Download citation
Download citation
link to html
The title complex, [Ag4(C7H5O3)2(C8H6N2)4(C7H6O3)4], lies about an inversion centre and has a unique tetra­nuclear structure consisting of four AgI atoms bridged by four N atoms from two 1,8-naphthyridine (napy) ligands to form an N:N′-bridge and four O atoms from two salicylate (SA) ligands to form an O:O′-bridge. The Ag atoms have distorted octa­hedral coordination geometry. The centrosymmetric Ag4 ring has Ag—Ag separations of 2.772 (2) and 3.127 (2) Å, and Ag—Ag—Ag angles of 107.70 (4) and 72.30 (4)°. All SA hydroxy groups take part in intra­molecular O—H...O hydrogen bonding. In the crystal packing, the napy rings are oriented parallel and overlap one another. These π–π inter­actions, together with weak inter­molecular C—H...O contacts, stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010498/fg1829sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010498/fg1829Isup2.hkl
Contains datablock I

CCDC reference: 275494

Comment top

The two active N,N' donor atoms in 1,8-naphthyridine (napy) can act in different coordination modes, such as monodentate (Dewer et al., 1975; Enwall & Emerson, 1979), bidentate (Bodner & Hendricker, 1973; Epstein et al., 1974; Munakata et al., 1990). In the case of Ag(napy-N) type complexes, napy always acts as a bridging ligand to form planar binuclear complexes (Tsuda et al., 1989; Griffith et al., 1995; Koizumi & Tanaka, 2004). It is also known that silver complexes with salicylic acid (SA) are also based on bis(carboxylato-O,O')-bridged disilver nucleus (Movsumov et al., 1990).

In this present study, we designed a mixed-ligand silver complex using napy and SA ligands and synthesized the unique title tetrasilver complex, (I). Complex (I) is the first example in which there are two kinds of Ag—Ag bridges, i.e. O,O' and N,N' bridges, coexisting in one complex molecule.

The structure of complex (I) is shown in Fig. 1, with principal dimensions given in Table 1. Four AgI atoms lie about an inversion centre and as a consequence are perfectly planar. Atom Ag1 has a distorted octahedral coordination, being bonded to two N atoms [N3 and N2(1 − x,1 − y,-z)] from two napy ligands, one carboxylate O1 atom from a bidentate salicylate ligand, two adjacent Ag2 atoms, and (weakly) to carboxyl atom O7 of a salicylic acid molecule. Atom Ag2 also has a distorted octahedral coordination geometry, in which Ag1(1 − x,1 − y,-z), N1, N4(1 − x,1 − y,-z) and the salicylate O2 atoms form the equatorial plane, and Ag1 and salicylate O4 atoms complete the octahedron. As can be seen in Fig. 1, all salicylic hydroxy groups participate in intramolecular O—H···O hydrogen bonds (Table 2).

Each napy molecule acts as a bidentate ligand and pairs form a rigid bis(napy-N,N')-bridged disilver unit. In this unit, the eight-membered bis-chelate ring (–Ag—N—C—N—Ag—N—C—N–) is almost planar but is slightly folded [6.97 (10)°] about the Ag—Ag axis. Two inversion-related salicylate moieties act as bidentate bridging ligands to form a ten-membered chelate ring (–Ag—Ag—O—C—O—Ag—Ag—O—C—O–). As shown in Fig. 2, the two bridging salicylate aromatic rings are tilted away from the ten-membered chelate ring plane by 18.86 (10)°. The eight-membered chelate rings and the ten-membered chelate rings are essentially orthogonal.

In (I), both the average distances of Ag—O [bridged O; 2.413 (2) Å] and Ag—N [2.228 (6) Å] are longer than the corresponding values in complexes with only one kind of bridge unit within an O,O' or N,N' bridge, e.g. 2.180 (4) and 2.196 (5) Å for the Ag—O distance in an O,O'-bridged silver–salicylate complex (Movsumov et al., 1990) and 2.187 (3)–2.213 (4) Å for the Ag—N distances in N,N'-bridged napy complexes (Tsuda et al., 1989; Munakata et al., 1990; Griffith et al., 1995; Koizumi & Tanaka, 2004). This suggests that the coordination interaction of Ag with the ligand atoms, O and N, in the mixed-bridged complex, (I), may be weakened.

There are two types of Ag—Ag interaction in (I). One is a weaker Ag1—Ag2 interaction [3.127 (2) Å] formed by the carboxylato O,O' bridge. The other is a relatively stronger Ag1—Ag2(1 − x,1 − y,-z) interaction [2.773 (2) Å] formed by the napy N,N' bridge. Comparing with analogous complexes, the carboxylate-bridged value is much larger than the values in the literature, such as 2.855 (1) Å in disilver(I) disalicylate (Movsumov et al., 1990), 2.953 (1) Å in catena-bis(4-aminobenzoato)disilver(I) (Kristiansson, 2001) and 2.761 (2) Å in diaquabis(4-hydroxybenzenecarboxylato)disilver(I) tetrahydrate (Wang & Okabe, 2005). On the other hand, the napy-bridged Ag—Ag separation is almost within the reported ranges, from 2.748 (2) Å in [Ag2(µ-napy)2](ClO4)2 (Tsuda et al., 1989) to 2.779 (1) Å in [Ag2(µ-napy)2](PF6)2 (Koizumi & Tanaka, 2004) to 2.780 (1) Å in [Ag2(µ-napy)2](NO3)2 (Griffith et al., 1995).

The pairs of the two napy rings are oriented almost parallel and overlap to form ππ stacking, with ring-centroid-to-ring-centroid distances of 3.376 (4) and 3.343 (4) Å for rings N1/C16–C18/C22/C23 and N3/C8–C10/C14/C15, and rings N2/C19–C23 and N4/C11–C15. Intermolecular stacking between the napy rings is also present. Ring N2/C19–C23 overlaps with the inversion related ring at (−x, 1 − y, −z), with an interplanar distance of 3.368 (2) Å and a centroid···centroid separation of 3.514 Å. There are also C—H···O interactions (Table 2) between translation-related and screw-axis-related complexes, which link them along the a and b directions

Experimental top

Brown platelet crystals of (I) were obtained by slow evaporation of an 80% methanol solution ((v/v) of a mixture of 1,8-naphthyridine, salicylic acid and AgNO3 (molar ratio 4:4:1) at room temperature.

Refinement top

All H atoms were located from the difference Fourier maps, and were then regenerated in their ideal positions and treated as riding, with C—H = 0.93 and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 10% probability level. All H atoms except those involved in O—H···O hydrogen bonds have been omitted. [Symmetry code: (i) 1 − x, 1 − y, −z.]
[Figure 2] Fig. 2. A view of the packing in the tetrasilver unit of (I). The weakly coordinated SA ligands have been omitted for clarity. [Symmetry code: (i) 1 − x, 1 − y, −z.]
Tetrakis(µ2-1,8-naphthyridine-1:2κ2N:N';3:4κ2N:N')- bis(µ2-salicylato-1:4κ2O:O';2:3κ2O:O')- tetrakis(salicylato-1κO;2κO;3κO;4κO)tetrasilver(I)(4 A g—Ag) top
Crystal data top
[Ag4(C7H5O3)4(C7H6O3)2(C8H6N2)4]F(000) = 1776.0
Mr = 1776.75Dx = 1.728 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21592 reflections
a = 10.205 (12) Åθ = 3.1–27.5°
b = 13.129 (10) ŵ = 1.21 mm1
c = 25.82 (2) ÅT = 296 K
β = 99.26 (4)°Platelet, brown
V = 3414 (5) Å30.3 × 0.3 × 0.03 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7793 independent reflections
Radiation source: fine-focus sealed tube4718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1417
Tmin = 0.646, Tmax = 0.956l = 3333
32278 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
7793 reflections(Δ/σ)max < 0.001
474 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ag4(C7H5O3)4(C7H6O3)2(C8H6N2)4]V = 3414 (5) Å3
Mr = 1776.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.205 (12) ŵ = 1.21 mm1
b = 13.129 (10) ÅT = 296 K
c = 25.82 (2) Å0.3 × 0.3 × 0.03 mm
β = 99.26 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7793 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4718 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.956Rint = 0.033
32278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 0.80Δρmax = 0.61 e Å3
7793 reflectionsΔρmin = 0.46 e Å3
474 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.62246 (2)0.470444 (14)0.053221 (7)0.05080 (7)
Ag20.43514 (2)0.659495 (14)0.032040 (8)0.04803 (6)
O10.7000 (2)0.56194 (16)0.13328 (7)0.0796 (6)
O20.5667 (2)0.69507 (19)0.11643 (8)0.0926 (7)
O30.8993 (2)0.56971 (15)0.20552 (9)0.0809 (6)
H310.84660.54410.18180.097*
O40.34899 (19)0.83108 (12)0.05138 (7)0.0554 (5)
O50.15975 (19)0.83881 (14)0.00380 (7)0.0642 (5)
O60.3592 (2)0.88082 (16)0.14703 (7)0.0693 (6)
H610.38720.86000.12090.083*
O70.7892 (2)0.30060 (16)0.11288 (8)0.0735 (6)
O80.7143 (2)0.15175 (15)0.07836 (7)0.0716 (6)
H810.75410.16980.05480.086*
O90.7313 (3)0.34942 (17)0.20370 (9)0.0917 (7)
H910.75550.35870.17530.110*
N10.26915 (19)0.57922 (14)0.06134 (8)0.0422 (5)
N20.23070 (18)0.46334 (13)0.00694 (7)0.0401 (5)
N30.47323 (19)0.37828 (14)0.08676 (8)0.0422 (5)
N40.43871 (19)0.26271 (14)0.01825 (8)0.0445 (5)
C10.7541 (3)0.71093 (19)0.18246 (9)0.0454 (6)
C20.8666 (3)0.6677 (2)0.21153 (10)0.0513 (7)
C30.9501 (3)0.7268 (2)0.24770 (11)0.0672 (8)
H31.02580.69800.26710.081*
C40.9212 (3)0.8262 (2)0.25468 (12)0.0716 (9)
H40.97810.86540.27850.086*
C50.8101 (3)0.8692 (2)0.22723 (12)0.0670 (8)
H50.79080.93710.23280.080*
C60.7263 (3)0.8130 (2)0.19127 (10)0.0579 (7)
H60.65050.84300.17270.069*
C70.6651 (3)0.6526 (3)0.14125 (11)0.0600 (8)
C80.3107 (3)0.2684 (2)0.14376 (11)0.0656 (8)
H80.25590.23240.16270.079*
C90.3706 (3)0.3538 (3)0.16351 (11)0.0668 (8)
H90.35870.37730.19640.080*
C100.4513 (3)0.4073 (2)0.13394 (10)0.0545 (7)
H100.49200.46670.14810.065*
C110.2748 (3)0.1438 (2)0.07048 (13)0.0673 (9)
H110.21800.10460.08710.081*
C120.3032 (3)0.11495 (19)0.02341 (14)0.0680 (9)
H120.26830.05480.00790.082*
C130.3857 (3)0.17623 (18)0.00187 (12)0.0577 (7)
H130.40420.15540.03430.069*
C140.3309 (3)0.23303 (18)0.09425 (11)0.0515 (7)
C150.4141 (2)0.29125 (17)0.06626 (10)0.0415 (6)
C160.0724 (3)0.4918 (2)0.11084 (11)0.0615 (8)
H160.00690.46300.12740.074*
C170.1416 (3)0.5741 (2)0.13188 (11)0.0639 (8)
H170.12400.60270.16300.077*
C180.2395 (3)0.61519 (19)0.10616 (10)0.0545 (7)
H180.28680.67110.12130.065*
C190.0344 (3)0.36505 (19)0.03896 (11)0.0558 (7)
H190.03140.33240.05380.067*
C200.0679 (3)0.33116 (18)0.00674 (12)0.0569 (7)
H200.02610.27420.02330.068*
C210.1653 (3)0.38206 (18)0.02886 (10)0.0486 (6)
H210.18570.35820.06050.058*
C220.1006 (2)0.45027 (18)0.06360 (10)0.0465 (6)
C230.1996 (2)0.49776 (17)0.03935 (9)0.0391 (6)
C240.1614 (3)0.89646 (17)0.08262 (10)0.0432 (6)
C250.2317 (3)0.90972 (18)0.13364 (10)0.0516 (7)
C260.1699 (4)0.9551 (2)0.17221 (11)0.0707 (9)
H260.21610.96380.20600.085*
C270.0422 (4)0.9863 (2)0.16009 (14)0.0829 (11)
H270.00121.01580.18600.099*
C280.0291 (3)0.9753 (2)0.10992 (14)0.0813 (10)
H280.11650.99770.10220.098*
C290.0318 (3)0.93065 (19)0.07150 (11)0.0582 (7)
H290.01510.92350.03770.070*
C300.2289 (3)0.85233 (17)0.04077 (10)0.0441 (6)
C310.6695 (3)0.19006 (19)0.16174 (9)0.0482 (6)
C320.6767 (3)0.2571 (2)0.20436 (11)0.0565 (7)
C330.6194 (3)0.2307 (2)0.24801 (11)0.0688 (8)
H330.62520.27490.27640.083*
C340.5558 (3)0.1410 (3)0.24893 (12)0.0725 (9)
H340.51740.12410.27810.087*
C350.5464 (3)0.0738 (2)0.20731 (12)0.0691 (8)
H350.50180.01230.20850.083*
C360.6035 (3)0.0982 (2)0.16400 (11)0.0584 (7)
H360.59770.05270.13610.070*
C370.7311 (3)0.2187 (2)0.11563 (11)0.0563 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05405 (14)0.05110 (12)0.04933 (12)0.01561 (10)0.01464 (10)0.00875 (10)
Ag20.04922 (13)0.04452 (11)0.05226 (12)0.00788 (10)0.01394 (10)0.00773 (9)
O10.1107 (19)0.0699 (14)0.0555 (13)0.0262 (13)0.0055 (12)0.0182 (11)
O20.0747 (18)0.127 (2)0.0656 (14)0.0075 (15)0.0201 (13)0.0163 (13)
O30.0860 (18)0.0647 (13)0.0894 (18)0.0110 (12)0.0063 (13)0.0077 (11)
O40.0524 (13)0.0507 (11)0.0651 (12)0.0054 (9)0.0154 (10)0.0103 (9)
O50.0612 (13)0.0835 (13)0.0491 (12)0.0083 (11)0.0122 (10)0.0104 (10)
O60.0724 (16)0.0826 (14)0.0505 (12)0.0084 (11)0.0029 (11)0.0025 (10)
O70.0735 (16)0.0772 (14)0.0741 (14)0.0083 (12)0.0247 (12)0.0046 (11)
O80.0817 (16)0.0848 (14)0.0533 (12)0.0063 (12)0.0257 (11)0.0051 (11)
O90.108 (2)0.0877 (16)0.0762 (16)0.0222 (14)0.0054 (15)0.0154 (13)
N10.0418 (13)0.0392 (11)0.0459 (12)0.0030 (10)0.0075 (10)0.0020 (10)
N20.0340 (12)0.0366 (10)0.0494 (12)0.0005 (9)0.0055 (10)0.0024 (10)
N30.0378 (13)0.0445 (12)0.0445 (12)0.0045 (10)0.0072 (10)0.0038 (10)
N40.0392 (13)0.0357 (11)0.0598 (14)0.0010 (9)0.0119 (11)0.0004 (10)
C10.0419 (17)0.0600 (16)0.0350 (13)0.0118 (13)0.0085 (12)0.0045 (12)
C20.0541 (19)0.0545 (17)0.0478 (16)0.0055 (14)0.0163 (14)0.0082 (13)
C30.051 (2)0.087 (2)0.0591 (19)0.0062 (17)0.0055 (15)0.0047 (17)
C40.064 (2)0.081 (2)0.068 (2)0.0252 (18)0.0069 (18)0.0286 (18)
C50.072 (2)0.0567 (18)0.076 (2)0.0135 (16)0.0243 (19)0.0162 (16)
C60.0555 (19)0.0618 (18)0.0582 (18)0.0028 (14)0.0146 (15)0.0032 (15)
C70.062 (2)0.078 (2)0.0405 (16)0.0238 (18)0.0117 (15)0.0049 (16)
C80.053 (2)0.083 (2)0.064 (2)0.0077 (17)0.0219 (16)0.0276 (17)
C90.055 (2)0.096 (2)0.0521 (18)0.0069 (18)0.0163 (15)0.0077 (17)
C100.0470 (18)0.0686 (18)0.0482 (16)0.0071 (14)0.0083 (14)0.0010 (14)
C110.057 (2)0.0501 (17)0.098 (2)0.0041 (14)0.0196 (18)0.0212 (17)
C120.059 (2)0.0358 (15)0.109 (3)0.0129 (13)0.0153 (19)0.0002 (16)
C130.0491 (18)0.0444 (15)0.081 (2)0.0019 (13)0.0130 (15)0.0057 (14)
C140.0403 (16)0.0462 (15)0.0687 (19)0.0048 (12)0.0115 (14)0.0174 (14)
C150.0316 (15)0.0374 (13)0.0554 (16)0.0065 (11)0.0065 (12)0.0065 (12)
C160.058 (2)0.0660 (19)0.0654 (19)0.0052 (16)0.0243 (16)0.0209 (16)
C170.072 (2)0.074 (2)0.0514 (17)0.0085 (17)0.0255 (16)0.0055 (15)
C180.065 (2)0.0496 (15)0.0511 (17)0.0021 (14)0.0143 (15)0.0023 (13)
C190.0395 (17)0.0534 (17)0.074 (2)0.0015 (13)0.0089 (15)0.0206 (15)
C200.0473 (18)0.0403 (14)0.080 (2)0.0084 (13)0.0012 (15)0.0084 (14)
C210.0424 (17)0.0431 (14)0.0592 (17)0.0019 (12)0.0046 (13)0.0002 (12)
C220.0405 (16)0.0442 (14)0.0560 (16)0.0058 (12)0.0110 (13)0.0131 (13)
C230.0359 (15)0.0374 (13)0.0434 (14)0.0067 (11)0.0046 (12)0.0103 (11)
C240.0491 (17)0.0363 (13)0.0465 (15)0.0002 (12)0.0149 (13)0.0060 (11)
C250.064 (2)0.0431 (14)0.0510 (17)0.0034 (14)0.0184 (15)0.0075 (13)
C260.100 (3)0.0672 (19)0.0497 (17)0.0058 (18)0.0275 (18)0.0000 (15)
C270.108 (3)0.079 (2)0.073 (2)0.017 (2)0.052 (2)0.0004 (19)
C280.069 (2)0.088 (2)0.096 (3)0.0234 (19)0.038 (2)0.013 (2)
C290.055 (2)0.0591 (17)0.0632 (18)0.0045 (14)0.0189 (15)0.0042 (14)
C300.0496 (18)0.0354 (13)0.0488 (16)0.0065 (12)0.0131 (14)0.0016 (12)
C310.0452 (17)0.0583 (16)0.0410 (15)0.0136 (13)0.0060 (12)0.0019 (13)
C320.0560 (19)0.0549 (17)0.0552 (18)0.0009 (14)0.0010 (14)0.0041 (14)
C330.086 (2)0.080 (2)0.0403 (16)0.0068 (19)0.0088 (16)0.0065 (15)
C340.079 (2)0.087 (2)0.0551 (19)0.0105 (19)0.0223 (17)0.0153 (18)
C350.073 (2)0.0648 (19)0.071 (2)0.0010 (16)0.0175 (18)0.0076 (17)
C360.062 (2)0.0558 (17)0.0570 (18)0.0066 (15)0.0083 (15)0.0019 (14)
C370.0488 (19)0.0652 (18)0.0545 (18)0.0169 (15)0.0068 (14)0.0028 (16)
Geometric parameters (Å, º) top
Ag1—N32.227 (2)C8—H80.93
Ag1—N2i2.237 (2)C9—C101.399 (4)
Ag1—O12.412 (2)C9—H90.93
Ag1—Ag2i2.772 (2)C10—H100.93
Ag1—Ag23.127 (2)C11—C121.349 (4)
Ag2—N4i2.219 (2)C11—C141.402 (4)
Ag2—N12.228 (3)C11—H110.93
Ag2—O22.414 (3)C12—C131.399 (4)
Ag2—O42.498 (2)C12—H120.93
Ag2—Ag1i2.7725 (16)C13—H130.93
O1—C71.269 (4)C14—C151.422 (3)
O2—C71.234 (4)C16—C171.356 (4)
O3—C21.345 (3)C16—C221.407 (4)
O3—H310.82C16—H160.93
O4—C301.244 (3)C17—C181.394 (4)
O5—C301.262 (3)C17—H170.93
O6—C251.346 (3)C18—H180.93
O6—H610.82C19—C201.355 (4)
O7—C371.235 (3)C19—C221.405 (4)
O8—C371.295 (3)C19—H190.93
O8—H810.82C20—C211.394 (3)
O9—C321.335 (3)C20—H200.93
O9—H910.82C21—H210.93
N1—C181.329 (3)C22—C231.416 (3)
N1—C231.357 (3)C24—C291.382 (4)
N2—C211.335 (3)C24—C251.406 (4)
N2—C231.362 (3)C24—C301.489 (3)
N2—Ag1i2.237 (2)C25—C261.395 (4)
N3—C101.329 (3)C26—C271.354 (4)
N3—C151.359 (3)C26—H260.93
N4—C131.327 (3)C27—C281.388 (5)
N4—C151.357 (3)C27—H270.93
N4—Ag2i2.219 (2)C28—C291.383 (4)
C1—C21.388 (4)C28—H280.93
C1—C61.396 (3)C29—H290.93
C1—C71.494 (4)C31—C361.387 (4)
C2—C31.394 (4)C31—C321.402 (3)
C3—C41.356 (4)C31—C371.482 (4)
C3—H30.93C32—C331.394 (4)
C4—C51.359 (4)C33—C341.346 (4)
C4—H40.93C33—H330.93
C5—C61.373 (4)C34—C351.382 (4)
C5—H50.93C34—H340.93
C6—H60.93C35—C361.379 (4)
C8—C91.339 (4)C35—H350.93
C8—C141.406 (4)C36—H360.93
N3—Ag1—N2i167.87 (7)C11—C12—H12120.3
N3—Ag1—O195.04 (9)C13—C12—H12120.3
N2i—Ag1—O196.25 (9)N4—C13—C12123.2 (3)
N3—Ag1—Ag2i84.47 (7)N4—C13—H13118.4
N2i—Ag1—Ag2i83.66 (7)C12—C13—H13118.4
O1—Ag1—Ag2i170.27 (6)C11—C14—C8124.4 (3)
N3—Ag1—Ag293.57 (8)C11—C14—C15117.5 (3)
N2i—Ag1—Ag292.36 (8)C8—C14—C15118.1 (3)
O1—Ag1—Ag282.04 (7)N4—C15—N3116.9 (2)
Ag2i—Ag1—Ag2107.69 (5)N4—C15—C14122.0 (2)
N4i—Ag2—N1163.87 (8)N3—C15—C14121.2 (2)
N4i—Ag2—O298.53 (10)C17—C16—C22119.3 (2)
N1—Ag2—O297.34 (10)C17—C16—H16120.3
N4i—Ag2—O487.58 (8)C22—C16—H16120.3
N1—Ag2—O492.72 (8)C16—C17—C18119.0 (3)
O2—Ag2—O478.90 (8)C16—C17—H17120.5
N4i—Ag2—Ag1i83.53 (7)C18—C17—H17120.5
N1—Ag2—Ag1i84.43 (7)N1—C18—C17123.9 (3)
O2—Ag2—Ag1i148.42 (7)N1—C18—H18118.0
O4—Ag2—Ag1i132.63 (5)C17—C18—H18118.0
N4i—Ag2—Ag194.12 (8)C20—C19—C22119.0 (2)
N1—Ag2—Ag192.40 (8)C20—C19—H19120.5
O2—Ag2—Ag176.12 (7)C22—C19—H19120.5
O4—Ag2—Ag1154.95 (5)C19—C20—C21119.7 (3)
Ag1i—Ag2—Ag172.30 (5)C19—C20—H20120.1
C7—O1—Ag1123.0 (2)C21—C20—H20120.1
C7—O2—Ag2132.0 (2)N2—C21—C20123.4 (2)
C2—O3—H31109.5N2—C21—H21118.3
C30—O4—Ag2121.62 (16)C20—C21—H21118.3
C25—O6—H61109.5C19—C22—C16123.4 (2)
C37—O8—H81109.5C19—C22—C23118.4 (2)
C32—O9—H91109.5C16—C22—C23118.2 (2)
C18—N1—C23117.9 (2)N1—C23—N2116.7 (2)
C18—N1—Ag2114.82 (17)N1—C23—C22121.6 (2)
C23—N1—Ag2127.29 (15)N2—C23—C22121.7 (2)
C21—N2—C23117.8 (2)C29—C24—C25118.8 (2)
C21—N2—Ag1i114.60 (16)C29—C24—C30121.0 (3)
C23—N2—Ag1i127.61 (15)C25—C24—C30120.1 (2)
C10—N3—C15117.9 (2)O6—C25—C26117.8 (3)
C10—N3—Ag1115.26 (17)O6—C25—C24122.2 (2)
C15—N3—Ag1126.45 (15)C26—C25—C24120.0 (3)
C13—N4—C15118.0 (2)C27—C26—C25119.6 (3)
C13—N4—Ag2i113.78 (17)C27—C26—H26120.2
C15—N4—Ag2i128.16 (16)C25—C26—H26120.2
C2—C1—C6118.4 (2)C26—C27—C28121.7 (3)
C2—C1—C7122.1 (3)C26—C27—H27119.2
C6—C1—C7119.4 (3)C28—C27—H27119.2
O3—C2—C1121.8 (2)C29—C28—C27119.0 (3)
O3—C2—C3118.3 (3)C29—C28—H28120.5
C1—C2—C3119.9 (3)C27—C28—H28120.5
C4—C3—C2120.1 (3)C24—C29—C28120.9 (3)
C4—C3—H3119.9C24—C29—H29119.5
C2—C3—H3119.9C28—C29—H29119.5
C3—C4—C5120.7 (3)O4—C30—O5123.8 (2)
C3—C4—H4119.6O4—C30—C24118.8 (2)
C5—C4—H4119.6O5—C30—C24117.4 (3)
C4—C5—C6120.4 (3)C36—C31—C32118.5 (2)
C4—C5—H5119.8C36—C31—C37121.8 (2)
C6—C5—H5119.8C32—C31—C37119.7 (3)
C5—C6—C1120.4 (3)O9—C32—C33117.8 (3)
C5—C6—H6119.8O9—C32—C31121.9 (3)
C1—C6—H6119.8C33—C32—C31120.2 (3)
O2—C7—O1124.4 (3)C34—C33—C32119.9 (3)
O2—C7—C1119.3 (3)C34—C33—H33120.1
O1—C7—C1116.3 (3)C32—C33—H33120.1
C9—C8—C14119.9 (3)C33—C34—C35121.2 (3)
C9—C8—H8120.1C33—C34—H34119.4
C14—C8—H8120.1C35—C34—H34119.4
C8—C9—C10119.1 (3)C36—C35—C34119.8 (3)
C8—C9—H9120.5C36—C35—H35120.1
C10—C9—H9120.5C34—C35—H35120.1
N3—C10—C9123.8 (3)C35—C36—C31120.5 (3)
N3—C10—H10118.1C35—C36—H36119.8
C9—C10—H10118.1C31—C36—H36119.8
C12—C11—C14119.8 (3)O7—C37—O8123.8 (3)
C12—C11—H11120.1O7—C37—C31122.5 (3)
C14—C11—H11120.1O8—C37—C31113.7 (3)
C11—C12—C13119.5 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.821.812.531 (4)147
O6—H61···O40.821.812.540 (4)147
O8—H81···O5i0.821.702.484 (4)159
O9—H91···O70.821.862.589 (4)147
C16—H16···O3ii0.932.823.396 (5)121
C27—H27···O3iii0.932.913.596 (6)132
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag4(C7H5O3)4(C7H6O3)2(C8H6N2)4]
Mr1776.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.205 (12), 13.129 (10), 25.82 (2)
β (°) 99.26 (4)
V3)3414 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.3 × 0.3 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.646, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
32278, 7793, 4718
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.054, 0.80
No. of reflections7793
No. of parameters474
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.46

Computer programs: RAPID-AUTO (Rigaku, 2003), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996), SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997) and PLATON (Spek, 2003), CrystalStructure.

Selected geometric parameters (Å, º) top
Ag1—N32.227 (2)Ag2—N4i2.219 (2)
Ag1—N2i2.237 (2)Ag2—N12.228 (3)
Ag1—O12.412 (2)Ag2—O22.414 (3)
Ag1—Ag2i2.772 (2)Ag2—O42.498 (2)
Ag1—Ag23.127 (2)Ag2—Ag1i2.7725 (16)
N3—Ag1—N2i167.87 (7)N4i—Ag2—O487.58 (8)
N3—Ag1—O195.04 (9)N1—Ag2—O492.72 (8)
N2i—Ag1—O196.25 (9)O2—Ag2—O478.90 (8)
N3—Ag1—Ag2i84.47 (7)N4i—Ag2—Ag1i83.53 (7)
N2i—Ag1—Ag2i83.66 (7)N1—Ag2—Ag1i84.43 (7)
O1—Ag1—Ag2i170.27 (6)O2—Ag2—Ag1i148.42 (7)
N3—Ag1—Ag293.57 (8)O4—Ag2—Ag1i132.63 (5)
N2i—Ag1—Ag292.36 (8)N4i—Ag2—Ag194.12 (8)
O1—Ag1—Ag282.04 (7)N1—Ag2—Ag192.40 (8)
Ag2i—Ag1—Ag2107.69 (5)O2—Ag2—Ag176.12 (7)
N4i—Ag2—N1163.87 (8)O4—Ag2—Ag1154.95 (5)
N4i—Ag2—O298.53 (10)Ag1i—Ag2—Ag172.30 (5)
N1—Ag2—O297.34 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O10.821.812.531 (4)147
O6—H61···O40.821.812.540 (4)147
O8—H81···O5i0.821.702.484 (4)159
O9—H91···O70.821.862.589 (4)147
C16—H16···O3ii0.932.823.396 (5)121
C27—H27···O3iii0.932.913.596 (6)132
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds