Download citation
Download citation
link to html
The structures of methyl 5-[2-chloro-4-(trifluoro­methyl)phenoxy]-2-nitro­benzoate, C15H9ClF3N3O5, (I), methyl 2-chloro-5-[3-methyl-2,6-dioxo-4-(trifluoro­methyl)-1,2,3,6-tetrahydro­pyrimidin-1-yl]benzoate, C14H10ClF3N2O4, (II), and 2-[4-chloro-2-fluoro-5-(prop-2-ynyloxy)phenyl]-4-(trifluoro­methyl)piperidine-2,6-dione, C15H10ClF4NO3, (III), are similar in their dihedral angles and in the distances between the farthest two atoms. There are two independent molecules in the structure of (I). The dihedral angles between the two aromatic rings in each molecule in (I), between the benzene and tetrahydro­pyrimidine rings in (II), and between the benzene ring and the five-atom planar portion of the piperidine-2,6-dione ring in (III) are 80.78 (11)/89.75 (11), 89.13 (9) and 87.52 (13)°, respectively. The distances between the farthest two atoms, viz. O...F in the two molecules of (I), and Cl...F in (II) and (III), are 11.763 (7)/11.953 (6), 10.734 (10) and 10.889 (9) Å, respectively. In all three crystal structures, the molecules are linked to generate sheets of molecules via C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105000545/fg1802sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000545/fg1802Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000545/fg1802IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000545/fg1802IIIsup4.hkl
Contains datablock III

CCDC references: 264819; 264820; 264821

Comment top

The protoporphyrinogen-IX oxidase inhibitors are structurally very diverse, ranging from diphenylethers to 1-heterocyclyl-2,4,5-tetrasubstituted benzenes (Tomlin, 2003). They inhibit the activity of protoporphyrinogen-IX oxidase (PPO) by binding competitively to the same active site as the substrate protoporphyrinogen-IX (Matringe & Scalla, 1988; Duke et al., 1989).

In order to discover new herbicides and to study the interaction between the enzyme and its inhibitors, a number of groups have carried out studies of the structure–activity relationship (SAR) on herbicidal diphenylethers and 1-heterocyclyl-2,4,5-tetrasubstituted benzenes (Boger & Wakabayashi, 1999). The crystal structures of some PPO inhibitors have played an important role in SAR and QSAR (quantitative structure–activity relationship) studies, especially in three-dimensional-QSAR (three-dimensional quantitative structure–activity relationship) studies (Dayan & Allen, 2000; Kohno et al., 1993; Nandihalli et al., 1992).

At present, only six crystal structures of PPO inhibitors are available in the literature, namely 5-(2-chloro-4-(trifluoromethyl)phenoxy)-2-nitrobenzoic acid (Acifluorfen; Kennard et al., 1987), 2-(4-chlorophenyl)-4,5,6,7-tetrahydro-isoindole-1,3-dione (Chlorophthalim), 3-(4-chloro-5-cyclopentyloxy-2-fluoro-phenyl)-5-isopropylidene-oxazolidine- 2,4-dione and 2-chloro-1-(3-ethoxy-4-nitro-phenoxy)-4-trifluoromethylbenzene (Kohno et al., 1993), and 2-(4-chloro-2-fluoro-5-prop-2-ynyloxy-phenyl)-4,5,6,7-tetrahydro-isoindole- 1,3-dione and 2-(4-chloro-2-fluoro-5-prop-2-ynyloxy-phenyl)-cis-3a,4,7,7a- tetrahydroisoindole-1,3-dione (Li et al., 2005). More crystal structures are needed, in a programme of three-dimensional-QSAR studies on PPO inhibitors carried out by our group, and we report here the crystal structures of 5-(2-chloro-4-trifluoromethyl-phenoxy)-2-nitro-benzoic acid methyl ester, (I), 2-chloro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin- 1-yl)-benzoic acid methyl ester, (II), and 2-(4-chloro-2-fluoro-5-prop-2-ynyloxy-phenyl)-4-trifluoromethyl-piperidine- 2,6-dione, (III), all of which contain a trifluoromethyl group, which is thought to be of biological importance, and all of which show high PPO-inhibiting activity and herbicidal activity (Li, 2005).

The asymmetric unit of (I) contains two independent molecules, as shown in Fig. 1. These are related by a pseudo-twofold axis at (1/4, y, 1/2). The conformations of the two molecules are similar, with the dihedral angles between the aromatic rings being 80.78 (11)° in one molecule and 89.75 (11)° in the other. Relevant torsion angles are C2—C1—O1—C15 103.8 (5)° and C2A—C1A—O1A—C15A 82.1 (6)°. The distances between the farthest two atoms are thought to be significant in terms of biological activity and are O5···F1 11.763 (7) Å and O5A···F71A 11.953 (6) Å. The planes of the carboxyl groups are rotated out of the associated aromatic ring by 83.44 (15)° and 88.78 (15)° for carboxyl groups C11/C17/O1/O2 and C11A/C17A/O1A/O2A, respectively; the corresponding out-of-plane rotation angles for the 2-nitro groups are 8.5 (4) and 6.5 (3)°. Compound (I) is the methyl ester of Acifluorfen (Kennard et al., 1987); the torsion angle corresponding to C2—C1—O1—C15 is 89.2° in Acifluorfen, and the corresponding longest O···F distance between a nitro O atom and the farthest F atom in Acifluorfen is 11.83 Å.

The packing of (I) is controlled by C—H···O hydrogen bonds. Checks using the program PLATON (Spek, 2003) show that there are no C—H···π or ππ interactions. The two molecules of the asymmetric unit are weakly linked by C—H···O interactions along C16—H16···O2A and C16A—H16A···O2 (Table 1), generating R22(10) rings (Bernstein et al., 1995). Molecules related by inversion centres at (0, 1/2, 1/2), (1/2, 1/2, 1/2), (1, 1/2, 1/2) etc. are then linked by further C—H···O interactions, involving C6—H6 and C6A—H6A and adjacent nitro O atoms (Table 1), generating R22(20) rings (Fig. 2), resulting in chains of rings along [100]. Parallel chains are propagated by the c-glide operation, and these chains are linked by C—H···O interactions involving C5—H5 and C5A—H5A with adjacent carboxyl O atoms (Table 1), to generate corrugated sheets in the (010) plane.

The molecular structure of (II) is shown in Fig. 3. The dihydropyrimidine ring adopts a planar conformation and the mean deviation from the plane is 0.0081 Å. The dihedral angle between the dihydropyrimidine and benzoate ring planes is 89.13 (9)°. The carboxyl group is rotated 38.84 (12)° about the C11—C17 bond out of the benzoate ring plane. The distance between the farthest two atoms, Cl1···F72, is 10.734 (10) Å.

Molecules of (II) are linked to form centrosymmetric R22(8) dimers via C—H···O interactions involving C5—H5 and an adjacent pyrimidine O atom (Table 2). Further C—H···O interactions involving C16—H16 and an adjacent (screw-axis related) carboxyl atom O3 (Table 2) generate sheets of molecules in the (101) plane (Fig. 4).

In compound (III) (Fig. 5), the piperidine-2,6-dione ring adopts an envelope conformation, with atom C4 disordered equally over two orientations (labelled C4 and C4A), with these atoms being 0.439 (1) and −0.333 (13) Å, respectively, from the plane of N1/C2/C3/C5/C6. The dihedral angle between the plane of these five atoms and the phenyl ring (C11–C16) is 87.52 (13)°. This conformation has atom F1 essentially equidistant from carbonyl atoms O1 and O2 [3.457 (5) and 3.513 (3) Å, respectively]. The orientation of the propargyl group relative to the aromatic ring is defined by the torsion angle C15—O3—C17—C18 84.3 (4)°. The distance between the farthest two atoms, Cl1···F71, is 10.889 (9) Å.

As was found in 2-(4-chloro-2-fluoro-5-prop-2-ynyloxy-phenyl)-cis- 3a,4,7,7a-tetrahydro-isoindole-1,3-dione (Li et al., 2005) there is also a well defined acetylenic C—H···O bond in (III) [C19—H19···O2i; symmetry code: (i) x, y, z − 1], which generates chains along [100] (Fig. 6). Adjacent chains are linked by C—H···O hydrogen bonds, involving the propargyl moiety C17—H17 with an adjacent piperidine carbonyl O atom, and also the piperidine C4—H4 with the other piperidine carbonyl O atom (Table 3). In this way, a sheet structure with R32(15) and R33(21) rings is propagated in the (010) plane (Fig. 6).

Experimental top

Compound (I) was synthesized by refluxing benzoic acid in methanol, as described by Johnson (1977). The oily product was cooled in a refrigerator, and the solid which formed was grown from solution in acetone to afford colourless single crystals suitable for X-ray diffraction [m. p. 331–332 K (semi-solid; Johnson, 1977)]. Spectroscopic analysis: 1H NMR (Solvent?, δ, p.p.m.): 3.93 (s, 3 H, CH3O), 7.08–7.13 (m, 2 H, Ph), 7.27 (dd, 1 H, J = 9 and 0.9 Hz, NO2—Ph), 7.63 (dd, 1 H, J = 7.8 and 1.5 Hz, CF3—Ph), 7.82 (d, 1 H, J = 1.8 Hz, CF3—Ph), 8.05 (d, 1 H, J = 9 Hz, NO2—Ph). Compound (II) was sythesized according to the procedure of Li et al. (2001), by stirring 2-chloro-5-(3-H-2,6-dioxo-4-trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)-benzoic acid methyl ester, Na2CO3 and iodomethane in dimethylformamide for 4 h at room temperature. After pouring the reaction mixture into water, the precipitate which formed was filtered off and recrystallized from chloroform, which gave colourless single crystals suitable for X-ray diffraction (m.p. 441–442 K). Analysis, C14H10ClF3N2O4 requires: C 46.36, H 2.78, N 7.72%; found: C 46.39, H 2.61, N 7.70%; 1H NMR (Solvent:, δ, p.p.m.): 3.55 (s, 3 H, CH3N), 3.91 (s, 3 H, CH3O), 6.37 (s, 1 H, py), 7.29 (d, 1 H, J = 8.9 Hz, Ph), 7.59 (d, 1 H, J = 8.9 Hz, Ph), 7.79 (d, 1 H, J = 2.4 Hz, Ph). Compound (III) was synthesized by refluxing 4-chloro-2-fluoro-5-prop-2-ynyloxy-phenylamine with the corresponding anhydride in acetic acid for 1 h, as described by Lange et al. (1991). The crude products were purified by silica-gel column chromatography and then grown from solution in acetone, to afford colourless single crystals suitable for X-ray diffraction [m.p. 379–380 K; literature value 361–394 K (Lange et al., 1991)]. Spectroscopic analysis: 1H NMR (Solvent?, δ, p.p.m.): 2.57 (t, 1 H, J = 2.4 Hz, C*CH), 2.89–3.15 (m, 5 H), 4.72 (d, 2 H, J = 2.4 Hz, CH2C*C), 6.84 (d, 1 H, J = 6.6 Hz, Ph), 7.29 (d, 1 H, J = 9 Hz, Ph).

Refinement top

For all three compounds, possible H-atom sites were revealed in difference maps. H atoms were subsequently allowed for in the refinements as riding atoms, with C—H = 0.93, 0.97 and 0.98 Å, with Uiso(H) = 1.2Ueq(parent atom). For (I), both CF3 groups have the F atoms unequally disordered over two main orientations. This was modelled with DFIX restraints [C—F 1.33 (5) and F···F 2.08 (5) Å) and tied occupancy parameters, which refined to 0.827 (10)/0.173 (10) and 0.858 (9)/0.142 (9). Each triplet of minor-occupancy F atoms was refined with a common Uiso value [final values 0.111 (7) and 0.122 (8) Å2]. Compound (III) has disorder of the piperidine C4 atom, with concomitant disorder of the F atoms bonded to C7 (which was not disordered). Initial refinement of tied occupancy parameters for the disordered C4 site led to values which did not differ significantly from 0.5 and, in the final refinement cycles, the occupancies of the two components (labelled C4 and C4A) were set at 0.5. The six 0.5-occupancy F atoms (labelled F71–F73 and F71A–F73A) were refined without restraints.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The F atoms of the CF3 groups are unequally disordered over two orientations; for clarity, only the major orientation is shown in each case.
[Figure 2] Fig. 2. A view of a chain of molecules of (I), linked by weak C—H···O interactions along [100]. Atoms labelled with an asterisk (*) or a hash (#) are at the symmetry positions (−x, 1 − y, 1 − z) and (1 − x, 1 − y, 1 − z), respectively.
[Figure 3] Fig. 3. A view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view showing part of a sheet of molecules of (II), linked by weak C—H···O interactions in the (101) plane. Atoms labelled with an asterisk (*), hash (#) or dollar ($) are at the symmetry positions (−x, −y, 1 − z), (1/2 − x, y − 1/2, 1/2 − z) and (1/2 − x, 1/2 + y, 1/2 − z), respectively.
[Figure 5] Fig. 5. A view of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The C4—C7F3 moiety is disordered equally over two sites; for clarity, only one of these is shown.
[Figure 6] Fig. 6. A view showing part of a sheet of molecules of (III), linked by C—H···O interactions in the (010) plane. Atoms labelled with an asterisk (*), hash (#), dollar ($), ampersand (&) or `at' symbol (@) are at the symmetry positions (x, y, z − 1), (1/2 − x, y, z − 1/2), (1 − x, 1 − y, 1/2 + z), (1 − x, 1 − y, z − 1/2) and (1/2 − x, y, 1/2 + z), respectively.
(I) methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate top
Crystal data top
C15H9ClF3NO5Dx = 1.566 Mg m3
Mr = 375.68Melting point: 332(1) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.280 (5) ÅCell parameters from 997 reflections
b = 9.715 (3) Åθ = 2.3–19.5°
c = 18.050 (5) ŵ = 0.30 mm1
β = 109.509 (5)°T = 293 K
V = 3186.8 (15) Å3Prism, colourless
Z = 80.44 × 0.36 × 0.26 mm
F(000) = 1520
Data collection top
Bruker SMART CCD area-detector
diffractometer
5616 independent reflections
Radiation source: fine-focus sealed tube2057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2214
Tmin = 0.853, Tmax = 0.925k = 1111
16078 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0715P)2]
where P = (Fo2 + 2Fc2)/3
5616 reflections(Δ/σ)max < 0.001
475 parametersΔρmax = 0.19 e Å3
18 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H9ClF3NO5V = 3186.8 (15) Å3
Mr = 375.68Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.280 (5) ŵ = 0.30 mm1
b = 9.715 (3) ÅT = 293 K
c = 18.050 (5) Å0.44 × 0.36 × 0.26 mm
β = 109.509 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2057 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.925Rint = 0.087
16078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05518 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 0.87Δρmax = 0.19 e Å3
5616 reflectionsΔρmin = 0.21 e Å3
475 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.29501 (10)0.76114 (13)0.60249 (9)0.1354 (6)
F710.3742 (4)0.5081 (6)0.9148 (2)0.182 (3)0.827 (10)
F720.4480 (3)0.5082 (11)0.8546 (3)0.201 (4)0.827 (10)
F730.3870 (4)0.3284 (5)0.8584 (3)0.173 (3)0.827 (10)
O10.15154 (19)0.6484 (3)0.5910 (2)0.1265 (14)
O20.2045 (2)0.2603 (3)0.3961 (2)0.1263 (14)
O30.12343 (16)0.1541 (3)0.43781 (17)0.0833 (9)
O40.0453 (3)0.2812 (4)0.2907 (2)0.1469 (18)
O50.0419 (2)0.4212 (5)0.2694 (2)0.1589 (19)
N10.0164 (3)0.3783 (6)0.3102 (3)0.1002 (14)
C10.2089 (3)0.5935 (5)0.6511 (3)0.0799 (14)
C20.2784 (3)0.6437 (4)0.6657 (3)0.0704 (12)
C30.3358 (3)0.6018 (4)0.7306 (3)0.0721 (12)
H30.38260.63860.74120.086*
C40.3225 (3)0.5050 (5)0.7790 (3)0.0683 (12)
C50.2541 (4)0.4511 (5)0.7642 (3)0.0919 (15)
H50.24590.38440.79730.110*
C60.1974 (3)0.4958 (6)0.7003 (4)0.0993 (17)
H60.15060.45930.69030.119*
C70.3834 (4)0.4605 (7)0.8502 (4)0.1063 (18)
C110.1191 (2)0.3911 (4)0.4351 (2)0.0630 (11)
C120.0562 (3)0.4491 (5)0.3831 (3)0.0708 (12)
C130.0277 (2)0.5701 (5)0.3992 (3)0.0846 (14)
H130.01400.60800.36250.102*
C140.0606 (2)0.6348 (5)0.4689 (3)0.0872 (14)
H140.04130.71640.48080.105*
C150.1227 (2)0.5778 (5)0.5216 (3)0.0780 (13)
C160.1525 (2)0.4573 (4)0.5050 (2)0.0688 (12)
H160.19510.42130.54110.083*
C170.1532 (3)0.2617 (5)0.4197 (2)0.0704 (12)
C180.1502 (3)0.0228 (4)0.4218 (3)0.1033 (17)
H18A0.13780.01120.36610.155*
H18B0.12800.04940.44250.155*
H18C0.20270.01930.44630.155*
F740.4198 (13)0.539 (2)0.8858 (12)0.111 (7)*0.173 (10)
F750.4347 (10)0.377 (2)0.8287 (8)0.111 (7)*0.173 (10)
F760.3558 (8)0.370 (3)0.8897 (10)0.111 (7)*0.173 (10)
Cl1A0.21997 (9)0.73650 (13)0.38441 (8)0.1254 (6)
F71A0.0891 (2)0.5237 (5)0.0679 (2)0.136 (2)0.858 (9)
F72A0.0348 (2)0.4778 (8)0.1478 (3)0.166 (3)0.858 (9)
F73A0.0949 (2)0.3220 (5)0.1122 (3)0.154 (2)0.858 (9)
O1A0.35465 (18)0.6238 (3)0.3665 (2)0.0954 (10)
O2A0.30895 (19)0.2834 (3)0.5934 (2)0.1195 (14)
O3A0.39627 (16)0.1812 (3)0.55869 (15)0.0762 (8)
O4A0.4648 (3)0.3438 (5)0.6969 (2)0.160 (2)
O5A0.5256 (2)0.5276 (5)0.7190 (2)0.1477 (17)
N1A0.4807 (2)0.4506 (6)0.6756 (3)0.0982 (14)
C1A0.2902 (3)0.5716 (5)0.3137 (3)0.0719 (12)
C2A0.2231 (3)0.6224 (4)0.3125 (3)0.0715 (12)
C3A0.1598 (3)0.5844 (4)0.2536 (3)0.0741 (12)
H3A0.11480.62180.25160.089*
C4A0.1630 (3)0.4920 (5)0.1982 (3)0.0706 (12)
C5A0.2289 (3)0.4390 (5)0.2008 (3)0.0868 (14)
H5A0.23090.37590.16290.104*
C6A0.2928 (3)0.4773 (5)0.2588 (3)0.0848 (14)
H6A0.33750.43910.26050.102*
C7A0.0950 (4)0.4560 (7)0.1323 (4)0.1022 (18)
C11A0.3872 (2)0.4171 (4)0.5452 (2)0.0569 (10)
C12A0.4432 (2)0.4951 (5)0.5947 (3)0.0681 (12)
C13A0.4678 (2)0.6134 (5)0.5700 (3)0.0863 (14)
H13A0.50530.66490.60500.104*
C14A0.4368 (3)0.6546 (4)0.4938 (3)0.0859 (14)
H14A0.45350.73380.47620.103*
C15A0.3804 (2)0.5780 (4)0.4428 (3)0.0691 (12)
C16A0.3551 (2)0.4605 (4)0.4682 (2)0.0624 (11)
H16A0.31650.41060.43380.075*
C17A0.3590 (3)0.2881 (5)0.5692 (2)0.0665 (11)
C18A0.3754 (3)0.0499 (4)0.5823 (3)0.0954 (15)
H18D0.38770.04800.63840.143*
H18E0.40140.02230.56630.143*
H18F0.32340.03670.55780.143*
F74A0.0498 (11)0.584 (2)0.1057 (13)0.122 (8)*0.142 (9)
F75A0.0499 (12)0.383 (3)0.1554 (12)0.122 (8)*0.142 (9)
F76A0.1050 (9)0.393 (4)0.0825 (12)0.122 (8)*0.142 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.2095 (18)0.0896 (9)0.1154 (12)0.0051 (10)0.0651 (11)0.0311 (8)
F710.286 (7)0.193 (6)0.057 (3)0.089 (5)0.044 (3)0.014 (3)
F720.093 (4)0.349 (11)0.126 (4)0.008 (5)0.009 (3)0.055 (5)
F730.185 (5)0.108 (4)0.184 (5)0.073 (3)0.006 (4)0.018 (3)
O10.119 (3)0.088 (2)0.122 (3)0.054 (2)0.027 (2)0.038 (2)
O20.125 (3)0.105 (3)0.189 (4)0.034 (2)0.106 (3)0.058 (2)
O30.099 (2)0.0573 (18)0.112 (2)0.0063 (18)0.060 (2)0.0059 (17)
O40.188 (5)0.117 (3)0.088 (3)0.022 (3)0.017 (3)0.018 (2)
O50.094 (3)0.251 (5)0.098 (3)0.031 (3)0.012 (2)0.037 (3)
N10.088 (4)0.124 (4)0.078 (4)0.003 (4)0.014 (3)0.012 (3)
C10.078 (4)0.065 (3)0.086 (4)0.014 (3)0.014 (3)0.025 (3)
C20.099 (4)0.046 (3)0.069 (3)0.008 (3)0.032 (3)0.005 (2)
C30.082 (4)0.066 (3)0.074 (3)0.006 (3)0.033 (3)0.014 (3)
C40.083 (4)0.071 (3)0.056 (3)0.009 (3)0.031 (3)0.003 (3)
C50.109 (5)0.087 (4)0.101 (4)0.003 (4)0.064 (4)0.005 (3)
C60.077 (4)0.092 (4)0.139 (5)0.012 (3)0.049 (4)0.014 (4)
C70.150 (7)0.088 (5)0.087 (5)0.018 (5)0.047 (5)0.002 (4)
C110.064 (3)0.062 (3)0.062 (3)0.007 (3)0.019 (2)0.001 (2)
C120.065 (3)0.074 (3)0.065 (3)0.014 (3)0.010 (3)0.001 (3)
C130.066 (3)0.086 (4)0.087 (4)0.010 (3)0.006 (3)0.016 (3)
C140.066 (3)0.067 (3)0.111 (4)0.021 (3)0.007 (3)0.006 (3)
C150.072 (3)0.064 (3)0.087 (4)0.012 (3)0.012 (3)0.008 (3)
C160.060 (3)0.059 (3)0.075 (3)0.011 (2)0.005 (2)0.003 (2)
C170.065 (3)0.078 (3)0.072 (3)0.009 (3)0.027 (3)0.016 (3)
C180.132 (5)0.069 (3)0.119 (4)0.020 (3)0.057 (4)0.013 (3)
Cl1A0.1726 (15)0.0890 (9)0.1181 (11)0.0154 (9)0.0531 (10)0.0283 (8)
F71A0.161 (4)0.151 (4)0.072 (3)0.024 (3)0.008 (2)0.024 (2)
F72A0.086 (3)0.276 (8)0.124 (4)0.003 (3)0.018 (3)0.009 (4)
F73A0.150 (4)0.115 (4)0.163 (4)0.055 (3)0.006 (3)0.013 (3)
O1A0.100 (3)0.089 (2)0.089 (2)0.035 (2)0.020 (2)0.0201 (19)
O2A0.103 (3)0.120 (3)0.171 (4)0.033 (2)0.093 (3)0.062 (2)
O3A0.093 (2)0.0669 (19)0.078 (2)0.0029 (18)0.0420 (17)0.0004 (16)
O4A0.236 (6)0.129 (3)0.067 (3)0.017 (4)0.014 (3)0.006 (3)
O5A0.106 (3)0.219 (5)0.090 (3)0.047 (3)0.004 (2)0.035 (3)
N1A0.084 (3)0.129 (4)0.069 (4)0.001 (3)0.009 (3)0.028 (3)
C1A0.080 (4)0.065 (3)0.074 (3)0.016 (3)0.030 (3)0.015 (3)
C2A0.105 (4)0.053 (3)0.066 (3)0.004 (3)0.041 (3)0.007 (2)
C3A0.071 (3)0.076 (3)0.079 (3)0.012 (3)0.030 (3)0.017 (3)
C4A0.073 (4)0.085 (3)0.061 (3)0.010 (3)0.033 (3)0.000 (3)
C5A0.108 (4)0.091 (3)0.075 (4)0.015 (4)0.050 (3)0.014 (3)
C6A0.085 (4)0.092 (4)0.092 (4)0.005 (3)0.049 (3)0.002 (3)
C7A0.104 (5)0.130 (6)0.081 (5)0.015 (4)0.043 (4)0.001 (4)
C11A0.050 (3)0.066 (3)0.057 (3)0.002 (2)0.021 (2)0.007 (2)
C12A0.052 (3)0.082 (3)0.066 (3)0.002 (3)0.015 (3)0.017 (3)
C13A0.063 (3)0.090 (4)0.100 (4)0.017 (3)0.020 (3)0.034 (3)
C14A0.081 (4)0.063 (3)0.117 (4)0.020 (3)0.037 (3)0.014 (3)
C15A0.063 (3)0.058 (3)0.085 (4)0.011 (2)0.023 (3)0.003 (3)
C16A0.066 (3)0.057 (3)0.068 (3)0.014 (2)0.026 (2)0.008 (2)
C17A0.062 (3)0.081 (3)0.056 (3)0.007 (3)0.020 (2)0.012 (2)
C18A0.131 (4)0.072 (3)0.085 (3)0.002 (3)0.040 (3)0.019 (3)
Geometric parameters (Å, º) top
Cl1—C21.717 (4)Cl1A—C2A1.723 (4)
F71—F741.20 (3)F71A—C7A1.308 (6)
F71—C71.320 (7)F71A—F76A1.31 (3)
F71—F761.43 (3)F71A—F74A1.32 (3)
F72—F740.95 (3)F72A—F75A0.96 (3)
F72—C71.305 (8)F72A—C7A1.301 (6)
F72—F751.35 (2)F72A—F74A1.37 (2)
F73—F761.03 (2)F73A—F76A0.93 (3)
F73—C71.291 (7)F73A—C7A1.350 (7)
F73—F751.30 (2)F73A—F75A1.47 (3)
O1—C11.373 (5)O1A—C15A1.373 (5)
O1—C151.373 (5)O1A—C1A1.386 (5)
O2—C171.199 (4)O2A—C17A1.186 (4)
O3—C171.287 (5)O3A—C17A1.312 (5)
O3—C181.440 (4)O3A—C18A1.444 (4)
O4—N11.206 (5)O4A—N1A1.183 (5)
O5—N11.194 (5)O5A—N1A1.212 (5)
N1—C121.455 (6)N1A—C12A1.462 (6)
C1—C21.366 (6)C1A—C6A1.363 (6)
C1—C61.368 (6)C1A—C2A1.377 (6)
C2—C31.378 (5)C2A—C3A1.375 (6)
C3—C41.365 (5)C3A—C4A1.361 (5)
C3—H30.9300C3A—H3A0.9300
C4—C51.360 (6)C4A—C5A1.357 (6)
C4—C71.487 (7)C4A—C7A1.488 (7)
C5—C61.367 (6)C5A—C6A1.373 (6)
C5—H50.9300C5A—H5A0.9300
C6—H60.9300C6A—H6A0.9300
C7—F741.09 (2)C7A—F76A1.15 (2)
C7—F761.350 (19)C7A—F75A1.29 (3)
C7—F751.427 (19)C7A—F74A1.51 (2)
C11—C161.370 (5)C11A—C12A1.376 (5)
C11—C121.382 (5)C11A—C16A1.385 (5)
C11—C171.487 (5)C11A—C17A1.487 (5)
C12—C131.369 (6)C12A—C13A1.373 (6)
C13—C141.360 (6)C13A—C14A1.365 (6)
C13—H130.9300C13A—H13A0.9300
C14—C151.372 (5)C14A—C15A1.384 (5)
C14—H140.9300C14A—H14A0.9300
C15—C161.380 (5)C15A—C16A1.380 (5)
C16—H160.9300C16A—H16A0.9300
C18—H18A0.9600C18A—H18D0.9600
C18—H18B0.9600C18A—H18E0.9600
C18—H18C0.9600C18A—H18F0.9600
F74—F71—C750.8 (10)C7A—F71A—F76A52.3 (10)
F74—F71—F76103.6 (14)C7A—F71A—F74A70.0 (10)
C7—F71—F7658.8 (8)F76A—F71A—F74A117.7 (16)
F74—F72—C754.9 (14)F75A—F72A—C7A67.9 (17)
F74—F72—F75115 (2)F75A—F72A—F74A134 (2)
C7—F72—F7565.0 (10)C7A—F72A—F74A68.6 (11)
F76—F73—C770.0 (13)F76A—F73A—C7A57.2 (15)
F76—F73—F75134.8 (18)F76A—F73A—F75A106.1 (19)
C7—F73—F7566.9 (9)C7A—F73A—F75A54.4 (9)
C1—O1—C15120.0 (3)C15A—O1A—C1A120.9 (3)
C17—O3—C18116.6 (3)C17A—O3A—C18A115.9 (3)
O5—N1—O4121.7 (6)O4A—N1A—O5A122.5 (5)
O5—N1—C12119.7 (5)O4A—N1A—C12A119.3 (5)
O4—N1—C12118.6 (5)O5A—N1A—C12A118.2 (5)
C2—C1—C6118.9 (5)C6A—C1A—C2A119.5 (5)
C2—C1—O1119.5 (6)C6A—C1A—O1A120.2 (5)
C6—C1—O1121.4 (6)C2A—C1A—O1A120.1 (5)
C1—C2—C3121.0 (4)C3A—C2A—C1A120.1 (4)
C1—C2—Cl1119.9 (5)C3A—C2A—Cl1A120.7 (4)
C3—C2—Cl1119.1 (4)C1A—C2A—Cl1A119.2 (4)
C4—C3—C2118.6 (4)C4A—C3A—C2A119.9 (4)
C4—C3—H3120.7C4A—C3A—H3A120.0
C2—C3—H3120.7C2A—C3A—H3A120.0
C5—C4—C3121.1 (5)C5A—C4A—C3A119.8 (4)
C5—C4—C7119.5 (5)C5A—C4A—C7A120.2 (5)
C3—C4—C7119.4 (5)C3A—C4A—C7A119.9 (5)
C4—C5—C6119.6 (5)C4A—C5A—C6A121.0 (4)
C4—C5—H5120.2C4A—C5A—H5A119.5
C6—C5—H5120.2C6A—C5A—H5A119.5
C5—C6—C1120.7 (5)C1A—C6A—C5A119.6 (5)
C5—C6—H6119.6C1A—C6A—H6A120.2
C1—C6—H6119.6C5A—C6A—H6A120.2
F74—C7—F73128.9 (11)F76A—C7A—F75A105.5 (18)
F74—C7—F7245.7 (16)F76A—C7A—F72A130.4 (10)
F73—C7—F72109.4 (7)F75A—C7A—F72A43.5 (13)
F74—C7—F7158.9 (16)F76A—C7A—F71A63.9 (18)
F73—C7—F71105.4 (6)F75A—C7A—F71A133.9 (9)
F72—C7—F71103.3 (8)F72A—C7A—F71A106.9 (6)
F74—C7—F76115.8 (16)F76A—C7A—F73A42.9 (17)
F73—C7—F7646.0 (10)F75A—C7A—F73A67.6 (14)
F72—C7—F76137.4 (8)F72A—C7A—F73A107.1 (6)
F71—C7—F7664.5 (11)F71A—C7A—F73A104.7 (5)
F74—C7—F75100.8 (18)F76A—C7A—C4A114.5 (9)
F73—C7—F7556.8 (9)F75A—C7A—C4A112.2 (8)
F72—C7—F7558.9 (10)F72A—C7A—C4A113.6 (5)
F71—C7—F75138.5 (7)F71A—C7A—C4A112.6 (5)
F76—C7—F75101.8 (14)F73A—C7A—C4A111.3 (6)
F74—C7—C4118.4 (9)F76A—C7A—F74A114.7 (18)
F73—C7—C4112.6 (6)F75A—C7A—F74A100.1 (16)
F72—C7—C4114.3 (5)F72A—C7A—F74A58.0 (11)
F71—C7—C4111.1 (6)F71A—C7A—F74A55.3 (11)
F76—C7—C4108.0 (8)F73A—C7A—F74A139.8 (7)
F75—C7—C4110.4 (7)C4A—C7A—F74A108.7 (7)
C16—C11—C12118.0 (4)C12A—C11A—C16A118.3 (4)
C16—C11—C17117.9 (4)C12A—C11A—C17A124.0 (4)
C12—C11—C17124.1 (4)C16A—C11A—C17A117.7 (4)
C13—C12—C11121.9 (4)C13A—C12A—C11A122.2 (4)
C13—C12—N1118.1 (5)C13A—C12A—N1A117.5 (5)
C11—C12—N1120.0 (5)C11A—C12A—N1A120.3 (5)
C14—C13—C12119.8 (4)C14A—C13A—C12A119.3 (4)
C14—C13—H13120.1C14A—C13A—H13A120.3
C12—C13—H13120.1C12A—C13A—H13A120.3
C13—C14—C15118.9 (4)C13A—C14A—C15A119.7 (4)
C13—C14—H14120.5C13A—C14A—H14A120.1
C15—C14—H14120.5C15A—C14A—H14A120.2
C14—C15—O1115.0 (4)O1A—C15A—C16A123.5 (4)
C14—C15—C16121.5 (4)O1A—C15A—C14A115.7 (4)
O1—C15—C16123.4 (4)C16A—C15A—C14A120.7 (4)
C11—C16—C15119.8 (4)C15A—C16A—C11A119.7 (4)
C11—C16—H16120.1C15A—C16A—H16A120.1
C15—C16—H16120.1C11A—C16A—H16A120.1
O2—C17—O3124.9 (4)O2A—C17A—O3A125.1 (4)
O2—C17—C11122.9 (4)O2A—C17A—C11A124.1 (4)
O3—C17—C11112.1 (4)O3A—C17A—C11A110.7 (4)
O3—C18—H18A109.5O3A—C18A—H18D109.5
O3—C18—H18B109.5O3A—C18A—H18E109.5
H18A—C18—H18B109.5H18D—C18A—H18E109.5
O3—C18—H18C109.5O3A—C18A—H18F109.5
H18A—C18—H18C109.5H18D—C18A—H18F109.5
H18B—C18—H18C109.5H18E—C18A—H18F109.5
F72—F74—C779.3 (18)F71A—F74A—F72A102.3 (15)
F72—F74—F71146 (3)F71A—F74A—C7A54.7 (9)
C7—F74—F7170.2 (18)F72A—F74A—C7A53.5 (8)
F73—F75—F72106.3 (14)F72A—F75A—C7A68.7 (14)
F73—F75—C756.3 (9)F72A—F75A—F73A121 (2)
F72—F75—C756.0 (8)C7A—F75A—F73A58.0 (13)
F73—F76—C764.0 (10)F73A—F76A—C7A79.8 (19)
F73—F76—F71114.3 (17)F73A—F76A—F71A139 (3)
C7—F76—F7156.7 (9)C7A—F76A—F71A63.8 (16)
C15—O1—C1—C2103.8 (5)C15A—O1A—C1A—C6A102.8 (5)
C15—O1—C1—C680.8 (6)C15A—O1A—C1A—C2A82.0 (5)
C6—C1—C2—C32.8 (6)C6A—C1A—C2A—C3A3.9 (6)
O1—C1—C2—C3172.8 (4)O1A—C1A—C2A—C3A171.3 (4)
C6—C1—C2—Cl1177.3 (3)C6A—C1A—C2A—Cl1A177.5 (3)
O1—C1—C2—Cl17.1 (5)O1A—C1A—C2A—Cl1A7.3 (5)
C1—C2—C3—C42.3 (6)C1A—C2A—C3A—C4A2.8 (6)
Cl1—C2—C3—C4177.9 (3)Cl1A—C2A—C3A—C4A178.6 (3)
C2—C3—C4—C50.4 (6)C2A—C3A—C4A—C5A0.8 (6)
C2—C3—C4—C7178.8 (4)C2A—C3A—C4A—C7A177.1 (4)
C3—C4—C5—C60.8 (7)C3A—C4A—C5A—C6A0.0 (7)
C7—C4—C5—C6177.6 (5)C7A—C4A—C5A—C6A176.3 (5)
C4—C5—C6—C10.3 (7)C2A—C1A—C6A—C5A3.1 (6)
C2—C1—C6—C51.5 (7)O1A—C1A—C6A—C5A172.1 (4)
O1—C1—C6—C5174.0 (4)C4A—C5A—C6A—C1A1.2 (7)
F76—F73—C7—F7490 (2)F75A—F72A—C7A—F76A67 (3)
F75—F73—C7—F7476 (2)F74A—F72A—C7A—F76A97 (3)
F76—F73—C7—F72138.1 (10)F74A—F72A—C7A—F75A164.0 (14)
F75—F73—C7—F7228.0 (8)F75A—F72A—C7A—F71A137.2 (13)
F76—F73—C7—F7127.7 (10)F74A—F72A—C7A—F71A26.8 (8)
F75—F73—C7—F71138.4 (9)F75A—F72A—C7A—F73A25.4 (12)
F75—F73—C7—F76166.1 (11)F74A—F72A—C7A—F73A138.6 (9)
F76—F73—C7—F75166.1 (11)F75A—F72A—C7A—C4A98.0 (12)
F76—F73—C7—C493.6 (10)F74A—F72A—C7A—C4A98.0 (9)
F75—F73—C7—C4100.3 (8)F75A—F72A—C7A—F74A164.0 (14)
F75—F72—C7—F74153.2 (15)F74A—F71A—C7A—F76A154.9 (12)
F74—F72—C7—F73125.9 (14)F76A—F71A—C7A—F75A87 (2)
F75—F72—C7—F7327.3 (8)F74A—F71A—C7A—F75A68 (2)
F74—F72—C7—F7114.1 (13)F76A—F71A—C7A—F72A127.2 (11)
F75—F72—C7—F71139.1 (8)F74A—F71A—C7A—F72A27.7 (8)
F74—F72—C7—F7681 (2)F76A—F71A—C7A—F73A13.8 (10)
F75—F72—C7—F7672 (2)F74A—F71A—C7A—F73A141.1 (9)
F74—F72—C7—F75153.2 (15)F76A—F71A—C7A—C4A107.3 (11)
F74—F72—C7—C4106.8 (12)F74A—F71A—C7A—C4A97.8 (8)
F75—F72—C7—C4100.0 (8)F76A—F71A—C7A—F74A154.9 (12)
F76—F71—C7—F74148.2 (12)F75A—F73A—C7A—F76A150.3 (15)
F74—F71—C7—F73126.5 (12)F76A—F73A—C7A—F75A150.3 (15)
F76—F71—C7—F7321.7 (8)F76A—F73A—C7A—F72A131.7 (14)
F74—F71—C7—F7211.7 (11)F75A—F73A—C7A—F72A18.6 (8)
F76—F71—C7—F72136.5 (9)F76A—F73A—C7A—F71A18.4 (13)
F74—F71—C7—F76148.2 (12)F75A—F73A—C7A—F71A131.9 (9)
F74—F71—C7—F7570 (2)F76A—F73A—C7A—C4A103.6 (12)
F76—F71—C7—F7578.7 (19)F75A—F73A—C7A—C4A106.2 (9)
F74—F71—C7—C4111.3 (10)F76A—F73A—C7A—F74A71 (2)
F76—F71—C7—C4100.5 (9)F75A—F73A—C7A—F74A79 (2)
C5—C4—C7—F74135 (2)C5A—C4A—C7A—F76A7 (2)
C3—C4—C7—F7443 (2)C3A—C4A—C7A—F76A169 (2)
C5—C4—C7—F7348.0 (8)C5A—C4A—C7A—F75A113.1 (18)
C3—C4—C7—F73133.6 (7)C3A—C4A—C7A—F75A70.7 (18)
C5—C4—C7—F72173.6 (8)C5A—C4A—C7A—F72A160.5 (6)
C3—C4—C7—F728.0 (10)C3A—C4A—C7A—F72A23.3 (8)
C5—C4—C7—F7170.0 (8)C5A—C4A—C7A—F71A77.7 (7)
C3—C4—C7—F71108.4 (7)C3A—C4A—C7A—F71A98.5 (6)
C5—C4—C7—F761.1 (15)C5A—C4A—C7A—F73A39.5 (8)
C3—C4—C7—F76177.3 (14)C3A—C4A—C7A—F73A144.3 (6)
C5—C4—C7—F75109.4 (13)C5A—C4A—C7A—F74A137.1 (14)
C3—C4—C7—F7572.1 (14)C3A—C4A—C7A—F74A39.2 (15)
C16—C11—C12—C131.1 (6)C16A—C11A—C12A—C13A0.0 (6)
C17—C11—C12—C13178.5 (4)C17A—C11A—C12A—C13A179.7 (4)
C16—C11—C12—N1176.4 (4)C16A—C11A—C12A—N1A177.7 (3)
C17—C11—C12—N14.0 (6)C17A—C11A—C12A—N1A2.0 (6)
O5—N1—C12—C135.3 (7)O4A—N1A—C12A—C13A174.1 (5)
O4—N1—C12—C13171.0 (5)O5A—N1A—C12A—C13A8.0 (6)
O5—N1—C12—C11172.3 (5)O4A—N1A—C12A—C11A3.7 (7)
O4—N1—C12—C1111.5 (7)O5A—N1A—C12A—C11A174.2 (4)
C11—C12—C13—C141.7 (7)C11A—C12A—C13A—C14A1.1 (6)
N1—C12—C13—C14175.8 (4)N1A—C12A—C13A—C14A176.7 (4)
C12—C13—C14—C151.0 (7)C12A—C13A—C14A—C15A1.0 (6)
C13—C14—C15—O1178.9 (4)C1A—O1A—C15A—C16A14.4 (6)
C13—C14—C15—C160.4 (7)C1A—O1A—C15A—C14A168.2 (4)
C1—O1—C15—C14173.2 (5)C13A—C14A—C15A—O1A177.4 (4)
C1—O1—C15—C166.1 (7)C13A—C14A—C15A—C16A0.1 (6)
C12—C11—C16—C150.4 (6)O1A—C15A—C16A—C11A176.1 (4)
C17—C11—C16—C15179.9 (4)C14A—C15A—C16A—C11A1.2 (6)
C14—C15—C16—C111.1 (7)C12A—C11A—C16A—C15A1.1 (5)
O1—C15—C16—C11178.2 (4)C17A—C11A—C16A—C15A178.6 (4)
C18—O3—C17—O25.6 (7)C18A—O3A—C17A—O2A3.0 (6)
C18—O3—C17—C11177.3 (4)C18A—O3A—C17A—C11A178.1 (3)
C16—C11—C17—O281.3 (6)C12A—C11A—C17A—O2A92.3 (5)
C12—C11—C17—O298.2 (5)C16A—C11A—C17A—O2A87.9 (5)
C16—C11—C17—O395.9 (4)C12A—C11A—C17A—O3A88.8 (4)
C12—C11—C17—O384.6 (5)C16A—C11A—C17A—O3A90.9 (4)
F75—F72—F74—C726.8 (12)C7A—F71A—F74A—F72A25.6 (6)
C7—F72—F74—F7127.5 (18)F76A—F71A—F74A—F72A3.3 (11)
F75—F72—F74—F711 (3)F76A—F71A—F74A—C7A22.3 (8)
F73—C7—F74—F7279 (2)F75A—F72A—F74A—F71A5.3 (15)
F71—C7—F74—F72164.0 (14)C7A—F72A—F74A—F71A26.0 (6)
F76—C7—F74—F72132.1 (14)F75A—F72A—F74A—C7A20.7 (13)
F75—C7—F74—F7223.2 (14)F76A—C7A—F74A—F71A24.8 (16)
C4—C7—F74—F7297.2 (12)F75A—C7A—F74A—F71A137.2 (11)
F73—C7—F74—F7184.9 (18)F72A—C7A—F74A—F71A148.3 (8)
F72—C7—F74—F71164.0 (14)F73A—C7A—F74A—F71A70.1 (19)
F76—C7—F74—F7131.9 (14)C4A—C7A—F74A—F71A105.0 (6)
F75—C7—F74—F71140.8 (10)F76A—C7A—F74A—F72A123.6 (16)
C4—C7—F74—F7198.8 (13)F75A—C7A—F74A—F72A11.1 (11)
C7—F71—F74—F7228.8 (19)F71A—C7A—F74A—F72A148.3 (8)
F76—F71—F74—F721 (2)F73A—C7A—F74A—F72A78 (2)
F76—F71—F74—C727.6 (9)C4A—C7A—F74A—F72A106.7 (6)
F76—F73—F75—F728.0 (15)F74A—F72A—F75A—C7A20.8 (13)
C7—F73—F75—F7226.5 (6)C7A—F72A—F75A—F73A26.0 (9)
F76—F73—F75—C718.5 (13)F74A—F72A—F75A—F73A5.2 (19)
F74—F72—F75—F732.6 (13)F76A—C7A—F75A—F72A133.2 (16)
C7—F72—F75—F7326.6 (6)F71A—C7A—F75A—F72A65 (2)
F74—F72—F75—C724.0 (10)F73A—C7A—F75A—F72A153.7 (11)
F74—C7—F75—F73129.7 (13)C4A—C7A—F75A—F72A101.4 (9)
F72—C7—F75—F73148.9 (8)F74A—C7A—F75A—F72A13.7 (13)
F71—C7—F75—F7374.9 (18)F76A—C7A—F75A—F73A20.5 (14)
F76—C7—F75—F7310.2 (9)F72A—C7A—F75A—F73A153.7 (11)
C4—C7—F75—F73104.3 (8)F71A—C7A—F75A—F73A89.1 (18)
F74—C7—F75—F7219.2 (13)C4A—C7A—F75A—F73A104.9 (9)
F73—C7—F75—F72148.9 (8)F74A—C7A—F75A—F73A139.9 (9)
F71—C7—F75—F7274.0 (19)F76A—F73A—F75A—F72A3.1 (16)
F76—C7—F75—F72138.7 (10)C7A—F73A—F75A—F72A28.8 (10)
C4—C7—F75—F72106.8 (7)F76A—F73A—F75A—C7A25.7 (10)
F75—F73—F76—C718.1 (12)F75A—F73A—F76A—C7A24.8 (10)
C7—F73—F76—F7127.1 (8)C7A—F73A—F76A—F71A27.5 (14)
F75—F73—F76—F719.0 (17)F75A—F73A—F76A—F71A3 (2)
F74—C7—F76—F73120.1 (17)F75A—C7A—F76A—F73A28.4 (15)
F72—C7—F76—F7368.4 (19)F72A—C7A—F76A—F73A70 (2)
F71—C7—F76—F73150.2 (9)F71A—C7A—F76A—F73A160.2 (13)
F75—C7—F76—F7311.8 (10)C4A—C7A—F76A—F73A95.5 (12)
C4—C7—F76—F73104.4 (7)F74A—C7A—F76A—F73A137.6 (14)
F74—C7—F76—F7130.1 (14)F75A—C7A—F76A—F71A131.8 (12)
F73—C7—F76—F71150.2 (9)F72A—C7A—F76A—F71A91 (2)
F72—C7—F76—F7181.8 (18)F73A—C7A—F76A—F71A160.2 (13)
F75—C7—F76—F71138.4 (9)C4A—C7A—F76A—F71A104.3 (10)
C4—C7—F76—F71105.4 (7)F74A—C7A—F76A—F71A22.6 (13)
F74—F71—F76—F734.5 (13)C7A—F71A—F76A—F73A30.5 (16)
C7—F71—F76—F7329.3 (8)F74A—F71A—F76A—F73A4 (2)
F74—F71—F76—C724.8 (8)F74A—F71A—F76A—C7A26.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2A0.932.473.359 (5)159
C16A—H16A···O20.932.513.373 (5)155
C6—H6···O5i0.932.703.323 (6)125
C6A—H6A···O5Aii0.932.563.389 (6)149
C5—H5···O2iii0.932.603.511 (6)167
C5A—H5A···O2Aiv0.932.743.578 (6)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
(II) methyl 2-chloro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-1,2,3,6-tetrahydropyrimidin- 1-yl]benzoate top
Crystal data top
C14H10ClF3N2O4Dx = 1.606 Mg m3
Mr = 362.69Melting point: 443(1) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.326 (13) ÅCell parameters from 823 reflections
b = 7.802 (7) Åθ = 2.5–25.4°
c = 14.337 (13) ŵ = 0.31 mm1
β = 110.599 (15)°T = 293 K
V = 1500 (2) Å3Prism, colourless
Z = 40.26 × 0.22 × 0.16 mm
F(000) = 736
Data collection top
Bruker SMART CCD area-detector
diffractometer
2646 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1217
Tmin = 0.806, Tmax = 1.000k = 99
7542 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.2049P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.006
2646 reflectionsΔρmax = 0.26 e Å3
220 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (12)
Crystal data top
C14H10ClF3N2O4V = 1500 (2) Å3
Mr = 362.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.326 (13) ŵ = 0.31 mm1
b = 7.802 (7) ÅT = 293 K
c = 14.337 (13) Å0.26 × 0.22 × 0.16 mm
β = 110.599 (15)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2007 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 1.000Rint = 0.022
7542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.10Δρmax = 0.26 e Å3
2646 reflectionsΔρmin = 0.34 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07694 (7)0.88697 (10)0.19239 (6)0.0751 (3)
F710.21795 (16)0.1887 (2)0.68455 (15)0.0899 (7)
F720.32208 (15)0.0282 (2)0.78845 (11)0.0697 (5)
F730.36128 (17)0.1549 (3)0.67724 (14)0.0861 (7)
O10.33607 (14)0.4512 (3)0.55205 (15)0.0635 (6)
O20.02759 (13)0.2154 (3)0.43625 (14)0.0581 (5)
O30.1805 (2)0.6179 (3)0.11095 (17)0.0864 (8)
O40.12446 (17)0.3650 (3)0.13431 (14)0.0606 (6)
N10.18198 (14)0.3337 (2)0.49334 (13)0.0349 (5)
N30.31324 (14)0.2012 (3)0.62138 (14)0.0391 (5)
C20.28141 (18)0.3369 (3)0.55551 (17)0.0394 (6)
C40.24823 (18)0.0740 (3)0.62383 (17)0.0370 (6)
C50.15265 (19)0.0750 (3)0.56586 (18)0.0419 (6)
H50.11080.01200.57200.050*
C60.11304 (18)0.2085 (3)0.49387 (18)0.0394 (6)
C70.2883 (2)0.0737 (4)0.6940 (2)0.0499 (7)
C80.4187 (2)0.2073 (5)0.6862 (2)0.0699 (10)
H8A0.42900.13390.74270.105*
H8B0.43640.32270.70860.105*
H8C0.45950.16910.64960.105*
C110.14032 (17)0.5648 (3)0.25663 (17)0.0372 (6)
C120.10602 (19)0.7209 (3)0.27755 (19)0.0435 (6)
C130.0911 (2)0.7464 (4)0.3663 (2)0.0512 (7)
H130.06530.85020.37820.061*
C140.1139 (2)0.6196 (3)0.43735 (19)0.0466 (6)
H140.10360.63670.49720.056*
C150.15216 (17)0.4672 (3)0.41879 (17)0.0357 (5)
C160.16351 (17)0.4382 (3)0.32921 (17)0.0357 (5)
H160.18700.33260.31690.043*
C170.15162 (19)0.5245 (4)0.15984 (18)0.0439 (6)
C180.1284 (3)0.3052 (5)0.0407 (2)0.0793 (11)
H18A0.19370.32550.03860.119*
H18B0.07980.36550.01300.119*
H18C0.11420.18460.03400.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0942 (7)0.0516 (5)0.0700 (5)0.0180 (4)0.0171 (5)0.0255 (4)
F710.1013 (16)0.0612 (12)0.0870 (14)0.0221 (11)0.0081 (12)0.0321 (10)
F720.1064 (14)0.0615 (11)0.0346 (9)0.0083 (10)0.0165 (9)0.0090 (8)
F730.1133 (16)0.0802 (13)0.0721 (12)0.0521 (12)0.0416 (12)0.0223 (11)
O10.0468 (11)0.0647 (13)0.0636 (13)0.0223 (10)0.0001 (9)0.0202 (11)
O20.0398 (11)0.0680 (13)0.0560 (12)0.0102 (9)0.0036 (9)0.0113 (10)
O30.135 (2)0.0793 (17)0.0610 (14)0.0390 (16)0.0538 (15)0.0009 (12)
O40.0907 (16)0.0538 (12)0.0506 (12)0.0072 (11)0.0415 (11)0.0092 (9)
N10.0352 (10)0.0373 (11)0.0301 (10)0.0024 (9)0.0090 (8)0.0011 (9)
N30.0338 (11)0.0482 (12)0.0319 (10)0.0021 (9)0.0072 (8)0.0063 (9)
C20.0377 (13)0.0437 (14)0.0334 (13)0.0072 (12)0.0081 (11)0.0026 (11)
C40.0464 (14)0.0378 (13)0.0296 (12)0.0010 (11)0.0167 (11)0.0012 (10)
C50.0470 (15)0.0398 (14)0.0393 (13)0.0096 (11)0.0156 (12)0.0015 (11)
C60.0383 (14)0.0445 (14)0.0351 (13)0.0061 (11)0.0124 (11)0.0029 (11)
C70.0642 (18)0.0450 (15)0.0412 (15)0.0033 (14)0.0192 (13)0.0047 (12)
C80.0397 (16)0.090 (2)0.066 (2)0.0078 (16)0.0002 (14)0.0288 (18)
C110.0359 (13)0.0386 (13)0.0337 (12)0.0026 (10)0.0083 (10)0.0027 (10)
C120.0435 (14)0.0369 (14)0.0417 (14)0.0028 (11)0.0044 (11)0.0061 (11)
C130.0572 (17)0.0403 (15)0.0501 (16)0.0136 (13)0.0114 (13)0.0036 (12)
C140.0522 (15)0.0480 (16)0.0389 (14)0.0069 (13)0.0152 (12)0.0063 (12)
C150.0364 (13)0.0362 (13)0.0316 (12)0.0016 (10)0.0083 (10)0.0008 (10)
C160.0365 (12)0.0332 (12)0.0357 (13)0.0024 (10)0.0106 (10)0.0003 (10)
C170.0433 (14)0.0496 (16)0.0371 (13)0.0015 (12)0.0121 (12)0.0059 (12)
C180.103 (3)0.090 (3)0.0538 (19)0.004 (2)0.0383 (19)0.0206 (18)
Geometric parameters (Å, º) top
Cl1—C121.728 (3)C5—H50.9300
F71—C71.321 (3)C8—H8A0.9600
F72—C71.316 (3)C8—H8B0.9600
F73—C71.315 (3)C8—H8C0.9600
O1—C21.199 (3)C11—C121.385 (4)
O2—C61.213 (3)C11—C161.387 (3)
O3—C171.182 (3)C11—C171.486 (4)
O4—C171.317 (3)C12—C131.377 (4)
O4—C181.441 (4)C13—C141.375 (4)
N1—C21.390 (3)C13—H130.9300
N1—C61.391 (3)C14—C151.374 (4)
N1—C151.445 (3)C14—H140.9300
N3—C41.370 (3)C15—C161.369 (3)
N3—C21.385 (3)C16—H160.9300
N3—C81.470 (3)C18—H18A0.9600
C4—C51.329 (4)C18—H18B0.9600
C4—C71.504 (4)C18—H18C0.9600
C5—C61.435 (4)
C17—O4—C18117.4 (2)H8A—C8—H8C109.5
C2—N1—C6125.4 (2)H8B—C8—H8C109.5
C2—N1—C15115.53 (19)C12—C11—C16118.2 (2)
C6—N1—C15118.98 (19)C12—C11—C17123.5 (2)
C4—N3—C2120.5 (2)C16—C11—C17118.3 (2)
C4—N3—C8124.3 (2)C13—C12—C11120.6 (2)
C2—N3—C8115.1 (2)C13—C12—Cl1117.9 (2)
O1—C2—N3122.2 (2)C11—C12—Cl1121.5 (2)
O1—C2—N1121.6 (2)C14—C13—C12120.5 (2)
N3—C2—N1116.2 (2)C14—C13—H13119.8
C5—C4—N3122.7 (2)C12—C13—H13119.8
C5—C4—C7119.3 (2)C15—C14—C13119.1 (2)
N3—C4—C7118.0 (2)C15—C14—H14120.5
C4—C5—C6120.9 (2)C13—C14—H14120.5
C4—C5—H5119.5C16—C15—C14120.8 (2)
C6—C5—H5119.5C16—C15—N1118.2 (2)
O2—C6—N1120.9 (2)C14—C15—N1121.0 (2)
O2—C6—C5124.8 (2)C15—C16—C11120.6 (2)
N1—C6—C5114.3 (2)C15—C16—H16119.7
F73—C7—F72106.9 (2)C11—C16—H16119.7
F73—C7—F71106.3 (3)O3—C17—O4123.3 (3)
F72—C7—F71106.2 (2)O3—C17—C11126.8 (3)
F73—C7—C4112.8 (2)O4—C17—C11109.9 (2)
F72—C7—C4113.4 (2)O4—C18—H18A109.5
F71—C7—C4110.7 (2)O4—C18—H18B109.5
N3—C8—H8A109.5H18A—C18—H18B109.5
N3—C8—H8B109.5O4—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
N3—C8—H8C109.5H18B—C18—H18C109.5
C4—N3—C2—O1179.3 (2)N3—C4—C7—F71177.2 (2)
C8—N3—C2—O10.2 (4)C16—C11—C12—C133.0 (4)
C4—N3—C2—N10.6 (3)C17—C11—C12—C13175.7 (2)
C8—N3—C2—N1179.9 (2)C16—C11—C12—Cl1179.11 (19)
C6—N1—C2—O1178.5 (2)C17—C11—C12—Cl12.2 (3)
C15—N1—C2—O15.7 (3)C11—C12—C13—C142.7 (4)
C6—N1—C2—N31.4 (3)Cl1—C12—C13—C14179.3 (2)
C15—N1—C2—N3174.4 (2)C12—C13—C14—C150.2 (4)
C2—N3—C4—C51.3 (4)C13—C14—C15—C162.9 (4)
C8—N3—C4—C5178.2 (3)C13—C14—C15—N1176.8 (2)
C2—N3—C4—C7177.5 (2)C2—N1—C15—C1687.7 (3)
C8—N3—C4—C73.1 (4)C6—N1—C15—C1688.4 (3)
N3—C4—C5—C62.4 (4)C2—N1—C15—C1492.0 (3)
C7—C4—C5—C6176.3 (2)C6—N1—C15—C1491.9 (3)
C2—N1—C6—O2179.5 (2)C14—C15—C16—C112.6 (4)
C15—N1—C6—O23.8 (3)N1—C15—C16—C11177.1 (2)
C2—N1—C6—C50.3 (3)C12—C11—C16—C150.3 (4)
C15—N1—C6—C5175.4 (2)C17—C11—C16—C15178.4 (2)
C4—C5—C6—O2177.6 (3)C18—O4—C17—O31.5 (4)
C4—C5—C6—N11.6 (3)C18—O4—C17—C11178.5 (2)
C5—C4—C7—F73120.6 (3)C12—C11—C17—O338.9 (4)
N3—C4—C7—F7358.2 (3)C16—C11—C17—O3142.4 (3)
C5—C4—C7—F72117.7 (3)C12—C11—C17—O4141.1 (3)
N3—C4—C7—F7263.5 (3)C16—C11—C17—O437.6 (3)
C5—C4—C7—F711.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.513.427 (4)169
C16—H16···O3ii0.932.473.260 (4)143
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2.
(III) 2-[4-chloro-2-fluoro-5-(prop-2-ynyloxy)phenyl]-4-(trifluoromethyl)piperidine- 2,6-dione top
Crystal data top
C15H10ClF4NO3Dx = 1.533 Mg m3
Mr = 363.69Melting point: 380(1) K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
a = 22.887 (9) ÅCell parameters from 908 reflections
b = 7.250 (3) Åθ = 2.8–21.2°
c = 9.497 (4) ŵ = 0.30 mm1
V = 1575.7 (11) Å3T = 293 K
Z = 4Block, colourless
F(000) = 7360.40 × 0.38 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube2022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1627
Tmin = 0.853, Tmax = 0.919k = 88
7730 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.055P)2 + 0.3451P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2725 reflectionsΔρmax = 0.19 e Å3
253 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (12)
Crystal data top
C15H10ClF4NO3V = 1575.7 (11) Å3
Mr = 363.69Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 22.887 (9) ŵ = 0.30 mm1
b = 7.250 (3) ÅT = 293 K
c = 9.497 (4) Å0.40 × 0.38 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2725 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2022 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.919Rint = 0.053
7730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.18 e Å3
2725 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
253 parametersAbsolute structure parameter: 0.05 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.24602 (6)0.07128 (16)0.50000 (19)0.0991 (5)
F10.41739 (11)0.3028 (3)0.7791 (3)0.0851 (8)
O10.50000 (13)0.4401 (5)0.4929 (5)0.0995 (12)
O20.37221 (11)0.7646 (3)0.7528 (4)0.0722 (8)
O30.26586 (11)0.4022 (4)0.3420 (3)0.0701 (8)
N10.43490 (12)0.6065 (4)0.6168 (3)0.0471 (7)
C20.49118 (16)0.5708 (6)0.5654 (5)0.0640 (10)0.50
C30.53841 (18)0.7023 (7)0.6051 (6)0.0942 (18)0.50
H3A0.57430.63210.61480.113*0.50
H3B0.54390.78630.52670.113*0.50
C40.5317 (4)0.8122 (13)0.7305 (9)0.050 (2)0.50
H40.54100.73290.81100.061*0.50
C50.46863 (16)0.8788 (5)0.7498 (6)0.0716 (11)0.50
H5A0.46330.91050.84820.086*0.50
H5B0.46380.99120.69570.086*0.50
C60.42111 (15)0.7486 (4)0.7087 (4)0.0494 (8)0.50
C70.5720 (2)0.9764 (8)0.7370 (8)0.0853 (14)0.50
F710.5673 (4)1.0959 (13)0.6416 (12)0.106 (2)0.50
F720.6284 (3)0.9108 (10)0.7341 (9)0.0882 (18)0.50
F730.5690 (4)1.0556 (19)0.8647 (12)0.117 (3)0.50
C110.38914 (14)0.4772 (4)0.5833 (4)0.0471 (8)
C120.38129 (17)0.3264 (5)0.6665 (4)0.0582 (9)
C130.33749 (19)0.1999 (5)0.6425 (5)0.0682 (11)
H130.33290.09760.70070.082*
C140.30078 (16)0.2291 (5)0.5302 (5)0.0598 (10)
C150.30643 (15)0.3831 (5)0.4464 (4)0.0552 (9)
C160.35123 (15)0.5066 (5)0.4716 (4)0.0505 (8)
H160.35590.60910.41380.061*
C170.26144 (15)0.5750 (6)0.2734 (5)0.0714 (12)
H17A0.26760.67240.34170.086*
H17B0.22230.58870.23580.086*
C180.30325 (18)0.5958 (6)0.1598 (5)0.0674 (11)
C190.3355 (2)0.6130 (8)0.0667 (7)0.0939 (15)
H190.36140.62680.00800.113*
C2A0.49118 (16)0.5708 (6)0.5654 (5)0.0640 (10)0.50
C3A0.53841 (18)0.7023 (7)0.6051 (6)0.0942 (18)0.50
H3A10.56450.64060.67020.113*0.50
H3A20.56080.73140.52120.113*0.50
C4A0.5200 (4)0.8698 (15)0.6672 (12)0.063 (2)0.50
H4A0.51030.94670.58560.075*0.50
C5A0.46863 (16)0.8788 (5)0.7498 (6)0.0716 (11)0.50
H5A10.45341.00350.74500.086*0.50
H5A20.47910.85490.84710.086*0.50
C6A0.42111 (15)0.7486 (4)0.7087 (4)0.0494 (8)0.50
C7A0.5720 (2)0.9764 (8)0.7370 (8)0.0853 (14)0.50
F71A0.5530 (3)1.1556 (10)0.7580 (19)0.130 (3)0.50
F72A0.6130 (6)0.999 (2)0.6412 (18)0.176 (5)0.50
F73A0.5865 (5)0.9260 (16)0.8501 (17)0.150 (5)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0866 (8)0.0809 (7)0.1298 (11)0.0384 (6)0.0084 (8)0.0115 (9)
F10.1063 (18)0.0685 (13)0.0805 (18)0.0031 (12)0.0282 (16)0.0159 (13)
O10.0676 (17)0.113 (3)0.118 (3)0.0031 (17)0.0111 (19)0.065 (3)
O20.0556 (16)0.0640 (15)0.097 (2)0.0040 (12)0.0179 (16)0.0202 (16)
O30.0567 (15)0.084 (2)0.0692 (18)0.0152 (13)0.0135 (14)0.0045 (17)
N10.0473 (15)0.0494 (15)0.0445 (16)0.0001 (12)0.0048 (13)0.0046 (13)
C20.051 (2)0.077 (3)0.064 (2)0.0024 (19)0.0037 (19)0.020 (2)
C30.047 (2)0.120 (4)0.116 (4)0.012 (2)0.004 (2)0.055 (4)
C40.052 (5)0.066 (5)0.033 (5)0.012 (4)0.004 (4)0.007 (4)
C50.060 (2)0.060 (2)0.095 (3)0.0023 (17)0.003 (2)0.023 (2)
C60.049 (2)0.0476 (18)0.052 (2)0.0001 (15)0.0006 (16)0.0001 (17)
C70.068 (3)0.076 (3)0.111 (5)0.022 (3)0.009 (4)0.011 (4)
F710.101 (6)0.091 (5)0.125 (6)0.052 (4)0.028 (5)0.038 (5)
F720.053 (3)0.116 (5)0.096 (5)0.016 (3)0.004 (4)0.015 (4)
F730.102 (6)0.126 (7)0.123 (7)0.044 (6)0.014 (5)0.054 (7)
C110.0494 (18)0.0434 (18)0.048 (2)0.0028 (15)0.0006 (17)0.0077 (17)
C120.065 (2)0.053 (2)0.057 (2)0.0045 (17)0.0067 (19)0.0021 (19)
C130.086 (3)0.046 (2)0.072 (3)0.0014 (19)0.014 (3)0.004 (2)
C140.055 (2)0.054 (2)0.071 (3)0.0095 (17)0.0076 (19)0.005 (2)
C150.050 (2)0.062 (2)0.054 (2)0.0038 (17)0.0055 (17)0.0130 (18)
C160.0482 (18)0.0542 (19)0.049 (2)0.0010 (15)0.0022 (16)0.0006 (17)
C170.049 (2)0.083 (3)0.082 (3)0.0090 (18)0.020 (2)0.015 (3)
C180.058 (2)0.077 (3)0.067 (3)0.003 (2)0.015 (2)0.002 (2)
C190.083 (3)0.112 (4)0.088 (4)0.013 (3)0.005 (3)0.008 (3)
C2A0.051 (2)0.077 (3)0.064 (2)0.0024 (19)0.0037 (19)0.020 (2)
C3A0.047 (2)0.120 (4)0.116 (4)0.012 (2)0.004 (2)0.055 (4)
C4A0.054 (5)0.081 (7)0.053 (6)0.019 (5)0.005 (5)0.005 (5)
C5A0.060 (2)0.060 (2)0.095 (3)0.0023 (17)0.003 (2)0.023 (2)
C6A0.049 (2)0.0476 (18)0.052 (2)0.0001 (15)0.0006 (16)0.0001 (17)
C7A0.068 (3)0.076 (3)0.111 (5)0.022 (3)0.009 (4)0.011 (4)
F71A0.108 (5)0.086 (5)0.195 (12)0.035 (4)0.032 (8)0.008 (7)
F72A0.104 (7)0.213 (12)0.212 (13)0.087 (9)0.049 (9)0.035 (10)
F73A0.142 (9)0.130 (7)0.179 (12)0.026 (6)0.113 (9)0.017 (8)
Geometric parameters (Å, º) top
Cl1—C141.721 (4)C5—H5B0.9700
F1—C121.362 (4)C7—F711.259 (10)
O1—C21.189 (4)C7—F731.343 (11)
O2—C61.201 (4)C7—F721.376 (9)
O3—C151.366 (5)C11—C121.361 (5)
O3—C171.415 (5)C11—C161.387 (5)
N1—C61.386 (4)C12—C131.378 (6)
N1—C21.402 (5)C13—C141.374 (6)
N1—C111.441 (4)C13—H130.9300
C2—C31.490 (6)C14—C151.377 (6)
C3—C41.441 (10)C15—C161.383 (5)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.450 (7)
C4—C71.508 (10)C17—H17A0.9700
C4—C51.533 (10)C17—H17B0.9700
C4—H40.9800C18—C191.158 (7)
C5—C61.492 (5)C19—H190.9300
C5—H5A0.9700C4A—H4A0.9800
C15—O3—C17118.2 (3)F73—C7—F72102.4 (8)
C6—N1—C2124.5 (3)F71—C7—C4117.5 (7)
C6—N1—C11117.2 (3)F73—C7—C4110.1 (7)
C2—N1—C11118.1 (3)F72—C7—C4107.5 (6)
O1—C2—N1120.3 (3)C12—C11—C16119.0 (3)
O1—C2—C3122.3 (4)C12—C11—N1119.4 (3)
N1—C2—C3117.4 (3)C16—C11—N1121.5 (3)
C4—C3—C2119.0 (5)C11—C12—F1118.4 (3)
C4—C3—H3A107.6C11—C12—C13122.4 (4)
C2—C3—H3A107.6F1—C12—C13119.2 (4)
C4—C3—H3B107.6C14—C13—C12118.0 (4)
C2—C3—H3B107.6C14—C13—H13121.0
H3A—C3—H3B107.0C12—C13—H13121.0
C3—C4—C7113.9 (7)C13—C14—C15121.1 (3)
C3—C4—C5112.0 (6)C13—C14—Cl1118.2 (3)
C7—C4—C5108.8 (7)C15—C14—Cl1120.7 (3)
C3—C4—H4107.3O3—C15—C14116.0 (3)
C7—C4—H4107.3O3—C15—C16124.3 (4)
C5—C4—H4107.3C14—C15—C16119.7 (4)
C6—C5—C4117.1 (4)C15—C16—C11119.7 (3)
C6—C5—H5A108.0C15—C16—H16120.1
C4—C5—H5A108.0C11—C16—H16120.1
C6—C5—H5B108.0O3—C17—C18112.8 (3)
C4—C5—H5B108.0O3—C17—H17A109.0
H5A—C5—H5B107.3C18—C17—H17A109.0
O2—C6—N1120.2 (3)O3—C17—H17B109.0
O2—C6—C5121.8 (3)C18—C17—H17B109.0
N1—C6—C5118.0 (3)H17A—C17—H17B107.8
F71—C7—F73110.5 (8)C19—C18—C17178.3 (5)
F71—C7—F72107.7 (7)C18—C19—H19180.0
C6—N1—C2—O1175.9 (4)C2—N1—C11—C1285.8 (4)
C11—N1—C2—O12.2 (6)C6—N1—C11—C1689.0 (4)
C6—N1—C2—C34.3 (6)C2—N1—C11—C1696.9 (4)
C11—N1—C2—C3177.9 (4)C16—C11—C12—F1177.5 (3)
O1—C2—C3—C4156.6 (6)N1—C11—C12—F10.2 (5)
N1—C2—C3—C423.5 (8)C16—C11—C12—C131.0 (5)
C2—C3—C4—C7162.8 (6)N1—C11—C12—C13178.4 (3)
C2—C3—C4—C538.8 (9)C11—C12—C13—C140.0 (6)
C3—C4—C5—C637.1 (8)F1—C12—C13—C14178.5 (3)
C7—C4—C5—C6163.9 (5)C12—C13—C14—C151.9 (6)
C2—N1—C6—O2176.6 (4)C12—C13—C14—Cl1180.0 (3)
C11—N1—C6—O22.9 (5)C17—O3—C15—C14166.3 (3)
C2—N1—C6—C53.5 (5)C17—O3—C15—C1613.5 (5)
C11—N1—C6—C5177.2 (3)C13—C14—C15—O3177.0 (3)
C4—C5—C6—O2159.8 (5)Cl1—C14—C15—O31.1 (5)
C4—C5—C6—N120.4 (7)C13—C14—C15—C162.8 (6)
C3—C4—C7—F7161.1 (11)Cl1—C14—C15—C16179.1 (3)
C5—C4—C7—F7164.6 (11)O3—C15—C16—C11178.0 (3)
C3—C4—C7—F73171.3 (10)C14—C15—C16—C111.8 (5)
C5—C4—C7—F7363.1 (11)C12—C11—C16—C150.1 (5)
C3—C4—C7—F7260.5 (9)N1—C11—C16—C15177.4 (3)
C5—C4—C7—F72173.9 (7)C15—O3—C17—C1884.3 (4)
C6—N1—C11—C1288.3 (4)O3—C17—C18—C19120 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.493.287 (7)143
C17—H17B···O2ii0.972.523.359 (4)145
C4—H4···O1iii0.982.333.175 (10)144
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2; (iii) x+1, y+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H9ClF3NO5C14H10ClF3N2O4C15H10ClF4NO3
Mr375.68362.69363.69
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nOrthorhombic, Pca21
Temperature (K)293293293
a, b, c (Å)19.280 (5), 9.715 (3), 18.050 (5)14.326 (13), 7.802 (7), 14.337 (13)22.887 (9), 7.250 (3), 9.497 (4)
α, β, γ (°)90, 109.509 (5), 9090, 110.599 (15), 9090, 90, 90
V3)3186.8 (15)1500 (2)1575.7 (11)
Z844
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.300.310.30
Crystal size (mm)0.44 × 0.36 × 0.260.26 × 0.22 × 0.160.40 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.853, 0.9250.806, 1.0000.853, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
16078, 5616, 2057 7542, 2646, 2007 7730, 2725, 2022
Rint0.0870.0220.053
(sin θ/λ)max1)0.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 0.87 0.039, 0.115, 1.10 0.047, 0.124, 1.05
No. of reflections561626462725
No. of parameters475220253
No. of restraints1801
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.210.26, 0.340.19, 0.18
Absolute structure??Flack (1983), with how many Friedel pairs
Absolute structure parameter??0.05 (12)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2A0.932.473.359 (5)159
C16A—H16A···O20.932.513.373 (5)155
C6—H6···O5i0.932.703.323 (6)125
C6A—H6A···O5Aii0.932.563.389 (6)149
C5—H5···O2iii0.932.603.511 (6)167
C5A—H5A···O2Aiv0.932.743.578 (6)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.513.427 (4)169
C16—H16···O3ii0.932.473.260 (4)143
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.493.287 (7)143
C17—H17B···O2ii0.972.523.359 (4)145
C4—H4···O1iii0.982.333.175 (10)144
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2; (iii) x+1, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds