Download citation
Download citation
link to html
The title compound, tris­[(R)-2-hydroxy­propan­amide-κ2O,O′]­zinc(II) tetra­bromo­zincate, [Zn(C3H7NO2)3][ZnBr4], contains one monomeric six-coordinate zinc complex cation and one tetrahedral [ZnBr4]2− anion. Both ZnII atoms lie on threefold axes. Coordination in the cation occurs via the amide and hydroxy O atoms [Zn—O = 2.074 (5) and 2.073 (6) Å] and has a distorted octahedral geometry, with cis-O—Zn—O angles in the range 76.2 (2)–109.2 (2)°. In the crystal structure, the cations and anions are linked by N—H...Br and O—H...O hydrogen bonds, generating a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104032512/fg1801sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032512/fg1801Isup2.hkl
Contains datablock I

CCDC reference: 264782

Comment top

Metal-containing proteins have been studied in relation to severe diseases. Alzheimer's and mad cow diseases imply metal–protein interactions. Metalloproteases are implied in cancer dispersion and angiotensin converting enzyme (ACE) in blood pressure control. For theses reasons, amide–metal complexes have attracted much interest. Following our work on metal–amide crystalline complexes (Bekaert et al., 2002a; Bekaert et al., 2002b; Bekaert et al., 2003), we now report a new zinc complex< (I), with 2-hydroxypropanamide (lactamide).

Compound (I) (Fig. 1) contains one monomeric six-coordinate zinc complex cation, [Zn(C3H7NO2)3]2+, and one tetrahedral [ZnBr4]2− anion. In both the cation and the anion, the Zn atoms lie on threefold axes in space group P63. In the cation, the Zn atom is surrounded by three symmetry-related R-lactamide ligands, coordinated in a bidentate fashion via amide atom O1 and hydroxy atom O2, and their symmetry equivalents. The Zn coordination may be described as distorted octahedral. The O1—Zn1—O1* angles [* is either at (1 − x + y, 2 − x,z) or (2 − y,1 + x-y,z)] are 91.6 (2)°, while the O2—Zn1—O2* angles are 88.1 (2)°. The Zn1(O1)3 and Zn1(O2)3 moieties are rotated about the threefold axis, some 31° from a fully eclipsed conformation, and the three symmetry-related trans O—Zn—O angles are 156.0 (2)°. The two Zn—O distances (Table 1) are not significantly different and are in agreement with those reported in the literature. Among the rare crystal structures of the metal complexes with lactamide or its derivatives, described in the literature, two coordination modes are possible, viz. N,O-coordination in [copper(II)-(N-pyridin-2-ylmethyl)chlorolactamide] monohydrate? (Tounsi et al., 2004) and O,O-coordination for the lactamide moiety in molybdenum(VI)oxodiperoxo N,N-dimethyllactamide (Winter et al., 1980); this latter structure is similar to that of (I), with the same geometry for the lactamide entity.

In the crystal structure the individual cation complexes are linked into chains running parallel to the c axis by inter-ion N—H···O hydrogen bonds (Table 2 and Fig. 2). Such chains are cross-linked by the use of the O2 hydroxy group forming inter-cation O—H···O hydrogen bonds with amide atom O1. The fact that both Zn1 and Zn2 lie on threefold axes in space group P63 then leads to a three-dimensional hydrogen-bonded network.

Experimental top

Compound (I) was prepared by mixing a solution of R-lactamide (0.272 g, 3 mmol) in hot acetic acid (5 ml, 353 K) and a solution of ZnBr2 (0.496 g, 2 mmol) in boiling acetic acid (10 ml). Upon slow cooling, crystals of (I) were recovered.

Refinement top

C– and N-bound H atoms were placed in calculated positions, with C—H distances of 0.96 or 0.98 Å, N—H distances of 0.86 Å and Uiso(H) values of 1.2Ueq(C,N), and were refined in the riding-model approximation. Coordinates for hydroxy atom H2 were located in a difference map and then allowed for as riding, with a Uiso(H) value of 1.2Ueq(O). The absolute configuration of (I) was known from the synthesis route and the Flack value [0.06 (6)] is entirely in agreement with the known configuration.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atomic numbering. Displacement ellipsoids are shown at the 50% probability level for non-H atoms. The additional letters `a', `b', `c' and `d' in the atom labels denote atoms at equivalent positions (1 − y,1 + x-y,z), (-x + y,1 − x,z), (2 − y,1 + x-y,z) and (1 − x + y,2 − x,z), respectively.
[Figure 2] Fig. 2. A view showing part of the N—H···O and O—H···O hydrogen-bond network in the title compound. Displacement ellipsoids are shown at the 30% probability level for non-H atoms. The atoms in the Zn2—Br2 bond lie along the z direction, with coordinates (1/3, 2/3, z). The additional letters in the atom labels denote atoms at the following equivalent positions: a (1 − y,1 + x-y,z), b (-x + y,1 − x,z), e = f (1 − x,2 − y,-1/2 + z), g = h (x,y,-1 + z), k (1 + x-y,x,-1/2 + z), l (1 + x-y,x,1/2 + z).
Tris[(R)-2-hydroxypropanamide-κ2O,O']zinc(II) tetrabromozincate top
Crystal data top
[Zn(C3H7NO2)3][ZnBr4]Dx = 2.161 Mg m3
Dm = 2.14 (2) Mg m3
Dm measured by flotation (CCl4 / C2H4Br2)
Mr = 717.67Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 25 reflections
Hall symbol: P 6cθ = 7.5–13.6°
a = 11.337 (5) ŵ = 9.45 mm1
c = 9.910 (5) ÅT = 293 K
V = 1103.1 (9) Å3Parallelepiped, colourless
Z = 20.30 × 0.20 × 0.15 mm
F(000) = 688
Data collection top
Enraf–Nonius CAD-4
diffractometer
818 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.130
Graphite monochromatorθmax = 30.0°, θmin = 3.6°
ω – 2θ scansh = 1515
Absorption correction: empirical (using intensity measurements)
multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
k = 1515
Tmin = 0.131, Tmax = 0.284l = 013
6629 measured reflections3 standard reflections every 60 min
1109 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.1638P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1109 reflectionsΔρmax = 0.66 e Å3
75 parametersΔρmin = 0.70 e Å3
1 restraintAbsolute structure: Flack (1983), No. of Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
[Zn(C3H7NO2)3][ZnBr4]Z = 2
Mr = 717.67Mo Kα radiation
Hexagonal, P63µ = 9.45 mm1
a = 11.337 (5) ÅT = 293 K
c = 9.910 (5) Å0.30 × 0.20 × 0.15 mm
V = 1103.1 (9) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
818 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
Rint = 0.130
Tmin = 0.131, Tmax = 0.2843 standard reflections every 60 min
6629 measured reflections intensity decay: 1%
1109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.66 e Å3
S = 1.02Δρmin = 0.70 e Å3
1109 reflectionsAbsolute structure: Flack (1983), No. of Friedel pairs?
75 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00001.00000.00000 (15)0.0286 (3)
O10.8802 (5)1.0503 (5)0.1175 (6)0.0312 (12)
O20.8371 (5)0.9595 (7)0.1247 (7)0.0415 (15)
H20.82690.94050.21350.050*
N10.6730 (7)1.0320 (8)0.1394 (9)0.049 (2)
H1A0.68501.04930.22430.059*
H1B0.59831.01680.10160.059*
C10.7684 (8)1.0288 (8)0.0673 (9)0.0305 (18)
C20.7424 (8)1.0003 (9)0.0816 (8)0.0298 (18)
H200.64910.92570.09590.036*
C30.7623 (11)1.1273 (10)0.1519 (11)0.055 (3)
H3A0.74971.11090.24730.083*
H3B0.69711.15060.11840.083*
H3C0.85271.20100.13480.083*
Br10.36350 (9)0.88266 (8)0.03123 (12)0.0423 (2)
Br20.33330.66670.35162 (19)0.0587 (5)
Zn20.33330.66670.11173 (19)0.0380 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0318 (4)0.0318 (4)0.0222 (7)0.0159 (2)0.0000.000
O10.036 (3)0.037 (3)0.022 (2)0.020 (3)0.006 (2)0.006 (2)
O20.035 (3)0.069 (4)0.026 (3)0.030 (3)0.004 (2)0.016 (3)
N10.052 (5)0.082 (6)0.036 (4)0.050 (5)0.006 (3)0.010 (4)
C10.029 (4)0.027 (4)0.038 (5)0.017 (4)0.002 (4)0.004 (3)
C20.026 (4)0.040 (5)0.018 (3)0.012 (4)0.006 (3)0.002 (3)
C30.071 (7)0.066 (7)0.042 (6)0.044 (6)0.000 (5)0.009 (5)
Br10.0423 (5)0.0392 (5)0.0466 (5)0.0214 (4)0.0062 (4)0.0055 (4)
Br20.0689 (8)0.0689 (8)0.0383 (9)0.0345 (4)0.0000.000
Zn20.0354 (6)0.0354 (6)0.0430 (10)0.0177 (3)0.0000.000
Geometric parameters (Å, º) top
Zn1—O2i2.073 (6)N1—H1B0.86
Zn1—O22.073 (6)C1—C21.507 (11)
Zn1—O2ii2.073 (6)C2—C31.511 (12)
Zn1—O1ii2.074 (5)C2—H200.98
Zn1—O12.074 (5)C3—H3A0.96
Zn1—O1i2.074 (5)C3—H3B0.96
O1—C11.266 (9)C3—H3C0.96
O2—C21.431 (9)Br1—Zn22.4315 (15)
O2—H20.90Br2—Zn22.377 (3)
N1—C11.312 (10)Zn2—Br1iii2.4315 (15)
N1—H1A0.86Zn2—Br1iv2.4315 (15)
O2i—Zn1—O288.1 (2)O1—C1—N1122.7 (7)
O2i—Zn1—O2ii88.1 (2)O1—C1—C2119.7 (7)
O2—Zn1—O2ii88.1 (2)N1—C1—C2117.6 (7)
O2i—Zn1—O1ii156.0 (2)O2—C2—C1105.3 (6)
O2—Zn1—O1ii109.2 (2)O2—C2—C3113.1 (7)
O2ii—Zn1—O1ii76.2 (2)C1—C2—C3109.1 (7)
O2i—Zn1—O1109.2 (2)O2—C2—H20109.7
O2—Zn1—O176.2 (2)C1—C2—H20109.7
O2ii—Zn1—O1156.0 (2)C3—C2—H20109.7
O1ii—Zn1—O191.6 (2)C2—C3—H3A109.5
O2i—Zn1—O1i76.2 (2)C2—C3—H3B109.5
O2—Zn1—O1i156.0 (2)H3A—C3—H3B109.5
O2ii—Zn1—O1i109.2 (2)C2—C3—H3C109.5
O1ii—Zn1—O1i91.6 (2)H3A—C3—H3C109.5
O1—Zn1—O1i91.6 (2)H3B—C3—H3C109.5
C1—O1—Zn1117.1 (5)Br2—Zn2—Br1109.15 (6)
C2—O2—Zn1118.7 (4)Br2—Zn2—Br1iii109.15 (6)
C2—O2—H2110.0Br1—Zn2—Br1iii109.79 (6)
Zn1—O2—H2129.1Br2—Zn2—Br1iv109.15 (6)
C1—N1—H1A120.0Br1—Zn2—Br1iv109.79 (6)
C1—N1—H1B120.0Br1iii—Zn2—Br1iv109.79 (6)
H1A—N1—H1B120.0
O2i—Zn1—O1—C186.4 (6)O1i—Zn1—O2—C253.0 (9)
O2—Zn1—O1—C13.3 (6)Zn1—O1—C1—N1166.9 (7)
O2ii—Zn1—O1—C147.5 (9)Zn1—O1—C1—C214.2 (9)
O1ii—Zn1—O1—C1106.0 (7)Zn1—O2—C2—C115.9 (8)
O1i—Zn1—O1—C1162.4 (6)Zn1—O2—C2—C3103.2 (7)
O2i—Zn1—O2—C2101.9 (7)O1—C1—C2—O219.2 (10)
O2ii—Zn1—O2—C2169.9 (6)N1—C1—C2—O2161.8 (7)
O1ii—Zn1—O2—C295.1 (6)O1—C1—C2—C3102.4 (9)
O1—Zn1—O2—C28.3 (6)N1—C1—C2—C376.5 (10)
Symmetry codes: (i) x+y+1, x+2, z; (ii) y+2, xy+1, z; (iii) y+1, xy+1, z; (iv) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1v0.901.822.696 (8)166
N1—H1A···Br1vi0.862.683.487 (8)157
N1—H1B···Br10.862.663.478 (8)158
Symmetry codes: (v) xy+1, x, z+1/2; (vi) x+1, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C3H7NO2)3][ZnBr4]
Mr717.67
Crystal system, space groupHexagonal, P63
Temperature (K)293
a, c (Å)11.337 (5), 9.910 (5)
V3)1103.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)9.45
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.131, 0.284
No. of measured, independent and
observed [I > 2σ(I)] reflections
6629, 1109, 818
Rint0.130
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.088, 1.02
No. of reflections1109
No. of parameters75
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.70
Absolute structureFlack (1983), No. of Friedel pairs?
Absolute structure parameter0.06 (6)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—O22.073 (6)Br1—Zn22.4315 (15)
Zn1—O12.074 (5)Br2—Zn22.377 (3)
N1—C11.312 (10)
O2—Zn1—O2i88.1 (2)C2—O2—Zn1118.7 (4)
O2i—Zn1—O1156.0 (2)Br2—Zn2—Br1109.15 (6)
O1—Zn1—O1ii91.6 (2)Br1—Zn2—Br1iii109.79 (6)
C1—O1—Zn1117.1 (5)
Symmetry codes: (i) y+2, xy+1, z; (ii) x+y+1, x+2, z; (iii) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1iv0.901.822.696 (8)166
N1—H1A···Br1v0.862.683.487 (8)157
N1—H1B···Br10.862.663.478 (8)158
Symmetry codes: (iv) xy+1, x, z+1/2; (v) x+1, y+2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds