table 1).

A feature in the structure is the three-dimensional assembly achieved through three different interaction types, viz. Coulomb, hydrogen bonding and ππ. Fig. 2 shows a projection on to the (111) plane, where two distinct types of one-dimensional array are apparent, viz. a cationic chain formed by the juxtaposition of π-bonded [Zn(dmbpy)2(acet)]+ monomers, and an anionic one determined by the hydrogen-bonded solvent water molecules and trithionate anions. The former chain in built up around the inversion centers at (0,1/2,1/2) and (1/2,1/2,0), which through the duplication of moieties dmbpy(A) and dmbpy(B), respectively, leads to two symmetry-related pairs of aromatic rings at a graphitic distance to each other (about 3.5 Å; see Table 3). For clarity these chains have been represented in Fig. 2 with consecutive monomers drawn in contrasting line widths. The anionic arrays evolve between these cationic chains as wavy tightly woven strips, where the water molecules cluster around each other and act as connectors between trithionate anions. Details of the hydrogen-bonding scheme are presented in Table 2.

The interaction between the two different types of chains is achieved through the omnipresent Colulomb forces, as well as via a hydrogen bond connecting atom O3W, on the anionic side, with an acetate O atom on the cationic side. The final ensemble, depicted in Fig. 2, is a two-dimensional array some 7 Å in width (the diameter of the rather `globular"'cationic unit). These planes stack along [111], but with a lateral shift of one `interchain spacing' perpendicular to the chain's direction (Fig. 3), thus confronting positively charged columns in one sheet with negative ones in the neighboring sheet, and providing for stabilization of the three-dimensional structure.

Experimental top

The compound was obtained by dissolving the aromatic amine in ethanol (96%) and allowing this solution to diffuse slowly into an aqueous solution of [Zn(C2H3O2)2]·2H2O and K2S2O5 (molar ratio 1:1:2). After two months, crystals of a size suitable for X-ray analysis had developed.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—Haromatic = 0.93 Å and C—Hmethyl = 0.96 Å) and allowed to ride. Methyl groups were allowed to rotate around the C—C axis. H atoms of water molecules were located from difference Fourier syntheses and refined with restrained O—H distances [0.85 (2) Å]. All H atoms were assigned Uiso(H) values of xUeq(host), with x = 1.2 for aromatic and water H atoms, and x = 1.5 for methyl H atoms. The trithionate group and one of the solvent water molecules (O1W) are disordered around inversion centers, each with an occupancy of 0.5.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick,1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An XP diagram (Sheldrick, 1994) of (I), with 50% probability displacement ellipsoids. Only one of the two disordered moieties of the trithionate group is shown, for clarity.
[Figure 2] Fig. 2. A projection of the structure on to the (111) plane. See text and Table 3 for details.
[Figure 3] Fig. 3. A projection of the structure down [101], the chain direction, at 90° from the view in Fig. 2. Note the alternation of cationic (bold lines) and anionic (light lines) chains.
Bis[(acetato-κ2O,O')bis(4,4'-dimethyl-2,2'-bipyridyl-κ2N,N')zinc(II)] trithionate pentahydrate top
Crystal data top
[Zn(C12H12N2)2(C2H3O2)]2(S3O6)·5H2OZ = 1
Mr = 1268.04F(000) = 660
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7456 (11) ÅCell parameters from 1232 reflections
b = 11.2370 (12) Åθ = 4.0–23.5°
c = 14.5676 (16) ŵ = 1.01 mm1
α = 73.043 (2)°T = 295 K
β = 70.943 (2)°Plate, colorless
γ = 85.260 (2)°0.25 × 0.12 × 0.08 mm
V = 1442.2 (3) Å3
Data collection top
Bruker CCD area detector
diffractometer
6282 independent reflections
Radiation source: fine-focus sealed tube4707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.84, Tmax = 0.92k = 1414
10738 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.0235P]
where P = (Fo2 + 2Fc2)/3
6282 reflections(Δ/σ)max = 0.008
412 parametersΔρmax = 0.62 e Å3
10 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C12H12N2)2(C2H3O2)]2(S3O6)·5H2Oγ = 85.260 (2)°
Mr = 1268.04V = 1442.2 (3) Å3
Triclinic, P1Z = 1
a = 9.7456 (11) ÅMo Kα radiation
b = 11.2370 (12) ŵ = 1.01 mm1
c = 14.5676 (16) ÅT = 295 K
α = 73.043 (2)°0.25 × 0.12 × 0.08 mm
β = 70.943 (2)°
Data collection top
Bruker CCD area detector
diffractometer
6282 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4707 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.92Rint = 0.027
10738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
6282 reflectionsΔρmin = 0.34 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.23008 (4)0.51916 (3)0.23849 (2)0.04350 (14)
O130.1061 (3)0.4991 (2)0.14229 (18)0.0641 (6)
O230.0446 (3)0.6448 (2)0.21810 (18)0.0620 (6)
C130.0267 (4)0.5872 (4)0.1612 (3)0.0582 (9)
C230.0929 (5)0.6258 (5)0.1153 (3)0.0864 (13)
H23A0.09860.56920.07840.130*
H23B0.07330.70840.07020.130*
H23C0.18350.62440.16800.130*
N110.2678 (3)0.5547 (2)0.36138 (18)0.0406 (5)
N210.1033 (3)0.3789 (2)0.36288 (18)0.0435 (6)
C110.3574 (3)0.6436 (3)0.3555 (2)0.0495 (8)
H110.40100.69950.29280.059*
C210.3869 (4)0.6548 (3)0.4383 (3)0.0550 (8)
H210.44990.71720.43100.066*
C310.3237 (4)0.5741 (3)0.5323 (2)0.0497 (8)
C410.2338 (3)0.4819 (3)0.5380 (2)0.0454 (7)
H410.19040.42470.60000.055*
C510.2076 (3)0.4738 (3)0.4523 (2)0.0382 (6)
C610.1108 (3)0.3770 (3)0.4535 (2)0.0395 (6)
C710.0362 (3)0.2887 (3)0.5396 (2)0.0469 (7)
H710.04220.28960.60180.056*
C810.0484 (3)0.1976 (3)0.5351 (3)0.0521 (8)
C910.0530 (4)0.2014 (3)0.4403 (3)0.0560 (8)
H910.10740.14230.43330.067*
C1010.0222 (3)0.2917 (3)0.3572 (3)0.0515 (8)
H10A0.01730.29300.29420.062*
C1110.3514 (4)0.5872 (4)0.6239 (3)0.0699 (11)
H11B0.44640.62270.60480.105*
H11C0.34570.50670.67180.105*
H11D0.27990.64050.65410.105*
C1210.1268 (4)0.0989 (4)0.6282 (3)0.0739 (11)
H12A0.20760.06760.61770.111*
H12B0.16150.13350.68450.111*
H12C0.06180.03220.64210.111*
N120.3823 (3)0.6472 (2)0.11826 (18)0.0430 (6)
N220.4146 (3)0.4092 (2)0.20311 (17)0.0420 (6)
C120.3593 (4)0.7660 (3)0.0755 (2)0.0531 (8)
H120.26940.79930.10160.064*
C220.4607 (4)0.8414 (3)0.0045 (3)0.0574 (9)
H220.43890.92380.03130.069*
C320.5934 (4)0.7961 (3)0.0451 (2)0.0563 (9)
C420.6191 (3)0.6715 (3)0.0023 (2)0.0475 (7)
H420.70820.63670.02820.057*
C520.5126 (3)0.6001 (3)0.0784 (2)0.0416 (7)
C620.5316 (3)0.4669 (3)0.1289 (2)0.0409 (7)
C720.6617 (4)0.4064 (3)0.1029 (2)0.0498 (8)
H720.74030.44720.04930.060*
C820.6747 (4)0.2840 (3)0.1572 (3)0.0574 (9)
C920.5534 (4)0.2274 (3)0.2342 (3)0.0576 (9)
H920.55790.14560.27220.069*
C1020.4275 (4)0.2909 (3)0.2545 (2)0.0489 (7)
H10B0.34670.25060.30630.059*
C1120.7093 (5)0.8763 (4)0.1309 (3)0.0798 (12)
H11E0.66520.93840.17310.120*
H11F0.77150.82580.17010.120*
H11G0.76530.91610.10470.120*
C1220.8173 (5)0.2178 (5)0.1338 (4)0.0927 (15)
H12E0.81860.15000.19170.139*
H12F0.89530.27490.11760.139*
H12G0.82900.18620.07720.139*
S10.6574 (10)1.0548 (8)0.5553 (7)0.0717 (16)0.50
S20.4254 (2)1.0526 (2)0.50873 (18)0.0716 (6)0.50
S30.3601 (8)0.9218 (6)0.4301 (6)0.0549 (11)0.50
O10.6995 (7)1.1025 (8)0.4680 (5)0.109 (3)0.50
O20.6808 (8)1.1295 (10)0.6261 (7)0.132 (3)0.50
O30.7027 (7)0.9312 (6)0.6047 (5)0.100 (2)0.50
O40.4498 (7)0.9329 (5)0.3663 (4)0.0796 (16)0.50
O50.2118 (6)0.9681 (6)0.3697 (4)0.0812 (16)0.50
O60.3677 (6)0.8033 (5)0.4996 (5)0.0722 (15)0.50
O1W0.1226 (9)1.0288 (9)0.0096 (5)0.117 (2)0.50
H1W10.081 (4)1.049 (11)0.055 (2)0.140*0.50
H1W20.072 (7)0.984 (10)0.048 (3)0.140*0.50
O2W0.4026 (6)1.1220 (6)0.1859 (4)0.1627 (19)
H2W10.420 (8)1.117 (8)0.247 (2)0.195*
H2W20.324 (5)1.084 (7)0.143 (4)0.195*
O3W0.0581 (6)0.8944 (4)0.1887 (3)0.1218 (14)
H3W10.017 (6)0.824 (3)0.193 (4)0.146*
H3W20.122 (5)0.901 (5)0.244 (2)0.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0450 (2)0.0490 (2)0.0343 (2)0.00609 (15)0.00921 (15)0.01040 (16)
O130.0641 (16)0.0697 (17)0.0547 (14)0.0046 (13)0.0167 (12)0.0125 (13)
O230.0566 (15)0.0740 (17)0.0552 (14)0.0015 (12)0.0200 (12)0.0154 (13)
C130.051 (2)0.068 (2)0.0476 (19)0.0120 (18)0.0146 (16)0.0015 (18)
C230.073 (3)0.105 (4)0.090 (3)0.006 (2)0.047 (2)0.015 (3)
N110.0405 (13)0.0407 (13)0.0392 (13)0.0051 (10)0.0083 (10)0.0126 (11)
N210.0419 (14)0.0476 (15)0.0396 (13)0.0075 (11)0.0080 (11)0.0138 (11)
C110.0553 (19)0.0426 (17)0.0491 (18)0.0081 (14)0.0109 (15)0.0144 (14)
C210.060 (2)0.0494 (19)0.064 (2)0.0089 (16)0.0209 (17)0.0237 (17)
C310.0547 (19)0.0518 (19)0.0497 (18)0.0027 (15)0.0190 (15)0.0227 (16)
C410.0513 (18)0.0488 (18)0.0367 (15)0.0007 (14)0.0138 (13)0.0129 (13)
C510.0379 (15)0.0367 (15)0.0382 (14)0.0008 (12)0.0072 (12)0.0130 (12)
C610.0372 (15)0.0406 (16)0.0394 (15)0.0009 (12)0.0095 (12)0.0125 (13)
C710.0483 (18)0.0448 (17)0.0440 (16)0.0009 (14)0.0140 (14)0.0080 (14)
C810.0476 (18)0.0416 (17)0.058 (2)0.0021 (14)0.0092 (15)0.0081 (15)
C910.0488 (19)0.0514 (19)0.068 (2)0.0123 (15)0.0149 (17)0.0182 (17)
C1010.0447 (17)0.062 (2)0.0520 (18)0.0106 (15)0.0112 (14)0.0242 (16)
C1110.084 (3)0.081 (3)0.060 (2)0.006 (2)0.033 (2)0.029 (2)
C1210.076 (3)0.054 (2)0.072 (3)0.0218 (19)0.013 (2)0.0058 (19)
N120.0486 (15)0.0409 (14)0.0359 (12)0.0046 (11)0.0094 (11)0.0085 (11)
N220.0482 (14)0.0421 (14)0.0347 (12)0.0029 (11)0.0122 (11)0.0095 (11)
C120.061 (2)0.0464 (19)0.0486 (18)0.0023 (15)0.0142 (16)0.0106 (15)
C220.076 (2)0.0404 (18)0.053 (2)0.0072 (17)0.0212 (18)0.0065 (15)
C320.070 (2)0.055 (2)0.0441 (17)0.0211 (17)0.0176 (16)0.0092 (16)
C420.0482 (18)0.0550 (19)0.0385 (15)0.0104 (14)0.0098 (13)0.0135 (14)
C520.0474 (17)0.0474 (17)0.0331 (14)0.0087 (13)0.0139 (13)0.0119 (13)
C620.0495 (17)0.0445 (17)0.0324 (14)0.0026 (13)0.0148 (13)0.0133 (13)
C720.0491 (18)0.056 (2)0.0450 (17)0.0001 (15)0.0119 (14)0.0186 (15)
C820.063 (2)0.060 (2)0.054 (2)0.0106 (17)0.0216 (17)0.0233 (17)
C920.078 (2)0.0460 (19)0.0501 (19)0.0077 (17)0.0259 (18)0.0115 (16)
C1020.060 (2)0.0456 (18)0.0399 (16)0.0024 (15)0.0156 (14)0.0092 (14)
C1120.087 (3)0.069 (3)0.064 (2)0.031 (2)0.005 (2)0.002 (2)
C1220.077 (3)0.088 (3)0.097 (3)0.035 (3)0.022 (3)0.016 (3)
S10.055 (2)0.074 (4)0.080 (3)0.008 (2)0.0275 (17)0.004 (2)
S20.0518 (10)0.0794 (14)0.0959 (15)0.0100 (9)0.0186 (10)0.0452 (12)
S30.048 (2)0.0442 (19)0.064 (2)0.0024 (14)0.0156 (16)0.0055 (14)
O10.077 (4)0.148 (6)0.068 (4)0.029 (4)0.025 (3)0.013 (4)
O20.070 (5)0.191 (9)0.165 (8)0.007 (5)0.011 (5)0.127 (8)
O30.084 (4)0.088 (5)0.117 (5)0.033 (4)0.053 (4)0.018 (4)
O40.115 (5)0.063 (3)0.078 (4)0.012 (3)0.053 (4)0.016 (3)
O50.067 (4)0.081 (4)0.081 (4)0.016 (3)0.002 (3)0.020 (3)
O60.072 (3)0.050 (3)0.085 (4)0.006 (3)0.030 (3)0.002 (3)
O1W0.140 (7)0.133 (7)0.080 (5)0.001 (5)0.043 (5)0.025 (5)
O2W0.174 (5)0.174 (5)0.140 (4)0.042 (4)0.064 (4)0.016 (4)
O3W0.180 (4)0.100 (3)0.084 (2)0.038 (3)0.046 (3)0.028 (2)
Geometric parameters (Å, º) top
Zn1—N112.091 (2)N12—C521.348 (4)
Zn1—N222.104 (2)N22—C1021.341 (4)
Zn1—N212.119 (2)N22—C621.341 (4)
Zn1—N122.127 (2)C12—C221.365 (5)
Zn1—O132.193 (2)C12—H120.93
Zn1—O232.243 (2)C22—C321.360 (5)
O13—C131.244 (4)C22—H220.93
O23—C131.250 (4)C32—C421.395 (5)
C13—C231.500 (5)C32—C1121.496 (5)
C23—H23A0.96C42—C521.376 (4)
C23—H23B0.96C42—H420.93
C23—H23C0.96C52—C621.488 (4)
N11—C111.346 (4)C62—C721.382 (4)
N11—C511.343 (4)C72—C821.392 (5)
N21—C611.339 (4)C72—H720.93
N21—C1011.345 (4)C82—C921.379 (5)
C11—C211.370 (4)C82—C1221.507 (5)
C11—H110.93C92—C1021.358 (5)
C21—C311.376 (5)C92—H920.93
C21—H210.93C102—H10B0.93
C31—C411.379 (4)C112—H11E0.96
C31—C1111.494 (4)C112—H11F0.96
C41—C511.383 (4)C112—H11G0.96
C41—H410.93C122—H12E0.96
C51—C611.491 (4)C122—H12F0.96
C61—C711.372 (4)C122—H12G0.96
C71—C811.395 (4)S1—O31.397 (10)
C71—H710.93S1—O11.407 (11)
C81—C911.384 (5)S1—O21.463 (9)
C81—C1211.497 (5)S1—S22.138 (9)
C91—C1011.364 (5)S2—S32.056 (7)
C91—H910.93S3—O61.409 (9)
C101—H10A0.93S3—O41.445 (9)
C111—H11B0.96S3—O51.470 (10)
C111—H11C0.96O1W—H1W10.85 (4)
C111—H11D0.96O1W—H1W20.85 (4)
C121—H12A0.96O2W—H2W10.86 (5)
C121—H12B0.96O2W—H2W20.86 (4)
C121—H12C0.96O3W—H3W10.85 (4)
N12—C121.332 (4)O3W—H3W20.86 (4)
N11—Zn1—N2295.87 (9)C31—C111—H11D109.5
N11—Zn1—N2177.56 (9)H11B—C111—H11D109.5
N22—Zn1—N2195.93 (9)H11C—C111—H11D109.5
N11—Zn1—N1299.29 (9)C81—C121—H12A109.5
N22—Zn1—N1277.21 (9)C81—C121—H12B109.5
N21—Zn1—N12172.22 (10)H12A—C121—H12B109.5
N11—Zn1—O13157.81 (10)C81—C121—H12C109.5
N22—Zn1—O13104.59 (10)H12A—C121—H12C109.5
N21—Zn1—O1391.67 (9)H12B—C121—H12C109.5
N12—Zn1—O1393.61 (9)C12—N12—C52117.3 (3)
N11—Zn1—O23102.80 (9)C12—N12—Zn1126.9 (2)
N22—Zn1—O23159.58 (9)C52—N12—Zn1115.71 (19)
N21—Zn1—O2396.10 (9)C102—N22—C62118.3 (3)
N12—Zn1—O2391.53 (9)C102—N22—Zn1125.1 (2)
O13—Zn1—O2358.62 (10)C62—N22—Zn1116.32 (19)
N11—Zn1—C13131.19 (12)N12—C12—C22123.6 (3)
N22—Zn1—C13132.94 (11)N12—C12—H12118.2
N21—Zn1—C1394.38 (10)C22—C12—H12118.2
N12—Zn1—C1393.01 (10)C32—C22—C12120.0 (3)
O13—Zn1—C1329.24 (10)C32—C22—H22120.0
O23—Zn1—C1329.38 (10)C12—C22—H22120.0
C13—O13—Zn191.3 (2)C22—C32—C42117.4 (3)
C13—O23—Zn188.9 (2)C22—C32—C112121.8 (3)
O13—C13—O23121.2 (3)C42—C32—C112120.8 (3)
O13—C13—C23119.9 (4)C52—C42—C32119.9 (3)
O23—C13—C23119.0 (4)C52—C42—H42120.0
O13—C13—Zn159.42 (19)C32—C42—H42120.0
O23—C13—Zn161.74 (19)N12—C52—C42121.8 (3)
C23—C13—Zn1179.3 (3)N12—C52—C62114.9 (2)
C13—C23—H23A109.5C42—C52—C62123.3 (3)
C13—C23—H23B109.5N22—C62—C72121.6 (3)
H23A—C23—H23B109.5N22—C62—C52115.7 (3)
C13—C23—H23C109.5C72—C62—C52122.6 (3)
H23A—C23—H23C109.5C62—C72—C82119.7 (3)
H23B—C23—H23C109.5C62—C72—H72120.2
C11—N11—C51117.9 (3)C82—C72—H72120.2
C11—N11—Zn1125.6 (2)C92—C82—C72117.5 (3)
C51—N11—Zn1116.20 (19)C92—C82—C122121.7 (3)
C61—N21—C101118.8 (3)C72—C82—C122120.8 (3)
C61—N21—Zn1115.47 (19)C102—C92—C82120.1 (3)
C101—N21—Zn1125.6 (2)C102—C92—H92120.0
N11—C11—C21122.4 (3)C82—C92—H92120.0
N11—C11—H11118.8N22—C102—C92122.7 (3)
C21—C11—H11118.8N22—C102—H10B118.6
C11—C21—C31120.3 (3)C92—C102—H10B118.6
C11—C21—H21119.8C32—C112—H11E109.5
C31—C21—H21119.8C32—C112—H11F109.5
C21—C31—C41117.2 (3)H11E—C112—H11F109.5
C21—C31—C111121.0 (3)C32—C112—H11G109.5
C41—C31—C111121.8 (3)H11E—C112—H11G109.5
C31—C41—C51120.6 (3)H11F—C112—H11G109.5
C31—C41—H41119.7C82—C122—H12E109.5
C51—C41—H41119.7C82—C122—H12F109.5
N11—C51—C41121.6 (3)H12E—C122—H12F109.5
N11—C51—C61115.2 (2)C82—C122—H12G109.5
C41—C51—C61123.2 (3)H12E—C122—H12G109.5
N21—C61—C71121.0 (3)H12F—C122—H12G109.5
N21—C61—C51115.3 (2)O3—S1—O1112.0 (6)
C71—C61—C51123.7 (3)O3—S1—O2112.2 (9)
C61—C71—C81120.9 (3)O1—S1—O2119.1 (9)
C61—C71—H71119.5O3—S1—S2105.8 (6)
C81—C71—H71119.5O1—S1—S2107.9 (6)
C91—C81—C71116.7 (3)O2—S1—S298.1 (4)
C91—C81—C121121.9 (3)S3—S2—S1107.1 (2)
C71—C81—C121121.3 (3)O6—S3—O4113.6 (5)
C101—C91—C81120.0 (3)O6—S3—O5114.5 (6)
C101—C91—H91120.0O4—S3—O5111.0 (6)
C81—C91—H91120.0O6—S3—S2108.9 (5)
N21—C101—C91122.5 (3)O4—S3—S2108.2 (5)
N21—C101—H10A118.7O5—S3—S299.5 (4)
C91—C101—H10A118.7H1W1—O1W—H1W2116 (6)
C31—C111—H11B109.5H2W1—O2W—H2W2114 (7)
C31—C111—H11C109.5H3W1—O3W—H3W2115 (7)
H11B—C111—H11C109.5
S1—S2—S3—O682.9 (6)O3—S1—S2—S352.3 (8)
S1—S2—S3—O5157.0 (3)O2—S1—S2—S3168.2 (5)
S1—S2—S3—O441.0 (7)O1—S1—S2—S367.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3Wi0.85 (4)1.94 (5)2.759 (8)160 (6)
O1W—H1W2···O3W0.85 (4)2.03 (5)2.881 (9)174 (9)
O2W—H2W1···O4i0.86 (5)1.91 (4)2.759 (8)167 (8)
O2W—H2W2···O1W0.86 (4)2.24 (4)3.077 (10)163 (7)
O3W—H3W1···O230.85 (5)2.02 (4)2.858 (5)169 (5)
O3W—H3W2···O50.86 (4)2.09 (5)2.894 (7)157 (6)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Zn(C12H12N2)2(C2H3O2)]2(S3O6)·5H2O
Mr1268.04
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.7456 (11), 11.2370 (12), 14.5676 (16)
α, β, γ (°)73.043 (2), 70.943 (2), 85.260 (2)
V3)1442.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerBruker CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.84, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
10738, 6282, 4707
Rint0.027
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.03
No. of reflections6282
No. of parameters412
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.34

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2000), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick,1994), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—N112.091 (2)S1—O11.407 (11)
Zn1—N222.104 (2)S1—O21.463 (9)
Zn1—N212.119 (2)S1—S22.138 (9)
Zn1—N122.127 (2)S2—S32.056 (7)
Zn1—O132.193 (2)S3—O61.409 (9)
Zn1—O232.243 (2)S3—O41.445 (9)
S1—O31.397 (10)S3—O51.470 (10)
O3—S1—S2105.8 (6)O6—S3—S2108.9 (5)
O1—S1—S2107.9 (6)O4—S3—S2108.2 (5)
O2—S1—S298.1 (4)O5—S3—S299.5 (4)
S1—S2—S3—O5157.0 (3)O2—S1—S2—S3168.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3Wi0.85 (4)1.94 (5)2.759 (8)160 (6)
O1W—H1W2···O3W0.85 (4)2.03 (5)2.881 (9)174 (9)
O2W—H2W1···O4i0.86 (5)1.91 (4)2.759 (8)167 (8)
O2W—H2W2···O1W0.86 (4)2.24 (4)3.077 (10)163 (7)
O3W—H3W1···O230.85 (5)2.02 (4)2.858 (5)169 (5)
O3W—H3W2···O50.86 (4)2.09 (5)2.894 (7)157 (6)
Symmetry code: (i) x, y+2, z.
Table 3: π-π contacts for (I) top
Group 1/Group 2cpd(Å)ccd(Å)sa(°)
(N11,C11>C51)/
(N21i,C61i>C101i)3.417 (17)3.542 (2)15.2 (10)
(N12,C12>C52/
(N22ii,C6ii>C10ii)3.45 (2)3.569 (2)14.9 (15)
Symmetry codes: i: −x,1 − y,1 − z, ii: 1 − x,1 − y,-z

cpd: (average) centroid-to-plane distance; ccd: centroid-to-centroid distance; sa: slippage angle; (average) angle between the intercentroid vector and the, non strictly parallel, plane normals. For details, see Janiak 2000.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds