Download citation
Download citation
link to html
The title one-dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6-oxo-1,6-dihydro­pyridine-2-carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight- and 14-membered rings and, in conjunction with an a-axis translation, leads to an infinite chain extending along [100]. The Mn...Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans-axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14-membered ring is stabilized by pairs of inversion-related N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105002684/fg1797sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105002684/fg1797Isup2.hkl
Contains datablock I

CCDC reference: 268086

Comment top

Manganese is a special metal with a number of oxidation states (II–IV) under normal conditions, which results in many properties in naturally occurring processes and in magnetism, such as the photosynthetic water-oxidizing complex (WOC) of green plants and cyanobacteria containing an Mn4 unit (Law et al., 1998; Yocum et al., 1999), and the single-molecule magnets represented by Mn12 complexes, with slow-relaxation magnetization and quantum tunnelling of magnetization (Sessoli et al., 1993; Thomas et al., 1996). Carboxylate bridges, which are a common feature of these complexes, are interesting ligands, both because of their ability to assume a large range of coordination modes and because of their biological relevance (Christou et al., 1989; Wieghardt, 1989; Rardin et al., 1991; Akhriff et al., 1999). Low-dimensional extended structures (one-dimensional, chain-like) have attracted particular interest due to their specific structural features and unusual nonlinear optical and magnetic properties (Chen et al., 1993; Cox et al., 1998; Monfort et al., 2000; Matouzenko et al., 2003). 2-Pyridone derivatives have been extensively studied since they cause base mispairing and enzymatic reactions related to bifunctional catalysis (Beak et al., 1976), which show excellent pharmacodynamic properties, justifying the view that this is a very promising new class of totally synthetic antibacterial agents (Li et al., 2000). In contrast with organic compounds with 2-pyridone, a few structures are known of coordination complexes with 2-pyridone ligands. Although 2-oxo-1,2-dihydropyridine-6-carboxylic acid (HpicOH) is a simple 2-pyridone derivative, only three dimer complexes have been reported to date, which coordinate to Re2+ (Chattopadhyay et al., 2003), Gd3+ (Soares-Santos et al., 2003), and Mn3+ ions (Bian et al., 2004). Here, we report the title novel one-dimensional chain MnII polymer complex, [MnCl(py)2(HpicO)]n, (I).

The asymmetric unit of (I) contains one [MnClPy2(HPicO)] moiety (Fig. 1). Each (HpicO) ligand acts in a tridentate manner via the two carboxylate O atoms and the pyridone O atom. Operation of the inversion centres at (1/2,0,0) and (0,0,0) generates eight- and 14-membered rings and, in conjunction with an a-axis translation, leads to an infinite chain extending along [100]. The intra-ring Mn···Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The unique MnII atom (Fig. 1) has distorted octahedral coordination, with trans-axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane (see Table 1 for selected geometric details). The conformation of the 14-membered ring is stabilized by pairs of inversion related N—H···O hydrogen bonds (Table 2).

In the crystal structure of (I), surprisingly, there are no significant ππ interactions, but the [100] chains are linked to form sheets in the (001) plane by a series of inversion related C—H···Cl contacts (Table 2) centred about inversion centres at (0,1/2,0), (1/2,1/2,0), (1,1/2,0) etc., as shown in Fig. 2.

The observed temperature dependence of the magnetic susceptibility showed a monotonic increase of χMT from 2 K to 300 K, indicating antiferromagnetic interaction between MnII ions. Although the magetic properties of the above-mentioned double-chain compound should be analyzed using the alternating chain model (Fisher, 1964), we could not obtain a quantitative analysis due to inevitable contamination of (I) with impurities.

Experimental top

To a solution of MnCl2·2H2O (65.0 mg, 0.4 mol) in pyridine (10 ml) was added HpicOH (55.8 mg, 0.4 mmol). The green–brown solution was stirred for 6 or 7 h and hexane was added slowly. Colourless block crystals of (I) suitable for X-ray analysis were obtained after two weeks. Selected IR data (KBr pellet, ν, cm−1): 3337 (b), 3104 (w), 3061 (m), 3039 (w), 3002 (m), 1602 (s), 1490 (m), 1446 (s), 1364 (w), 1221 (m), 1154 (w), 1081 (m), 1038 (m), 1008 (m), 754 (s), 694 (s), 629 (m), 421 (m).

Refinement top

All H atoms were clearly revealed in difference maps and were subsequently allowed for in the correct sites as riding atoms in the final refinement cycles, with C—H = 0.95 and N—H = 0.83 Å, and with Uiso(H) = 1.2Ueq(C,N). Please check added text.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Bruno et al., 2002) Please check; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. The molecular structure of (I), with the atom-numbering scheme, showing 50% probability displacement ellipsoids together with the N1—H1···O3 hydrogen bonds. For clarity, the pyridine ligands are not shown. [Symmetry codes: (i) 1 − x, −y, −z; (ii) 1 + x, y, z; (iii) −x, −y, −z; (iv) x − 1, y, z.]

Fig. 2. The two-dimensional molecular packing in (I), via C—H···Cl contacts between chains. [Symmetry code: (i) −x, −y, −z; (ii) 1 − x, 1 − y, −z.]
catena-Poly[[chlorodipyridinemanganese(II)]-µ3-6-oxo-1,6-dihydropyridine- 2-carboxylato] top
Crystal data top
[Mn(C6H4NO3)Cl(C6H5N)2]F(000) = 788.0
Mr = 386.70Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 5361 reflections
a = 9.9034 (10) Åθ = 3.2–27.5°
b = 10.9374 (9) ŵ = 0.93 mm1
c = 16.408 (2) ÅT = 150 K
β = 102.252 (5)°Prism, colourless
V = 1736.7 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
3530 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1212
Tmin = 0.823, Tmax = 0.911k = 1314
13156 measured reflectionsl = 2119
3925 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.9672P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.030(Δ/σ)max < 0.001
wR(F2) = 0.062Δρmax = 0.33 e Å3
S = 1.10Δρmin = 0.23 e Å3
3530 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
217 parametersExtinction coefficient: 0.0000
H-atom parameters constrained
Crystal data top
[Mn(C6H4NO3)Cl(C6H5N)2]V = 1736.7 (3) Å3
Mr = 386.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9034 (10) ŵ = 0.93 mm1
b = 10.9374 (9) ÅT = 150 K
c = 16.408 (2) Å0.20 × 0.10 × 0.10 mm
β = 102.252 (5)°
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3530 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.911Rint = 0.023
13156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030217 parameters
wR(F2) = 0.062H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
3530 reflectionsΔρmin = 0.23 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.69299 (2)0.15917 (2)0.023240 (10)0.01218 (7)
Cl10.77101 (4)0.34465 (3)0.10361 (2)0.01978 (9)
O10.48792 (10)0.18038 (9)0.04645 (7)0.0173 (2)
O20.36522 (10)0.00894 (9)0.05040 (6)0.0157 (2)
O30.10940 (10)0.12216 (9)0.01573 (7)0.0178 (2)
N10.12458 (12)0.13502 (10)0.01106 (8)0.0137 (2)
N20.61953 (13)0.26612 (12)0.09599 (8)0.0167 (3)
N30.77430 (13)0.03583 (12)0.13481 (8)0.0183 (3)
C10.00259 (15)0.18776 (13)0.01270 (9)0.0152 (3)
C20.00461 (16)0.31430 (14)0.03299 (11)0.0211 (3)
C30.11562 (17)0.37752 (14)0.02642 (12)0.0252 (4)
C40.24421 (16)0.31832 (14)0.00044 (11)0.0216 (3)
C50.24649 (15)0.19677 (13)0.01734 (9)0.0147 (3)
C60.37773 (14)0.12171 (13)0.03997 (9)0.0135 (3)
C70.54786 (17)0.36959 (14)0.09311 (10)0.0202 (3)
C80.48926 (18)0.43673 (15)0.16341 (11)0.0260 (4)
C90.50764 (19)0.39582 (16)0.24014 (10)0.0278 (4)
C100.58356 (19)0.29058 (16)0.24416 (10)0.0265 (4)
C110.63741 (17)0.22879 (14)0.17102 (10)0.0209 (3)
C120.70418 (17)0.05803 (15)0.15701 (10)0.0226 (3)
C130.7566 (3)0.13315 (18)0.22421 (13)0.0380 (5)
C140.8872 (3)0.1099 (2)0.27066 (13)0.0446 (5)
C150.9611 (2)0.0135 (2)0.24830 (13)0.0413 (5)
C160.90128 (18)0.05706 (17)0.18069 (11)0.0302 (4)
H10.12820.06100.02240.0164*
H20.09050.35500.05120.0253*
H30.11310.46200.04000.0303*
H40.32800.36300.00660.0259*
H70.53670.39830.04030.0242*
H80.43790.50890.15900.0312*
H90.46850.43950.28960.0333*
H100.59830.26140.29610.0318*
H110.68950.15660.17390.0251*
H120.61400.07420.12520.0271*
H130.70360.19940.23800.0455*
H140.92550.15960.31730.0535*
H151.05170.00410.27890.0496*
H160.95240.12390.16580.0362*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00876 (11)0.01180 (11)0.01539 (11)0.00045 (8)0.00124 (8)0.00075 (8)
Cl10.01956 (18)0.01620 (18)0.02256 (19)0.00576 (14)0.0022 (1)0.0031 (1)
O10.0097 (5)0.0183 (5)0.0241 (6)0.0036 (4)0.0039 (4)0.0035 (5)
O20.0134 (5)0.0137 (6)0.0190 (6)0.0008 (4)0.0014 (4)0.0008 (4)
O30.0094 (5)0.0124 (5)0.0322 (7)0.0006 (4)0.0059 (5)0.0014 (5)
N10.0113 (6)0.0087 (6)0.0216 (7)0.0007 (5)0.0047 (5)0.0012 (5)
N20.0165 (6)0.0169 (7)0.0173 (7)0.0010 (5)0.0049 (5)0.0025 (5)
N30.0169 (7)0.0169 (7)0.0194 (7)0.0013 (6)0.0001 (5)0.0014 (5)
C10.0111 (7)0.0139 (8)0.0216 (8)0.0002 (6)0.0056 (6)0.0000 (6)
C20.0139 (8)0.0147 (8)0.0359 (10)0.0030 (6)0.0078 (7)0.0048 (7)
C30.0218 (8)0.0110 (8)0.0457 (11)0.0001 (7)0.0135 (8)0.0036 (7)
C40.0142 (7)0.0153 (8)0.0371 (10)0.0044 (6)0.0097 (7)0.0018 (7)
C50.0106 (7)0.0153 (7)0.0190 (8)0.0020 (6)0.0048 (6)0.0032 (6)
C60.0118 (7)0.0161 (8)0.0127 (7)0.0011 (6)0.0031 (6)0.0030 (6)
C70.0224 (8)0.0201 (8)0.0199 (8)0.0037 (7)0.0085 (7)0.0012 (6)
C80.0277 (9)0.0214 (9)0.0292 (9)0.0084 (7)0.0069 (8)0.0072 (7)
C90.0318 (10)0.0292 (10)0.0213 (9)0.0018 (8)0.0032 (7)0.0102 (7)
C100.0363 (10)0.0274 (9)0.0175 (8)0.0018 (8)0.0095 (7)0.0012 (7)
C110.0234 (8)0.0192 (8)0.0220 (8)0.0020 (7)0.0088 (7)0.0006 (7)
C120.0210 (8)0.0223 (9)0.0237 (9)0.0009 (7)0.0033 (7)0.0012 (7)
C130.0402 (11)0.0305 (11)0.0405 (12)0.0042 (9)0.0025 (9)0.0165 (9)
C140.0430 (12)0.0426 (12)0.0409 (12)0.0051 (10)0.0077 (10)0.0233 (10)
C150.0291 (10)0.0433 (12)0.0416 (11)0.0020 (9)0.0147 (9)0.0139 (10)
C160.0232 (9)0.0302 (10)0.0321 (10)0.0059 (8)0.0055 (8)0.0073 (8)
Geometric parameters (Å, º) top
Mn1—Cl12.4534 (4)C4—C51.357 (3)
Mn1—O12.1568 (11)C4—H40.950
Mn1—O2i2.2085 (10)C5—C61.515 (2)
Mn1—O3ii2.2212 (11)C7—C81.387 (3)
Mn1—N22.2629 (13)C7—H70.950
Mn1—N32.2790 (13)C8—C91.384 (3)
O1—C61.2509 (17)C8—H80.950
O2—C61.2550 (17)C9—C101.384 (3)
O3—C11.2704 (18)C9—H90.950
N1—C11.3647 (18)C10—C111.382 (3)
N1—C51.3681 (19)C10—H100.950
N1—H10.830C11—H110.950
N2—C71.342 (3)C12—C131.385 (3)
N2—C111.344 (3)C12—H120.950
N3—C121.333 (3)C13—C141.378 (3)
N3—C161.342 (2)C13—H130.950
C1—C21.423 (3)C14—C151.378 (4)
C2—C31.361 (3)C14—H140.950
C2—H20.950C15—C161.378 (3)
C3—C41.413 (3)C15—H150.950
C3—H30.950C16—H160.950
Cl1···C15iii3.5515 (19)O3···N2vii3.1495 (18)
Cl1···C3iv3.5640 (17)O3···C16vii3.280 (3)
O1···C10v3.3794 (19)O3···C11vii3.3805 (18)
O1···C9v3.564 (2)O3···O3vi3.410 (2)
O2···O3vi2.8612 (14)O3···C1vi3.5663 (17)
O2···C9v3.5817 (18)N3···C10v3.565 (3)
O3···N1vi2.8188 (15)C6···C9v3.569 (3)
O3···N3vii3.0866 (18)C9···C12viii3.343 (3)
Cl1—Mn1—O190.98 (3)N1—C5—C4119.47 (14)
Cl1—Mn1—O2i176.73 (4)N1—C5—C6116.64 (12)
Cl1—Mn1—O3ii96.27 (3)C4—C5—C6123.84 (14)
Cl1—Mn1—N292.52 (4)O1—C6—O2127.03 (13)
Cl1—Mn1—N392.32 (4)O1—C6—C5115.49 (13)
O1—Mn1—O2i92.29 (4)O2—C6—C5117.48 (13)
O1—Mn1—O3ii172.14 (4)N2—C7—C8123.26 (16)
O1—Mn1—N287.42 (5)N2—C7—H7118.4
O1—Mn1—N396.16 (5)C8—C7—H7118.4
O2i—Mn1—O3ii80.47 (4)C7—C8—C9118.22 (16)
O2i—Mn1—N287.63 (5)C7—C8—H8120.9
O2i—Mn1—N387.33 (5)C9—C8—H8120.9
O3ii—Mn1—N289.23 (5)C8—C9—C10119.33 (15)
O3ii—Mn1—N386.60 (5)C8—C9—H9120.3
N2—Mn1—N3173.93 (5)C10—C9—H9120.3
Mn1—O1—C6140.09 (10)C9—C10—C11118.60 (16)
Mn1i—O2—C6139.95 (10)C9—C10—H10120.7
Mn1vii—O3—C1131.53 (10)C11—C10—H10120.7
C1—N1—C5123.99 (12)N2—C11—C10123.05 (16)
C1—N1—H1118.0N2—C11—H11118.5
C5—N1—H1118.0C10—C11—H11118.5
Mn1—N2—C7118.74 (11)N3—C12—C13123.06 (15)
Mn1—N2—C11123.66 (11)N3—C12—H12118.5
C7—N2—C11117.51 (14)C13—C12—H12118.5
Mn1—N3—C12124.04 (10)C12—C13—C14118.71 (19)
Mn1—N3—C16118.53 (12)C12—C13—H13120.6
C12—N3—C16117.43 (14)C14—C13—H13120.6
O3—C1—N1118.86 (13)C13—C14—C15118.91 (19)
O3—C1—C2124.75 (14)C13—C14—H14120.5
N1—C1—C2116.38 (14)C15—C14—H14120.5
C1—C2—C3120.47 (14)C14—C15—C16118.74 (18)
C1—C2—H2119.8C14—C15—H15120.6
C3—C2—H2119.8C16—C15—H15120.6
C2—C3—C4120.48 (15)N3—C16—C15123.15 (18)
C2—C3—H3119.8N3—C16—H16118.4
C4—C3—H3119.8C15—C16—H16118.4
C3—C4—C5119.17 (15)C3—H3—C236.0
C3—C4—H4120.4C3—H3—Cl1iv148.7
C5—C4—H4120.4C2—H3—Cl1iv160.9
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+1/2, z+1/2; (vi) x, y, z; (vii) x1, y, z; (viii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3vi0.832.012.8188 (15)164
C3—H3···Cl1iv0.952.723.5640 (17)149
Symmetry codes: (iv) x+1, y+1, z; (vi) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C6H4NO3)Cl(C6H5N)2]
Mr386.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.9034 (10), 10.9374 (9), 16.408 (2)
β (°) 102.252 (5)
V3)1736.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.823, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
13156, 3925, 3530
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.062, 1.10
No. of reflections3530
No. of parameters217
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrystalClear (Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and Mercury (Bruno et al., 2002) Please check, TEXSAN.

Selected geometric parameters (Å, º) top
Mn1—Cl12.4534 (4)Mn1—N22.2629 (13)
Mn1—O12.1568 (11)Mn1—N32.2790 (13)
Mn1—O2i2.2085 (10)O3—C11.2704 (18)
Mn1—O3ii2.2212 (11)
Cl1—Mn1—O2i176.73 (4)N2—Mn1—N3173.93 (5)
O1—Mn1—O3ii172.14 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3iii0.832.012.8188 (15)164
C3—H3···Cl1iv0.952.723.5640 (17)149
Symmetry codes: (iii) x, y, z; (iv) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds