Download citation
Download citation
link to html
Two new two-dimensional coordination polymers, poly­[[[aqua(2,2′-bi­pyridine-κ2N,N′)manganese(II)]-μ3-p-phenyl­enebis­(oxy­acet­ato)-κ3O:O′:O′′] dihydrate], {[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2O}n, (I), and poly­[[di-μ-aqua-bis­[aqua­sodium(I)]]-μ4-p-phenyl­enebis­(oxy­acetato)-κO:O′,O′′:O′′′,O′′′′:O′′′′′], [Na2(C10H8O6)(H2O)4]n, (II), have been synthesized and characterized by X-ray single-crystal diffraction. In (I), there are two 1,4-BDOA2− [p-phenyl­enebis­(oxy­acetate) or, more commonly, benzene-1,4-dioxy­acetate] ligands, each lying about inversion centres, while in (II), there is one such ligand and it also has crystallographically imposed inversion symmetry. In (I), each MnII atom displays an octahedral MnN2O4 configuration, defined by three carboxyl O atoms of different 1,4-BDOA2− groups, two N atoms of one 2,2′-bi­pyridine ligand and one water mol­ecule. In (II), each NaI atom is octahedrally coordinated by one ether O atom, two carboxyl O atoms of different 1,4-BDOA2− ligands and three water mol­ecules. The metal ions in complexes (I) and (II) are bridged by 1,4-BDOA2− groups into two-dimensional layer structures. Furthermore, three-dimensional supramolecular networks are constructed via hydrogen bonds in (I) and (II), and by additional π–π stacking interactions in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104029531/fg1790sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104029531/fg1790Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104029531/fg1790IIsup3.hkl
Contains datablock II

CCDC references: 254348; 254351

Comment top

Molecular self-assembly of coordination architectures has been a rapidly developing research area within supramolecular chemistry in recent years (Liu et al., 2003). Ligand design is an important factor which greatly influences the structure of the coordination architecture and the functionality of the complex formed. To date, a number of metal-organic polymers with one-, two- and three-dimensional infinite frameworks have been generated (Lee et al., 2003; Gutschke et al., 2001), in which the more rigid aromatic polycarboxylic acids, such as terephthalic acid or related species, are often chosen to fabricate these complexes (Gomez-Lor et al., 2002; Bian et al., 2003).

Previous studies by our group have shown that the flexible benzene-1,4-dioxydiacetic acid (1,4-BDOAH2), an analogue of terephthalic acid, can exhibit versatile binding modes and forms a variety of topologies. In the case of the mononuclear [Mn(H2O)6](1,4-BDOA) complex, the 1,4-BDOA2− dianion functions as counter-ion (Liu et al., 2004), while in the mononuclear [Co(1,4-BDOA)(2,2'-bipy)2(H2O)]·4H2O complex (2,2'-bipy is 2,2'-bipyridine), only one of two oxyacetate groups of the 1,4-BDOA2− ligand in the monodentate mode is coordinated to the metal centre (Gao Liu Huo & Zhao, 2004).

For one-dimensional coordination polymers, the 1,4-BDOA2− dianion acts in a great variety of coordination modes, such as bidentate (Gao Liu Huo Zhao & Zhao, 2004c,d,f), tridentate (Gao Liu Huo Zhao & Zhao, 2004b,e) or tetradentate (Gao Liu Huo Zhao & Ng, 2004). In this paper, we report two novel two-dimensional coordination polymers, {[Mn(1,4-BDOA)(2,2'-bipy)(H2O)]·2H2O}n, (I), and [Na2(1,4-BDOA)(H2O)4]n, (II), and describe their crystal structures. \sch

As shown in Fig.1, the asymmetric unit of (I) is composed of one MnII atom, one 2,2'-bipy ligand, two halves of independent 1,4-BDOA2− groups lying about different inversion centres, one coordinated water molecule and two solvate water molecules. The carboxylate groups bind to each MnII atom in a monodentate fashion. Each MnII centre is coordinated by three carboxyl O atoms from different 1,4-BDOA2− groups, two N atoms from one 2,2'-bipy ligand and one water molecule, resulting in a distorted octahedral environment. The MnII atom does not deviate significantly from the equatorial plane of atoms O1/O4i/N1/N2 [displacement 0.01 (2) Å; symmetry code: (i) 1 − x, 1 − y, 1 − z]. The Mn1—O1 distance (Table 1) is slightly shorter than those of Mn1—O4 and Mn1—O4i. The 2,2'-bipy ligand connects the MnII atom to form a five-membered chelate ring, with a mean Mn—N distance of 2.28 (3) Å and an N1—Mn1—N2 bond angle of 72.14 (5)°.

It should be noted that the two C—O bond distances of the carboxyl group (O1—C11—O2) are almost equivalent, agreeing with its delocalized state, whereas the O4—C16 distance is longer than the O5—C16 distance, in accord with the formal double-bond character of the O5—C16 bond. This is also reflected by the fact that the two carboxyl groups are involved in coordination to Mn, exhibiting a monodentate-linked mode via atom O1 and a bidentate-bridged mode via atom O4. The bidentate-bridged oxyacetate group and aromatic ring are almost coplanar, with the C18—O6—C17—C16 torsion angle being 175.12 (13)°. In contrast, the monodentate-linked oxyacetate group is twisted out the aromatic ring plane, with the C13—O3—C2—C1 torsion angle being 80.0 (2)°. The 2,2'-bipy ligand is nearly perpendicular to the two phenyl rings, with dihedral angles of 88.6 (2) and 89.8 (2)°.

Fig. 2 shows the two-dimensional layer structure of (I). Two MnN2O4 octahedral units are linked by the carboxyl atoms O4 and O4i to form a binuclear unit [Mn1···Mn1i 3.588 (2) Å]. All the binuclear units are bridged by one 1,4-BDOA2− group in tetradentate mode, to produce a one-dimensional chain, with Mn1···Mn1ii 14.537 (2), Mn1···Mn1iii 13.428 (2) and Mn1i···Mn1ii 16.373 (2) Å [symmetry codes: (ii) 1 + x, y, z − 1; (iii) 2 − x, 1 − y, −z]. These infinite chains are further connected together by another 1,4-BDOA2− group in bidentate mode [Mn1···Mn1iv 11.401 (2) Å; symmetry code: (iv) 1 − x, 1 − y, −z], generating a two-dimensional architecture running in the crystallographic bc plane. In addition, the chains are connected through extensive hydrogen bonds involving the water molecules and 1,4-BDOA groups, with O···O distances in the range 2.655 (2)–2.822 (3) Å (Table 2).

There are partial face-to-face ππ stacking interactions between adjacent 2,2'-bipy ligands. The centroid···centroid separation between ring N1/C1—C5 and ring N2/C6—C10 at (2 − x, −y, 1 − z) is 3.898 (2) Å, and the shortest C···C separation is C2···C8(2 − x, −y, 1 − z) of 3.593 (3) Å. With the help of such interactions, the polymeric chains are assembled to form a three-dimensional supramolecular network.

As illustrated in Fig. 3, the asymmetric unit of (II) consists of one NaI atom, half of a 1,4-BDOA2− group lying about an inversion centre and two coordinated water molecules. The unique ether O atom of the 1,4-BDOA2− group coordinates to the NaI centre. The coordination sphere of the NaI atom has distorted octahedral geometry, the basal plane consisting of carboxyl atom O1, ether atom O3 of the 1,4-BDOA2− group and two water molecules (O1W and O2W) [r.m.s. deviation 0.04 (1) Å; deviation of Na1 from the basal plane −0.34 (2) Å], while the axial coordination sites are occupied by the carboxyl atom O2vi atom and water molecule O2Wv (see Table 3 for symmetry codes). The Na1—O1W bond distance (terminal water) (Table 3) is somewhat longer than Na1—O2W and Na—O2Wv (bridging waters) and lies within the range of the corresponding bond distances [2.365 (2)–2.485 (2) Å] in the complex [Na(1,3-BDOA)2(H2O)3][Cr(H2O)6]·(H2O)5, (III) (Gao Liu Huo Zhao & Zhao, 2004a).

The Na—Oether and Na—Ocarboxyl bond distances in (II) are shorter than the corresponding bond distances in complex (III) [Na—Oether 2.966 (2) Å, and Na—Ocarboxyl 2.381 (2) and 2.635 (2) Å]. In (III), each Na atom displays a distorted trigonal prism geometry, involving two carboxyl O atoms and one ether O atom of different oxyacetate groups and three water molecules. These differences are probably due to steric effects from the unusual coordination mode for the 1,4-BDOA2− group in (II) compared with the 1,3-BDOA2− group in (III).

In (II), the oxyacetate group combines with the NaI centre through ether atom O3 and carboxyl atom O1 to give one five-membered chelate plane (O1—C1—C2—O3—Na), and the r.m.s. deviation for the five atoms is 0.01 (2) Å. The C—O bond distances of the unique carboxyl group do not differ, in accord with the electron delocalization. The oxyacetate group and the benzene ring are essentially coplanar, with a C3—O3—C2—C1 torsion angle of 175.08 (11)°.

The 1,4-BDOA2− group in (II) serves as a rare hexadentate ligand, constructing a two-dimensional coordination polymer (Fig. 4). Two adjacent octahedral units are linked together by two H2O bridges to form a four-membered ring with an Na2O2 core. The Na1···Na1vi separation is 3.582 (2) Å [symmetry code: (vi) 1 − x, 1 − y, 1 − z]. Adjacent Na2O12 binuclear motifs are further joined by the oxyacetate groups of 1,4-BDOA2− ligands through carboxyl atom O1 and ether atom O3, to produce a one-dimensional chain along the c axis, with an Na1···Na1viii separation of 9.233 (2) Å [symmetry code: (viii) 2 − x, 1 − y, −z]; this is significantly longer than the corresponding Na···Na distance of 8.006 (3) Å in the three-dimensional Na-terephthalate polymer [Na2(C8H4O4)] (Kaduk, 2000). These chains are connected by the other carboxyl O atoms of the 1,4-BDOA ligands [Na1···Na1vii 5.914 (2) Å and Na1···Na1ix 10.301 (2) Å; symmetry codes: (vii) x, y − 1, z; (ix) 2 − x, 2 − y, z], generating a two-dimensional layer architecture in the crystallographic bc plane. These layers are stabilized by intermolecular hydrogen bonds, which are formed between the water molecules and carboxyl O atoms, with O···O distances in the range 2.757 (2)–2.938 (2) Å (Table 4), leading to the formation of a three-dimensional supramolecular network.

It is the conformational flexibility of the 1,4-BDOA2− ligand, with bidentate and tridentate bridging modes in complex (I) and a hexadentate bridging mode in complex (II), which leads to the formation of two novel two-dimensional layer complexes, with octahedral geometries for the metal ions as well as different arrangements of the whole structures.

Experimental top

Benzene-1,4-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). Complex (I) was synthesized by the addition of MnCl2·6H2O (4.68 g, 20 mmol) and 2,2'-bipy (2.12 g, 20 mmol) to a hot aqueous solution of 1,4-BDOAH2 (4.52 g, 20 mmol). The solution was allowed to evaporate at room temperature and yellow crystals of (I) were obtained after about 7 d. CHN analysis, calculated for C20H22N2O9Mn: C 49.09, H 4.53, N 5.72%; found: C 49.15, H 4.48, N 5.69%. Complex (II) was prepared by the addition of stoichiometric amounts of Ni(OAc)2·4H2O (4.96 g, 10 mmol), imidazole ((0.95 g, 10 mmol) and NaOH (0.80 g, 20 mmol) to a hot aqueous solution of 1,4-BDOAH2 (2.26 g, 10 mmol), with subsequent filtration. Colourless crystals of (II) were obtained at room temperature over several days. CH analysis, calculated for C10H16O10Na2: C 35.10, H 4.71%; found: C 35.29, H 4.63%.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C), and were refined in the riding-model approximation. Water H atoms were located in a difference map and refined with O—H distance restraints of 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 + x, y, z − 1; (iii) 2 − x, 1 − y, −z; (iv) 1 − x, 1 − y, −z].
[Figure 2] Fig. 2. The two-dimensional layer structure of (I), with the 2,2'-bipy ligand and water molecules omitted for clarity. Symmetry codes are as in Fig. 1.
[Figure 3] Fig. 3. A view of complex (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (v) x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, 1 − z; (vii) x, y − 1, z; (viii) 2 − x, 1 − y, −z; (ix) 2 − x, 2 − y, z].
[Figure 4] Fig. 4. The two-dimensional layer structure of (II). Symmetry codes are as in Fig. 3.
(I) poly[[[aqua(2,2'-bipyridine-κ2N,N')manganese(II)]- µ3-p-phenylenebis(oxyacetato)-κ3O:O':O''] dihydrate] top
Crystal data top
[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2OZ = 2
Mr = 489.34F(000) = 506
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3142 (19) ÅCell parameters from 5624 reflections
b = 10.315 (2) Åθ = 3.0–27.5°
c = 12.169 (2) ŵ = 0.66 mm1
α = 87.87 (3)°T = 293 K
β = 84.04 (3)°Prism, pale yellow
γ = 68.68 (3)°0.41 × 0.32 × 0.21 mm
V = 1083.3 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4928 independent reflections
Radiation source: fine-focus sealed tube4461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1213
Tmin = 0.773, Tmax = 0.873l = 1515
10496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.055P)2 + 0.2938P]
where P = (Fo2 + 2Fc2)/3
4928 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.41 e Å3
9 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2Oγ = 68.68 (3)°
Mr = 489.34V = 1083.3 (4) Å3
Triclinic, P1Z = 2
a = 9.3142 (19) ÅMo Kα radiation
b = 10.315 (2) ŵ = 0.66 mm1
c = 12.169 (2) ÅT = 293 K
α = 87.87 (3)°0.41 × 0.32 × 0.21 mm
β = 84.04 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4928 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4461 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.873Rint = 0.014
10496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0369 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
4928 reflectionsΔρmin = 0.17 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.61289 (2)0.33086 (2)0.444083 (17)0.03233 (9)
N10.82625 (15)0.29404 (15)0.53092 (12)0.0405 (3)
N20.82389 (16)0.19612 (15)0.33029 (11)0.0401 (3)
O10.46484 (14)0.35065 (13)0.31732 (10)0.0440 (3)
O20.42236 (19)0.15119 (15)0.32103 (12)0.0575 (3)
O30.28052 (16)0.45515 (15)0.15279 (11)0.0525 (3)
O40.56467 (12)0.55628 (11)0.41487 (8)0.0345 (2)
O50.54889 (19)0.74673 (14)0.31933 (11)0.0622 (4)
O60.76772 (14)0.61715 (12)0.16751 (9)0.0407 (3)
O1W0.59294 (14)0.12852 (13)0.49158 (10)0.0444 (3)
O2W0.7030 (3)1.0068 (3)0.00861 (19)0.0955 (6)
O3W0.4921 (3)0.9463 (2)0.16291 (15)0.0959 (7)
C10.8236 (2)0.3491 (2)0.62901 (16)0.0489 (4)
C20.9551 (2)0.3220 (2)0.68355 (18)0.0583 (5)
C31.0945 (2)0.2346 (3)0.6346 (2)0.0626 (5)
C41.1002 (2)0.1775 (2)0.53325 (19)0.0566 (5)
C50.96390 (18)0.20849 (17)0.48245 (14)0.0402 (3)
C60.96109 (18)0.14972 (17)0.37376 (14)0.0403 (3)
C71.0920 (2)0.0510 (2)0.31974 (19)0.0588 (5)
C81.0806 (3)0.0007 (2)0.2198 (2)0.0669 (6)
C90.9409 (3)0.0455 (2)0.17523 (17)0.0595 (5)
C100.8158 (2)0.1437 (2)0.23322 (15)0.0507 (4)
C110.4045 (2)0.27009 (19)0.28464 (14)0.0426 (4)
C120.2966 (2)0.3212 (2)0.19308 (17)0.0544 (5)
C130.3940 (2)0.47122 (19)0.07723 (14)0.0453 (4)
C140.3788 (2)0.6064 (2)0.05119 (16)0.0526 (4)
C150.5170 (2)0.3634 (2)0.02586 (16)0.0532 (5)
C160.60170 (18)0.62004 (16)0.33130 (12)0.0357 (3)
C170.71894 (19)0.52999 (17)0.24278 (12)0.0383 (3)
C180.88372 (17)0.55316 (16)0.08559 (11)0.0323 (3)
C190.93652 (18)0.64205 (16)0.01894 (12)0.0347 (3)
C201.05291 (18)0.58884 (16)0.06661 (12)0.0350 (3)
H1W10.541 (2)0.145 (3)0.5540 (10)0.067*
H1W20.537 (2)0.122 (3)0.4434 (13)0.067*
H2W10.651 (4)0.976 (4)0.061 (2)0.143*
H2W20.651 (4)1.014 (5)0.0487 (19)0.143*
H3W10.476 (5)1.012 (2)0.210 (2)0.144*
H3W20.533 (5)0.8689 (19)0.197 (3)0.144*
H10.72920.40830.66230.059*
H20.94890.36230.75180.070*
H31.18420.21410.66970.075*
H41.19410.11870.49880.068*
H71.18580.02040.35080.071*
H81.16700.06670.18250.080*
H90.93100.01150.10780.071*
H100.72110.17490.20330.061*
H12A0.33530.25580.13210.065*
H12B0.19510.32140.22090.065*
H140.29680.67910.08600.063*
H150.52970.27150.04280.064*
H17A0.80720.46510.27640.046*
H17B0.67230.47700.20420.046*
H190.89390.73750.03160.042*
H201.08810.64860.11100.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02757 (13)0.03551 (14)0.02905 (13)0.00632 (9)0.00037 (8)0.00153 (9)
N10.0288 (6)0.0424 (7)0.0439 (7)0.0047 (5)0.0031 (5)0.0055 (6)
N20.0364 (7)0.0425 (7)0.0365 (7)0.0102 (6)0.0048 (5)0.0034 (5)
O10.0461 (7)0.0440 (6)0.0426 (6)0.0144 (5)0.0149 (5)0.0007 (5)
O20.0751 (10)0.0545 (8)0.0528 (8)0.0327 (7)0.0176 (7)0.0078 (6)
O30.0505 (7)0.0559 (8)0.0460 (7)0.0116 (6)0.0127 (6)0.0036 (6)
O40.0339 (5)0.0370 (5)0.0279 (5)0.0099 (4)0.0070 (4)0.0010 (4)
O50.0787 (10)0.0398 (7)0.0449 (7)0.0034 (7)0.0277 (7)0.0046 (5)
O60.0438 (6)0.0398 (6)0.0328 (5)0.0134 (5)0.0164 (5)0.0027 (4)
O1W0.0464 (7)0.0424 (6)0.0369 (6)0.0092 (5)0.0034 (5)0.0004 (5)
O2W0.1036 (16)0.0904 (14)0.0889 (14)0.0311 (13)0.0082 (12)0.0017 (12)
O3W0.161 (2)0.0600 (10)0.0558 (9)0.0270 (13)0.0161 (12)0.0123 (8)
C10.0366 (8)0.0530 (10)0.0489 (9)0.0051 (8)0.0057 (7)0.0122 (8)
C20.0466 (10)0.0673 (13)0.0571 (11)0.0123 (9)0.0142 (9)0.0137 (9)
C30.0386 (10)0.0749 (14)0.0726 (14)0.0143 (9)0.0175 (9)0.0090 (11)
C40.0280 (8)0.0620 (12)0.0721 (13)0.0065 (8)0.0035 (8)0.0105 (10)
C50.0286 (7)0.0387 (8)0.0488 (9)0.0080 (6)0.0015 (6)0.0029 (7)
C60.0306 (7)0.0383 (8)0.0477 (9)0.0097 (6)0.0071 (6)0.0033 (7)
C70.0363 (9)0.0583 (12)0.0721 (13)0.0077 (8)0.0098 (9)0.0196 (10)
C80.0514 (12)0.0641 (13)0.0740 (14)0.0126 (10)0.0233 (10)0.0278 (11)
C90.0660 (13)0.0629 (12)0.0461 (10)0.0231 (10)0.0153 (9)0.0186 (9)
C100.0498 (10)0.0593 (11)0.0381 (8)0.0156 (9)0.0040 (7)0.0063 (8)
C110.0405 (8)0.0499 (9)0.0362 (8)0.0148 (7)0.0035 (6)0.0024 (7)
C120.0536 (11)0.0631 (12)0.0521 (10)0.0247 (10)0.0186 (9)0.0051 (9)
C130.0476 (9)0.0470 (9)0.0371 (8)0.0088 (8)0.0157 (7)0.0023 (7)
C140.0534 (10)0.0436 (9)0.0502 (10)0.0033 (8)0.0076 (8)0.0075 (8)
C150.0611 (12)0.0390 (9)0.0532 (10)0.0087 (8)0.0122 (9)0.0030 (8)
C160.0324 (7)0.0406 (8)0.0296 (7)0.0100 (6)0.0055 (6)0.0014 (6)
C170.0399 (8)0.0392 (8)0.0311 (7)0.0128 (7)0.0113 (6)0.0008 (6)
C180.0303 (7)0.0426 (8)0.0230 (6)0.0133 (6)0.0032 (5)0.0019 (5)
C190.0361 (7)0.0358 (7)0.0299 (7)0.0122 (6)0.0043 (6)0.0025 (6)
C200.0367 (8)0.0402 (8)0.0282 (6)0.0167 (6)0.0060 (6)0.0010 (6)
Geometric parameters (Å, º) top
Mn1—N12.2511 (15)C3—H30.9300
Mn1—N22.3031 (17)C4—C51.396 (2)
Mn1—O12.1298 (13)C4—H40.9300
Mn1—O42.2241 (12)C5—C61.482 (2)
Mn1—O4i2.2794 (14)C6—C71.391 (2)
Mn1—O1W2.2124 (14)C7—C81.376 (3)
O1—C111.255 (2)C7—H70.9300
O2—C111.247 (2)C8—C91.375 (3)
O4—C161.2760 (18)C8—H80.9300
O5—C161.227 (2)C9—C101.381 (3)
N1—C11.335 (2)C9—H90.9300
N1—C51.353 (2)C10—H100.9300
N2—C61.349 (2)C11—C121.528 (2)
N2—C101.338 (2)C12—H12A0.9700
O3—C121.409 (3)C12—H12B0.9700
O3—C131.380 (2)C13—C141.378 (3)
O4—Mn1i2.2794 (14)C13—C151.384 (3)
O6—C171.4153 (18)C14—C15ii1.388 (3)
O6—C181.3798 (18)C14—H140.9300
O1W—H1W10.843 (9)C15—C14ii1.388 (3)
O1W—H1W10.84 (3)C15—H150.9300
O1W—H1W20.85 (3)C16—C171.519 (2)
O2W—H2W10.88 (3)C17—H17A0.9700
O2W—H2W20.88 (3)C17—H17B0.9700
O3W—H3W10.86 (3)C18—C191.389 (2)
O3W—H3W20.86 (3)C18—C20iii1.384 (2)
C1—C21.387 (3)C19—C201.391 (2)
C1—H10.9300C19—H190.9300
C2—C31.372 (3)C20—C18iii1.384 (2)
C2—H20.9300C20—H200.9300
C3—C41.374 (3)
N1—Mn1—N272.14 (5)C3—C4—C5119.40 (17)
N1—Mn1—O4i97.29 (5)C3—C4—H4120.3
O1—Mn1—N1161.61 (5)C4—C3—H3120.3
O1—Mn1—N290.73 (5)C4—C5—C6122.37 (15)
O1—Mn1—O484.79 (5)C5—N1—Mn1118.18 (11)
O1—Mn1—O4i100.33 (5)C5—C4—H4120.3
O1—Mn1—O1W89.49 (6)C6—N2—Mn1116.34 (11)
O4—Mn1—N194.99 (6)C6—C7—H7120.5
O4—Mn1—N2111.09 (5)C7—C6—C5122.10 (17)
O4i—Mn1—N2168.19 (5)C7—C8—H8120.2
O4—Mn1—O4i74.38 (5)C8—C7—C6119.1 (2)
O1W—Mn1—N195.06 (6)C8—C7—H7120.5
O1W—Mn1—N283.69 (5)C8—C9—C10118.26 (19)
O1W—Mn1—O4164.16 (4)C8—C9—H9120.9
O1W—Mn1—O4i92.21 (5)C9—C8—C7119.66 (18)
Mn1—O4—Mn1i105.62 (5)C9—C8—H8120.2
Mn1—O1W—H1W1103.5 (17)C9—C10—H10118.4
Mn1—O1W—H1W2100.0 (17)C10—N2—Mn1124.60 (12)
N1—C1—C2123.06 (17)C10—N2—C6118.16 (15)
N1—C1—H1118.5C10—C9—H9120.9
N1—C5—C4121.28 (16)C11—O1—Mn1131.90 (12)
N1—C5—C6116.35 (14)C11—C12—H12A108.6
N2—C6—C5116.29 (14)C11—C12—H12B108.6
N2—C6—C7121.61 (17)C13—O3—C12119.36 (16)
N2—C10—C9123.26 (19)C13—C14—C15ii121.49 (18)
N2—C10—H10118.4C13—C14—H14119.3
O1—C11—C12117.95 (16)C13—C15—C14ii119.48 (19)
O2—C11—O1126.10 (16)C13—C15—H15120.3
O2—C11—C12115.94 (16)C14—C13—O3115.85 (17)
O3—C12—C11114.53 (16)C14—C13—C15119.02 (19)
O3—C12—H12A108.6C14ii—C15—H15120.3
O3—C12—H12B108.6C15ii—C14—H14119.3
O3—C13—C15125.12 (18)C16—O4—Mn1130.89 (10)
O4—C16—C17116.37 (13)C16—O4—Mn1i122.57 (10)
O5—C16—O4124.12 (14)C16—C17—H17A109.9
O5—C16—C17119.51 (14)C16—C17—H17B109.9
O6—C17—C16108.78 (13)C18—O6—C17117.25 (12)
O6—C17—H17A109.9C18—C19—C20120.26 (15)
O6—C17—H17B109.9C18—C19—H19119.9
O6—C18—C19115.36 (13)C18iii—C20—C19119.93 (14)
O6—C18—C20iii124.84 (13)C18iii—C20—H20120.0
C1—N1—Mn1123.51 (11)C19—C20—H20120.0
C1—N1—C5118.29 (15)C20iii—C18—C19119.80 (13)
C1—C2—H2120.7C20—C19—H19119.9
C2—C1—H1118.5H1W1—O1W—H1W2109.8 (14)
C2—C3—C4119.40 (18)H2W1—O2W—H2W2103.7 (15)
C2—C3—H3120.3H3W1—O3W—H3W2106.3 (16)
C3—C2—C1118.58 (19)H12A—C12—H12B107.6
C3—C2—H2120.7H17A—C17—H17B108.3
Mn1—N1—C1—C2177.77 (16)O4i—Mn1—N2—C10149.0 (2)
Mn1—N1—C5—C4177.96 (15)O4—Mn1—N2—C1095.25 (15)
Mn1—N1—C5—C61.7 (2)O4i—Mn1—O1—C1195.99 (16)
Mn1—N2—C6—C59.14 (19)O4—Mn1—O1—C11169.05 (16)
Mn1—N2—C6—C7170.17 (15)O4i—Mn1—O4—Mn1i0.0
Mn1—N2—C10—C9169.20 (16)O4i—Mn1—O4—C16169.04 (16)
Mn1—O1—C11—O21.5 (3)O4—C16—C17—O6169.35 (14)
Mn1—O1—C11—C12177.35 (12)O5—C16—C17—O610.6 (2)
Mn1—O4—C16—O5168.94 (14)O6—C18—C19—C20179.75 (14)
Mn1i—O4—C16—O51.5 (2)O1W—Mn1—N1—C1101.06 (15)
Mn1—O4—C16—C1711.1 (2)O1W—Mn1—N1—C577.04 (13)
Mn1i—O4—C16—C17178.55 (10)O1W—Mn1—N2—C690.01 (12)
N1—Mn1—N2—C67.39 (12)O1W—Mn1—N2—C1078.86 (15)
N1—Mn1—N2—C10176.26 (16)O1W—Mn1—O1—C113.84 (15)
N1—Mn1—O1—C11100.8 (2)O1W—Mn1—O4—Mn1i33.01 (17)
N1—Mn1—O4—Mn1i96.20 (6)O1W—Mn1—O4—C16136.03 (17)
N1—Mn1—O4—C1694.76 (14)C1—N1—C5—C40.2 (3)
N1—C1—C2—C30.0 (3)C1—N1—C5—C6179.90 (16)
N1—C5—C6—N25.1 (2)C1—C2—C3—C40.5 (4)
N1—C5—C6—C7174.23 (18)C2—C3—C4—C50.6 (4)
N2—Mn1—N1—C1177.24 (16)C3—C4—C5—N10.2 (3)
N2—Mn1—N1—C54.66 (12)C3—C4—C5—C6179.42 (19)
N2—C6—C7—C80.2 (3)C4—C5—C6—N2175.27 (17)
N2—Mn1—O1—C1179.84 (16)C4—C5—C6—C75.4 (3)
N2—Mn1—O4—Mn1i168.97 (5)C5—N1—C1—C20.3 (3)
N2—Mn1—O4—C1621.99 (14)C5—C6—C7—C8179.03 (19)
O1—Mn1—N1—C1155.17 (16)C6—C7—C8—C90.1 (4)
O1—Mn1—N1—C526.7 (2)C6—N2—C10—C90.5 (3)
O1—Mn1—N2—C6179.41 (12)C7—C8—C9—C100.2 (4)
O1—Mn1—N2—C1010.55 (15)C8—C9—C10—N20.2 (3)
O1—Mn1—O4—Mn1i102.27 (5)C10—N2—C6—C5178.76 (16)
O1—Mn1—O4—C1666.78 (14)C10—N2—C6—C70.6 (3)
O1—C11—C12—O31.8 (3)C12—O3—C13—C14173.02 (16)
O2—C11—C12—O3179.22 (17)C12—O3—C13—C158.2 (2)
O3—C13—C14—C15ii178.27 (16)C13—O3—C12—C1180.0 (2)
O3—C13—C15—C14ii178.17 (16)C14—C13—C15—C14ii0.5 (3)
O4—Mn1—N1—C166.67 (15)C15—C13—C14—C15ii0.6 (3)
O4i—Mn1—N1—C18.18 (15)C17—O6—C18—C19175.14 (14)
O4—Mn1—N1—C5115.23 (13)C17—O6—C18—C20iii5.2 (2)
O4i—Mn1—N1—C5169.93 (12)C18—O6—C17—C16175.12 (13)
O4—Mn1—N2—C695.89 (12)C18—C19—C20—C18iii0.1 (3)
O4i—Mn1—N2—C619.9 (3)C20iii—C18—C19—C200.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5i0.84 (3)1.87 (3)2.655 (2)153 (2)
O1W—H1W2···O20.85 (3)1.87 (3)2.695 (2)164 (2)
O3W—H3W1···O2iv0.86 (3)1.90 (3)2.763 (3)174 (4)
O3W—H3W2···O50.86 (3)1.89 (2)2.695 (2)154 (4)
O2W—H2W1···O3W0.88 (3)1.93 (3)2.795 (4)165 (4)
O2W—H2W2···O3Wv0.88 (3)1.96 (3)2.822 (3)171 (4)
Symmetry codes: (i) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+2, z.
(II) poly[[di-µ-aqua-bis[aquasodium(I)]]-µ4-p-phenylenebis(oxyacetato)- κO:O',O'':O''',O'''':O'''''] top
Crystal data top
[Na2(C10H8O6)(H2O)4]Z = 1
Mr = 342.21F(000) = 178
Triclinic, P1Dx = 1.620 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3754 (11) ÅCell parameters from 2648 reflections
b = 5.9136 (12) Åθ = 3.9–27.5°
c = 11.236 (2) ŵ = 0.19 mm1
α = 85.83 (3)°T = 293 K
β = 82.01 (3)°Prism, colourless
γ = 83.54 (3)°0.38 × 0.24 × 0.17 mm
V = 350.87 (12) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1588 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 66
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.930, Tmax = 0.968l = 1414
3380 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0805P]
where P = (Fo2 + 2Fc2)/3
1588 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Na2(C10H8O6)(H2O)4]γ = 83.54 (3)°
Mr = 342.21V = 350.87 (12) Å3
Triclinic, P1Z = 1
a = 5.3754 (11) ÅMo Kα radiation
b = 5.9136 (12) ŵ = 0.19 mm1
c = 11.236 (2) ÅT = 293 K
α = 85.83 (3)°0.38 × 0.24 × 0.17 mm
β = 82.01 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1588 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1415 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.968Rint = 0.014
3380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
1588 reflectionsΔρmin = 0.17 e Å3
112 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.45322 (10)0.60837 (9)0.35083 (5)0.03089 (18)
O10.23780 (18)0.28698 (17)0.34521 (9)0.0331 (2)
O20.21557 (19)0.05454 (17)0.27465 (9)0.0330 (2)
O30.61125 (19)0.37996 (17)0.17376 (8)0.0330 (3)
O1W0.75382 (19)0.86038 (19)0.39989 (9)0.0363 (3)
O2W0.26331 (19)0.66757 (18)0.55011 (9)0.0336 (2)
C10.2990 (2)0.1358 (2)0.27052 (11)0.0252 (3)
C20.4912 (3)0.1823 (2)0.16067 (12)0.0290 (3)
C30.8044 (2)0.4319 (2)0.08475 (11)0.0263 (3)
C40.8590 (3)0.3289 (2)0.02459 (12)0.0304 (3)
C50.9457 (3)0.6015 (2)0.10882 (12)0.0301 (3)
H1W20.896 (2)0.888 (4)0.3620 (14)0.054*
H1W10.772 (4)0.826 (4)0.4732 (9)0.054*
H2W10.304 (3)0.797 (2)0.5656 (18)0.050*
H2W20.111 (2)0.657 (3)0.5835 (16)0.050*
H2A0.61740.05190.15070.035*
H2B0.40670.20390.08920.035*
H40.76560.21450.04120.036*
H50.90940.66950.18220.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0322 (3)0.0277 (3)0.0320 (3)0.0068 (2)0.0025 (2)0.0036 (2)
O10.0316 (5)0.0354 (5)0.0317 (5)0.0127 (4)0.0090 (4)0.0090 (4)
O20.0337 (5)0.0297 (5)0.0356 (5)0.0137 (4)0.0036 (4)0.0019 (4)
O30.0357 (5)0.0360 (5)0.0272 (5)0.0184 (4)0.0120 (4)0.0088 (4)
O1W0.0320 (5)0.0409 (6)0.0360 (5)0.0115 (4)0.0008 (4)0.0007 (4)
O2W0.0288 (5)0.0337 (5)0.0368 (5)0.0043 (4)0.0038 (4)0.0064 (4)
C10.0220 (6)0.0286 (6)0.0247 (6)0.0065 (5)0.0006 (4)0.0001 (5)
C20.0313 (7)0.0276 (6)0.0274 (6)0.0107 (5)0.0065 (5)0.0043 (5)
C30.0260 (6)0.0291 (6)0.0227 (6)0.0078 (5)0.0053 (5)0.0016 (5)
C40.0326 (7)0.0320 (7)0.0276 (6)0.0144 (5)0.0039 (5)0.0072 (5)
C50.0348 (7)0.0328 (7)0.0227 (6)0.0109 (5)0.0049 (5)0.0075 (5)
Geometric parameters (Å, º) top
Na1—Na1i3.582 (2)O1W—H1W20.849 (13)
Na1—O12.343 (2)O2W—H2W10.853 (13)
Na1—O2ii2.413 (2)O2W—H2W20.860 (13)
Na1—O32.483 (2)C1—C21.525 (2)
Na1—O1W2.459 (2)C2—H2A0.9700
Na1—O2W2.362 (2)C2—H2B0.9700
Na1—O2Wi2.423 (2)C3—C41.391 (2)
O1—C11.256 (2)C3—C51.387 (2)
O2—C11.253 (2)C4—C5iii1.390 (2)
O3—C21.423 (2)C4—H40.9300
O3—C31.383 (2)C5—C4iii1.390 (2)
O1W—H1W10.851 (12)C5—H50.9300
O1—Na1—Na1i85.21 (4)Na1i—O2W—H2W2109.2 (13)
O1—Na1—O2ii110.55 (4)O1—C1—C2118.80 (11)
O1—Na1—O366.75 (4)O2—C1—O1126.80 (12)
O1—Na1—O1W161.53 (5)O2—C1—C2114.39 (11)
O1—Na1—O2W91.18 (5)O3—C2—C1110.80 (11)
O1—Na1—O2Wi81.75 (4)O3—C2—H2A109.5
O2ii—Na1—Na1i132.69 (4)O3—C2—H2B109.5
O2ii—Na1—O3105.90 (5)O3—C3—C4124.31 (12)
O2ii—Na1—O1W87.29 (4)O3—C3—C5115.86 (11)
O2ii—Na1—O2Wi166.81 (4)C1—O1—Na1124.55 (8)
O3—Na1—Na1i121.12 (4)C1—O2—Na1iv120.34 (9)
O1W—Na1—Na1i78.84 (4)C1—C2—H2A109.5
O1W—Na1—O3114.08 (5)C1—C2—H2B109.5
O2Wi—Na1—Na1i40.87 (3)C2—O3—Na1117.90 (8)
O2W—Na1—Na1i42.18 (3)C3—O3—Na1125.16 (8)
O2W—Na1—O2ii91.69 (5)C3—O3—C2116.92 (10)
O2W—Na1—O3155.35 (4)C3—C4—H4120.3
O2Wi—Na1—O383.00 (5)C3—C5—C4iii120.78 (12)
O2W—Na1—O1W83.28 (5)C3—C5—H5119.6
O2Wi—Na1—O1W80.10 (4)C4iii—C5—H5119.6
O2W—Na1—O2Wi83.05 (5)C5—C3—C4119.82 (12)
Na1—O1W—H1W1105.5 (14)C5iii—C4—C3119.40 (12)
Na1—O1W—H1W2129.4 (14)C5iii—C4—H4120.3
Na1—O2W—Na1i96.95 (5)H2W1—O2W—H2W2107.5 (13)
Na1—O2W—H2W1105.2 (13)H1W2—O1W—H1W1108.4 (13)
Na1i—O2W—H2W1104.6 (13)H2A—C2—H2B108.1
Na1—O2W—H2W2130.6 (13)
Na1i—Na1—O1—C1120.20 (11)O3—Na1—O2W—Na1i55.95 (11)
Na1i—Na1—O3—C269.38 (10)O3—C3—C4—C5iii178.47 (12)
Na1i—Na1—O3—C3112.05 (10)O3—C3—C5—C4iii178.56 (12)
Na1—O1—C1—O2168.26 (10)O1W—Na1—O1—C189.93 (17)
Na1—O1—C1—C212.86 (17)O1W—Na1—O3—C2160.65 (9)
Na1iv—O2—C1—O198.82 (14)O1W—Na1—O3—C320.78 (12)
Na1iv—O2—C1—C282.26 (12)O1W—Na1—O2W—Na1i80.79 (4)
Na1—O3—C2—C16.23 (14)O2W—Na1—O1—C1161.99 (11)
Na1—O3—C3—C4167.21 (11)O2W—Na1—O3—C228.85 (16)
Na1—O3—C3—C511.66 (17)O2Wi—Na1—O3—C284.81 (10)
O1—Na1—O3—C20.81 (9)O2Wi—Na1—O3—C396.62 (11)
O1—Na1—O3—C3179.38 (11)O2Wi—Na1—O1—C179.19 (11)
O1—Na1—O2W—Na1i81.54 (5)O2W—Na1—O3—C3152.58 (11)
O1—C1—C2—O311.98 (17)O2Wi—Na1—O2W—Na1i0.0
O2ii—Na1—O1—C1105.76 (11)C2—O3—C3—C411.4 (2)
O2ii—Na1—O3—C2105.13 (10)C2—O3—C3—C5169.76 (12)
O2ii—Na1—O3—C373.44 (11)C3—O3—C2—C1175.08 (11)
O2ii—Na1—O2W—Na1i167.86 (4)C4—C3—C5—C4iii0.4 (2)
O2—C1—C2—O3169.00 (11)C5—C3—C4—C5iii0.4 (2)
O3—Na1—O1—C16.70 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+2, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.85 (1)2.10 (1)2.938 (2)170 (2)
O1W—H1W2···O2v0.85 (1)1.91 (1)2.757 (2)179 (2)
O2W—H2W1···O1Wvi0.85 (1)2.07 (1)2.876 (2)157 (2)
O2W—H2W2···O1vii0.86 (1)1.94 (1)2.778 (2)166 (2)
Symmetry codes: (i) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mn(C10H8O6)(C10H8N2)(H2O)]·2H2O[Na2(C10H8O6)(H2O)4]
Mr489.34342.21
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)9.3142 (19), 10.315 (2), 12.169 (2)5.3754 (11), 5.9136 (12), 11.236 (2)
α, β, γ (°)87.87 (3), 84.04 (3), 68.68 (3)85.83 (3), 82.01 (3), 83.54 (3)
V3)1083.3 (4)350.87 (12)
Z21
Radiation typeMo KαMo Kα
µ (mm1)0.660.19
Crystal size (mm)0.41 × 0.32 × 0.210.38 × 0.24 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.773, 0.8730.930, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
10496, 4928, 4461 3380, 1588, 1415
Rint0.0140.014
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.06 0.037, 0.099, 1.06
No. of reflections49281588
No. of parameters307112
No. of restraints96
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.170.41, 0.17

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Mn1—N12.2511 (15)Mn1—O1W2.2124 (14)
Mn1—N22.3031 (17)O1—C111.255 (2)
Mn1—O12.1298 (13)O2—C111.247 (2)
Mn1—O42.2241 (12)O4—C161.2760 (18)
Mn1—O4i2.2794 (14)O5—C161.227 (2)
N1—Mn1—N272.14 (5)O4—Mn1—N2111.09 (5)
N1—Mn1—O4i97.29 (5)O4i—Mn1—N2168.19 (5)
O1—Mn1—N1161.61 (5)O4—Mn1—O4i74.38 (5)
O1—Mn1—N290.73 (5)O1W—Mn1—N195.06 (6)
O1—Mn1—O484.79 (5)O1W—Mn1—N283.69 (5)
O1—Mn1—O4i100.33 (5)O1W—Mn1—O4164.16 (4)
O1—Mn1—O1W89.49 (6)O1W—Mn1—O4i92.21 (5)
O4—Mn1—N194.99 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O5i0.84 (3)1.87 (3)2.655 (2)153 (2)
O1W—H1W2···O20.85 (3)1.87 (3)2.695 (2)164 (2)
O3W—H3W1···O2ii0.86 (3)1.90 (3)2.763 (3)174 (4)
O3W—H3W2···O50.86 (3)1.89 (2)2.695 (2)154 (4)
O2W—H2W1···O3W0.88 (3)1.93 (3)2.795 (4)165 (4)
O2W—H2W2···O3Wiii0.88 (3)1.96 (3)2.822 (3)171 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z.
Selected geometric parameters (Å, º) for (II) top
Na1—Na1i3.582 (2)Na1—O2Wi2.423 (2)
Na1—O12.343 (2)O1—C11.256 (2)
Na1—O2ii2.413 (2)O2—C11.253 (2)
Na1—O32.483 (2)O3—C21.423 (2)
Na1—O1W2.459 (2)O3—C31.383 (2)
Na1—O2W2.362 (2)
O1—Na1—Na1i85.21 (4)O1W—Na1—Na1i78.84 (4)
O1—Na1—O2ii110.55 (4)O1W—Na1—O3114.08 (5)
O1—Na1—O366.75 (4)O2Wi—Na1—Na1i40.87 (3)
O1—Na1—O1W161.53 (5)O2W—Na1—Na1i42.18 (3)
O1—Na1—O2W91.18 (5)O2W—Na1—O2ii91.69 (5)
O1—Na1—O2Wi81.75 (4)O2W—Na1—O3155.35 (4)
O2ii—Na1—Na1i132.69 (4)O2Wi—Na1—O383.00 (5)
O2ii—Na1—O3105.90 (5)O2W—Na1—O1W83.28 (5)
O2ii—Na1—O1W87.29 (4)O2Wi—Na1—O1W80.10 (4)
O2ii—Na1—O2Wi166.81 (4)O2W—Na1—O2Wi83.05 (5)
O3—Na1—Na1i121.12 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.851 (12)2.095 (12)2.938 (2)170 (2)
O1W—H1W2···O2iii0.849 (13)1.908 (13)2.757 (2)179 (2)
O2W—H2W1···O1Wiv0.853 (13)2.072 (12)2.876 (2)157 (2)
O2W—H2W2···O1v0.860 (13)1.936 (13)2.778 (2)166 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds