Download citation
Download citation
link to html
The crystal structure of cyclo­hexanone oxime, C6H11NO, was reported as severely disordered in the trigonal non-centrosymmetric space group P3 [Olivato, Ribeiro, Zukerman-Schpector & Bombieri (2001). Acta Cryst. B57, 705-713]. Re-investigation of the crystal structure as twinned by merohedry in the trigonal centrosymmetric space group P\overline3, with a twofold rotation about [001] as twin law, resulted in a well ordered structure and low R values. The asymmetric unit contains three independent mol­ecules, existing as a hydrogen-bonded trimer, having an R_3^3(9) graph set.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103029196/fg1726sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029196/fg1726Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103029196/fg1726IIsup3.hkl
Contains datablock II

CCDC references: 233132; 233133

Comment top

The oxime moiety can both donate and accept hydrogen bonds, which makes it a very interesting building block in supramolecular chemistry (Bertolasi et al., 1982; Chertanova et al., 1994). Most oximes crystallize as dimers (e.g. DL-carvoxime; Oonk & Kroon, 1976), but there are also cases of trimeric (e.g. acetoxime; Bierlein & Lingafelter, 1951), tetrameric [e.g. (E)-benzaldehyde oxime; Jerslev, 1983] and polymeric (e.g. 2H-Benzocyclobuten-1-one oxime; Viossat et al., 1986) motifs. One of the trimeric examples is cyclohexanone oxime, C6H11NO, (I). The reported crystal structure was refined with a disorder model, and final disagreement factors were unexpectedly high (Olivato et al., 2001). As part of our study on oximes in the solid state (Marsman et al., 2000), we decided to reexamine this crystal structure using a new data collection.

Our unit cell has a hexagonal metric, which is consistent with the literature data. A first inspection of the diffraction data shows that for the Laue groups −3 and 6/m the merging R values of 0.0514 and 0.0542, respectively, are very similar. We interpret this similarity as a strong indication for twinning. Because all reflections in the diffraction images have been indexed and no splitting of reflections is observed, the twinning must be (pseudo)merohedral.

Systematic space-group extinctions are not present. In contrast to the previously determined structure, which was reported in space group P3, the present structure was solved by in the centrosymmetric space group P-3. However, the refinement converges at high R values with residual density in the difference Fourier map. A coset decomposition (Flack, 1987) of point group 6/m with respect to −3 gives

{E; 3; 32; i; −3; −35} + {6; 2; 65; −6; m; −65}

Any element of the second coset might be the twin operation. It transpires that the twofold rotation about [001], or, correspondingly, the mirror perpendicular to [001], are the correct merohedral twin operations (see also Giacovazzo, 2002). This result can also be obtained using the program ROTAX (Cooper et al., 2002) or the TWINROTMAT routine of the PLATON (Spek, 2003). Both programs use the difference between observed and calculated structure factors, i.e. Iobs >> Icalc, to suggest the twin law. After implementing the twin law in the SHELXL97 refinement (Herbst-Irmer & Sheldrick, 1998), good R values and a clean residual density map are achieved. The value of the twin fraction refined to 0.5295 (14).

As a further proof for the reported revision, we refined our model and twin law against the structure factors deposited by Olivato et al. (2001). This refinement, (II), leads to essentially the same result, i.e. no disorder, low R values, a clean residual-density map and a twin fraction of 0.4515 (13). The minor differences, namely a 0.3% smaller unit-cell volume and slightly smaller displacement parameters, can be explained by the use of different crystals and different measurement temperature (100 versus 110 K) of our data collection.

The asymmetric unit consists of three independent molecules of (I), with very similar bond lengths and angles. The six-membered rings are in a chair conformation, which is slightly distorted because of the presence of the double bond of the oxime group. The N—O bond is eclipsed with the C1—C6 bond of the six-membered ring, with torsion angles of 1.8 (2), 1.3 (2) and −2.8 (2)°, respectively.

The three independent molecules are linked by intermolecular hydrogen bonds to form a trimeric structure (Fig. 1). Thereby the oxime O atoms act as hydrogen-bond donors and the N atoms as acceptors, thus generating an R33(9) graph set (Bernstein et al., 1995). The oxime groups have an anti conformation, with C—N—O—H torsion angles of −169.5 (11), 176.8 (10) and 172.3 (15)°, respectively. The trimer has no crystallographic symmetry, because two of the molecules have the same chair conformation (residues 1 and 2) while one molecule has an inverted-chair conformation (residue 3). These inverted conformations are best described by a ring puckering analysis (Cremer & Pople, 1975); residues 1 and 2 have θ values of 170.9 (2) and 171.06 (19)° and ϕ values of 352.2 (13) and 349.6 (13)°, respectively. The inverted conformation of residue 3 results in a θ value of 9.30 (19)° and a ϕ value of 180.4 (12)°.

The cyclohexane rings of residues 1 and 2 are arranged about the threefold axis at 1/3, 2/3, z. The cyclohexane rings of residue 3 are located about the −3 site at 0, 0, 0 (Fig. 2). There are small solvent-accessible channels in the z direction, which amount to 2*25 Å3 per unit cell at the threefold axes and to 18 Å3 per unit cell at −3. In total, 2.3% of the unit cell is void, leading to a packing index (Kitajgorodskij, 1973) of only 67.3% and a low density of 1.160 Mg/m3. These channels might also explain the diffuse scattering reported by Olivato et al. (2001) and the slightly enlarged displacement ellipsoids of the present structure.

Averaging of the 3 and −3 sites leads to a hexagonal subcell with a volume of 1/3 and an a axis of 12.115 Å. This subcell has been reported by Olivato et al. (2001) and Okaya et al. (1956). Indeed we find this pseudotranslational symmetry in a hypercentrical behaviour of the cumulative N(z) probabilty distribution of the observed twinned data (Fig. 3). <E2-1> is 0.982. Based on calculated untwinned structure factors, the average intensity of reflections hkl (h+2k=2n) is 30464.5, and for all other reflections it is 6798.4.

Experimental top

Suitable single crystals of (I) were grown by sublimation of the commercially obtained material (Fluka Chemie GmbH) at a temperature of 333 K and a pressure of 0.97 mbar. The preparation of (II) is described by Olivato et al. (2001).

Refinement top

For (I), a first data set was collected with a rotation angle of 1° and an exposure time of 40 s per frame (248 ϕ scans and 433 ω scans). These data were integrated with the HKL-2000 package (Otwinowski & Minor, 1997), resulting in 49597 reflections in a θ range of 1.94–27.46°. Cell parameters were taken from a post-refinement of these data. A second dataset of (I) was collected with a rotation angle of 1° and an exposure time of 10 s per frame (101 ϕ scans and 28 ω scans). These data were integrated with the Eval-14 package (Duisenberg et al., 2003), resulting in 3137 reflections in a θ range of 1.94–14.97°. Both data sets were scaled and merged with the program SORTAV (Blessing, 1997). For the data collection of (II) see Olivato et al. (2001). In refinements (I) and (II), O—H H atoms were refined freely with isotropic displacement parameters. All remaining H atoms were placed in idealized positions (C—H = 0.99–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I). For both compounds, cell refinement: HKL-2000 (Otwinowski & Minor, 1997). Data reduction: HKL-2000), EVALCCD (Duisenberg et al., 2003) and SORTAV (Blessing, 1997) for (I); HKL-2000 for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON (Spek, 2003) for (I).

Figures top
[Figure 1] Fig. 1. : The three independent residues of (I), linked by hydrogen bonds into a trimeric structure. Displacement elliposoid are shown at the 50% probability level.
[Figure 2] Fig. 2. : A view along the c axis. Residues 1 and 2 are colored black; residue 3 is white.
[Figure 3] Fig. 3. : A cumulative N(z) probability distribution [observed data: solid line; acentric: dotted line; centric: dashed line; hypercentric: dot-dashed line.
(I) cyclohexanone oxime top
Crystal data top
C6H11NODx = 1.160 Mg m3
Mr = 113.16Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 61960 reflections
Hall symbol: -P 3θ = 1.0–27.5°
a = 20.9830 (2) ŵ = 0.08 mm1
c = 7.6436 (1) ÅT = 110 K
V = 2914.50 (5) Å3Block, colourless
Z = 180.30 × 0.21 × 0.15 mm
F(000) = 1116
Data collection top
Nonius KappaCCD
diffractometer
3695 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.051
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ϕ and ω scansh = 2727
52734 measured reflectionsk = 2727
4446 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3836P]
where P = (Fo2 + 2Fc2)/3
4446 reflections(Δ/σ)max = 0.002
230 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H11NOZ = 18
Mr = 113.16Mo Kα radiation
Trigonal, P3µ = 0.08 mm1
a = 20.9830 (2) ÅT = 110 K
c = 7.6436 (1) Å0.30 × 0.21 × 0.15 mm
V = 2914.50 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3695 reflections with I > 2σ(I)
52734 measured reflectionsRint = 0.051
4446 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
4446 reflectionsΔρmin = 0.21 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42111 (6)0.30796 (5)0.32865 (17)0.0294 (3)
H1O0.3740 (10)0.2822 (9)0.301 (2)0.028 (4)*
N10.44499 (7)0.38259 (6)0.29412 (17)0.0228 (3)
C110.51481 (8)0.42427 (8)0.3023 (2)0.0221 (3)
C120.54563 (9)0.50533 (9)0.2764 (2)0.0321 (4)
H12A0.56250.53080.39040.039*
H12B0.50650.51420.23160.039*
C130.60999 (9)0.53707 (9)0.1478 (2)0.0370 (4)
H13A0.59170.51740.02930.044*
H13B0.63250.59130.14340.044*
C140.66772 (8)0.51762 (8)0.2017 (3)0.0326 (3)
H14A0.68810.53960.31740.039*
H14B0.70850.53820.11580.039*
C150.63418 (8)0.43431 (9)0.2112 (3)0.0363 (4)
H15A0.67230.42260.24920.044*
H15B0.61710.41300.09330.044*
C160.56924 (8)0.39951 (8)0.3390 (2)0.0316 (3)
H16A0.54440.34530.32940.038*
H16B0.58780.41330.46020.038*
O20.35781 (5)0.44679 (6)0.30685 (18)0.0296 (2)
H2O0.3826 (9)0.4217 (9)0.300 (2)0.028 (4)*
N20.28399 (7)0.39422 (7)0.26890 (16)0.0229 (3)
C210.24009 (8)0.41950 (8)0.2810 (2)0.0218 (3)
C220.15991 (9)0.36711 (9)0.2485 (2)0.0303 (4)
H22A0.13280.35550.36080.036*
H22B0.15370.32070.19930.036*
C230.12766 (9)0.39996 (9)0.1217 (2)0.0356 (4)
H23A0.14940.40460.00420.043*
H23B0.07380.36660.11220.043*
C240.14305 (8)0.47525 (9)0.1837 (2)0.0328 (4)
H24A0.11900.47040.29830.039*
H24B0.12230.49570.09900.039*
C250.22588 (9)0.52747 (9)0.2012 (2)0.0330 (4)
H25A0.23490.57570.24470.040*
H25B0.24920.53520.08460.040*
C260.26107 (8)0.49708 (8)0.3265 (2)0.0293 (3)
H26A0.31530.52850.32150.035*
H26B0.24510.49860.44760.035*
O30.22667 (5)0.24701 (6)0.17879 (16)0.0275 (2)
H3O0.2471 (10)0.2946 (11)0.206 (3)0.049 (6)*
N30.27547 (7)0.22240 (7)0.22969 (16)0.0221 (3)
C310.24738 (8)0.15236 (8)0.2150 (2)0.0221 (3)
C320.29633 (9)0.12129 (9)0.2559 (2)0.0288 (4)
H32A0.34170.15950.31360.035*
H32B0.31080.10720.14550.035*
C330.25808 (9)0.05384 (8)0.3754 (2)0.0328 (4)
H33A0.28920.03080.38630.039*
H33B0.25200.06950.49350.039*
C340.18307 (8)0.00229 (8)0.3034 (2)0.0307 (3)
H34A0.18930.02070.18910.037*
H34B0.15900.04460.38460.037*
C350.13473 (9)0.03211 (8)0.2807 (2)0.0313 (4)
H35A0.12580.04740.39650.038*
H35B0.08660.00500.23200.038*
C360.17028 (8)0.09912 (8)0.1589 (2)0.0292 (3)
H36A0.17080.08260.03780.035*
H36B0.14070.12400.15990.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (5)0.0205 (5)0.0438 (7)0.0062 (4)0.0018 (5)0.0064 (5)
N10.0211 (6)0.0199 (6)0.0275 (6)0.0103 (5)0.0009 (5)0.0004 (5)
C110.0212 (7)0.0218 (7)0.0222 (7)0.0099 (6)0.0014 (6)0.0006 (6)
C120.0261 (8)0.0222 (8)0.0500 (10)0.0135 (7)0.0038 (7)0.0024 (7)
C130.0349 (8)0.0249 (8)0.0416 (9)0.0076 (6)0.0002 (7)0.0081 (7)
C140.0207 (7)0.0257 (8)0.0396 (8)0.0028 (6)0.0074 (7)0.0002 (8)
C150.0197 (8)0.0268 (8)0.0596 (11)0.0096 (7)0.0038 (8)0.0034 (8)
C160.0193 (7)0.0241 (7)0.0487 (9)0.0089 (6)0.0011 (7)0.0092 (7)
O20.0194 (5)0.0253 (5)0.0447 (6)0.0118 (4)0.0047 (5)0.0060 (5)
N20.0197 (6)0.0202 (6)0.0273 (7)0.0088 (6)0.0002 (5)0.0001 (5)
C210.0217 (7)0.0212 (7)0.0236 (7)0.0116 (6)0.0005 (6)0.0009 (6)
C220.0195 (8)0.0256 (9)0.0438 (11)0.0097 (7)0.0010 (6)0.0040 (6)
C230.0230 (7)0.0473 (9)0.0389 (9)0.0193 (7)0.0072 (7)0.0115 (7)
C240.0323 (8)0.0466 (9)0.0322 (8)0.0292 (7)0.0012 (7)0.0024 (7)
C250.0361 (9)0.0287 (8)0.0430 (9)0.0227 (7)0.0055 (8)0.0040 (8)
C260.0254 (7)0.0255 (7)0.0404 (9)0.0153 (6)0.0078 (7)0.0095 (7)
O30.0276 (6)0.0202 (5)0.0374 (6)0.0140 (4)0.0081 (5)0.0029 (5)
N30.0209 (6)0.0210 (6)0.0244 (6)0.0106 (5)0.0008 (5)0.0000 (5)
C310.0224 (7)0.0209 (7)0.0230 (7)0.0109 (6)0.0021 (6)0.0001 (6)
C320.0228 (8)0.0276 (8)0.0392 (10)0.0150 (7)0.0040 (6)0.0053 (6)
C330.0430 (9)0.0316 (8)0.0333 (8)0.0259 (8)0.0060 (7)0.0016 (7)
C340.0390 (9)0.0207 (7)0.0337 (8)0.0158 (7)0.0044 (8)0.0039 (7)
C350.0252 (8)0.0175 (7)0.0445 (9)0.0057 (7)0.0022 (7)0.0016 (7)
C360.0276 (8)0.0202 (7)0.0389 (8)0.0113 (6)0.0076 (7)0.0000 (7)
Geometric parameters (Å, º) top
O1—N11.4101 (15)C23—H23B0.9900
O1—H1O0.884 (18)C24—C251.528 (2)
N1—C111.2782 (18)C24—H24A0.9900
C11—C161.499 (2)C24—H24B0.9900
C11—C121.500 (2)C25—C261.530 (2)
C12—C131.528 (2)C25—H25A0.9900
C12—H12A0.9900C25—H25B0.9900
C12—H12B0.9900C26—H26A0.9900
C13—C141.516 (2)C26—H26B0.9900
C13—H13A0.9900O3—N31.4126 (15)
C13—H13B0.9900O3—H3O0.89 (2)
C14—C151.525 (2)N3—C311.2859 (19)
C14—H14A0.9900C31—C361.4973 (19)
C14—H14B0.9900C31—C321.499 (2)
C15—C161.533 (2)C32—C331.532 (2)
C15—H15A0.9900C32—H32A0.9900
C15—H15B0.9900C32—H32B0.9900
C16—H16A0.9900C33—C341.521 (2)
C16—H16B0.9900C33—H33A0.9900
O2—N21.4112 (15)C33—H33B0.9900
O2—H2O0.908 (17)C34—C351.521 (2)
N2—C211.2757 (19)C34—H34A0.9900
C21—C261.4993 (19)C34—H34B0.9900
C21—C221.500 (2)C35—C361.534 (2)
C22—C231.529 (2)C35—H35A0.9900
C22—H22A0.9900C35—H35B0.9900
C22—H22B0.9900C36—H36A0.9900
C23—C241.521 (2)C36—H36B0.9900
C23—H23A0.9900
N1—O1—H1O107.5 (10)C23—C24—H24A109.6
C11—N1—O1113.58 (11)C25—C24—H24A109.6
N1—C11—C16125.68 (13)C23—C24—H24B109.6
N1—C11—C12117.79 (13)C25—C24—H24B109.6
C16—C11—C12116.51 (12)H24A—C24—H24B108.1
C11—C12—C13111.40 (13)C24—C25—C26111.64 (13)
C11—C12—H12A109.3C24—C25—H25A109.3
C13—C12—H12A109.3C26—C25—H25A109.3
C11—C12—H12B109.3C24—C25—H25B109.3
C13—C12—H12B109.3C26—C25—H25B109.3
H12A—C12—H12B108.0H25A—C25—H25B108.0
C14—C13—C12111.05 (13)C21—C26—C25111.50 (12)
C14—C13—H13A109.4C21—C26—H26A109.3
C12—C13—H13A109.4C25—C26—H26A109.3
C14—C13—H13B109.4C21—C26—H26B109.3
C12—C13—H13B109.4C25—C26—H26B109.3
H13A—C13—H13B108.0H26A—C26—H26B108.0
C13—C14—C15110.40 (13)N3—O3—H3O108.3 (12)
C13—C14—H14A109.6C31—N3—O3113.06 (12)
C15—C14—H14A109.6N3—C31—C36125.78 (13)
C13—C14—H14B109.6N3—C31—C32117.16 (14)
C15—C14—H14B109.6C36—C31—C32117.05 (13)
H14A—C14—H14B108.1C31—C32—C33111.70 (13)
C14—C15—C16111.54 (13)C31—C32—H32A109.3
C14—C15—H15A109.3C33—C32—H32A109.3
C16—C15—H15A109.3C31—C32—H32B109.3
C14—C15—H15B109.3C33—C32—H32B109.3
C16—C15—H15B109.3H32A—C32—H32B107.9
H15A—C15—H15B108.0C34—C33—C32111.17 (14)
C11—C16—C15111.43 (13)C34—C33—H33A109.4
C11—C16—H16A109.3C32—C33—H33A109.4
C15—C16—H16A109.3C34—C33—H33B109.4
C11—C16—H16B109.3C32—C33—H33B109.4
C15—C16—H16B109.3H33A—C33—H33B108.0
H16A—C16—H16B108.0C35—C34—C33110.56 (12)
N2—O2—H2O104.9 (10)C35—C34—H34A109.5
C21—N2—O2113.49 (12)C33—C34—H34A109.5
N2—C21—C26125.97 (13)C35—C34—H34B109.5
N2—C21—C22117.50 (13)C33—C34—H34B109.5
C26—C21—C22116.54 (13)H34A—C34—H34B108.1
C21—C22—C23111.20 (14)C34—C35—C36111.73 (13)
C21—C22—H22A109.4C34—C35—H35A109.3
C23—C22—H22A109.4C36—C35—H35A109.3
C21—C22—H22B109.4C34—C35—H35B109.3
C23—C22—H22B109.4C36—C35—H35B109.3
H22A—C22—H22B108.0H35A—C35—H35B107.9
C24—C23—C22111.02 (14)C31—C36—C35111.03 (13)
C24—C23—H23A109.4C31—C36—H36A109.4
C22—C23—H23A109.4C35—C36—H36A109.4
C24—C23—H23B109.4C31—C36—H36B109.4
C22—C23—H23B109.4C35—C36—H36B109.4
H23A—C23—H23B108.0H36A—C36—H36B108.0
C23—C24—C25110.28 (12)
O1—N1—C11—C161.8 (2)C22—C23—C24—C2558.50 (18)
O1—N1—C11—C12177.01 (14)C23—C24—C25—C2657.41 (19)
N1—C11—C12—C13132.61 (16)N2—C21—C26—C25132.85 (15)
C16—C11—C12—C1348.5 (2)C22—C21—C26—C2547.70 (19)
C11—C12—C13—C1453.02 (19)C24—C25—C26—C2150.92 (18)
C12—C13—C14—C1558.56 (19)O3—N3—C31—C362.8 (2)
C13—C14—C15—C1657.7 (2)O3—N3—C31—C32176.52 (13)
N1—C11—C16—C15133.81 (16)N3—C31—C32—C33133.04 (15)
C12—C11—C16—C1547.4 (2)C36—C31—C32—C3347.57 (19)
C14—C15—C16—C1151.0 (2)C31—C32—C33—C3451.37 (18)
O2—N2—C21—C261.3 (2)C32—C33—C34—C3557.62 (19)
O2—N2—C21—C22178.16 (13)C33—C34—C35—C3657.99 (19)
N2—C21—C22—C23131.58 (15)N3—C31—C36—C35133.35 (15)
C26—C21—C22—C2348.92 (19)C32—C31—C36—C3547.31 (19)
C21—C22—C23—C2453.30 (18)C34—C35—C36—C3151.51 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N30.884 (18)1.884 (18)2.7653 (17)175.3 (16)
O2—H2O···N10.908 (17)1.861 (17)2.7632 (15)171.9 (15)
O3—H3O···N20.89 (2)1.89 (2)2.7834 (17)176.2 (18)
(II) cyclohexanone oxime top
Crystal data top
C6H11NODx = 1.164 Mg m3
Mr = 113.16Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 12992 reflections
Hall symbol: -P 3θ = 1.9–27.5°
a = 20.9830 (3) ŵ = 0.08 mm1
c = 7.6210 (1) ÅT = 100 K
V = 2905.88 (7) Å3Prismatic, colourless
Z = 180.38 × 0.30 × 0.24 mm
F(000) = 1116
Data collection top
Nonius CAD-4 CCD
diffractometer
Rint = 0.03
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ϕ and ω scansh = 027
12992 measured reflectionsk = 2623
4440 independent reflectionsl = 99
3993 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.3995P]
where P = (Fo2 + 2Fc2)/3
4440 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H11NOZ = 18
Mr = 113.16Mo Kα radiation
Trigonal, P3µ = 0.08 mm1
a = 20.9830 (3) ÅT = 100 K
c = 7.6210 (1) Å0.38 × 0.30 × 0.24 mm
V = 2905.88 (7) Å3
Data collection top
Nonius CAD-4 CCD
diffractometer
3993 reflections with I > 2σ(I)
12992 measured reflectionsRint = 0.03
4440 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
4440 reflectionsΔρmin = 0.16 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42123 (5)0.30790 (5)0.32861 (15)0.0251 (2)
H1O0.3741 (9)0.2849 (8)0.301 (2)0.026 (4)*
N10.44501 (6)0.38244 (6)0.29422 (15)0.0197 (2)
C110.51476 (7)0.42410 (7)0.30212 (19)0.0192 (2)
C120.54540 (8)0.50536 (8)0.2769 (2)0.0283 (3)
H12A0.56240.53070.39130.034*
H12B0.50610.51420.23280.034*
C130.60955 (8)0.53728 (7)0.1473 (2)0.0325 (3)
H13A0.59110.51760.02850.039*
H13B0.63190.59150.14280.039*
C140.66767 (7)0.51800 (7)0.2008 (2)0.0289 (3)
H14A0.68820.53990.31680.035*
H14B0.70840.53870.11440.035*
C150.63413 (7)0.43452 (8)0.2101 (2)0.0321 (3)
H15A0.67230.42290.24780.038*
H15B0.61710.41320.09180.038*
C160.56940 (7)0.39948 (7)0.3381 (2)0.0280 (3)
H16A0.54470.34520.32790.034*
H16B0.58800.41310.45970.034*
O20.35776 (5)0.44676 (5)0.30737 (16)0.0252 (2)
H2O0.3812 (8)0.4217 (8)0.300 (2)0.026 (4)*
N20.28403 (6)0.39404 (6)0.26958 (15)0.0195 (2)
C210.24011 (7)0.41939 (7)0.28169 (18)0.0190 (3)
C220.15988 (7)0.36676 (8)0.24959 (19)0.0260 (3)
H22A0.13290.35520.36230.031*
H22B0.15370.32030.20060.031*
C230.12751 (7)0.39949 (8)0.1219 (2)0.0309 (3)
H23A0.14930.40410.00410.037*
H23B0.07370.36600.11220.037*
C240.14283 (7)0.47494 (8)0.1842 (2)0.0285 (3)
H24A0.12200.49530.09940.034*
H24B0.11880.47000.29920.034*
C250.22545 (8)0.52705 (7)0.2013 (2)0.0285 (3)
H25A0.23450.57540.24440.034*
H25B0.24860.53460.08430.034*
C260.26095 (7)0.49701 (7)0.32742 (19)0.0255 (3)
H26A0.31510.52860.32230.031*
H26B0.24500.49850.44890.031*
O30.22680 (5)0.24709 (5)0.17853 (14)0.0238 (2)
H3O0.2505 (10)0.2949 (11)0.212 (3)0.043 (5)*
N30.27532 (6)0.22223 (6)0.22954 (14)0.0189 (2)
C310.24738 (7)0.15244 (7)0.21487 (18)0.0187 (3)
C320.29640 (8)0.12131 (8)0.25545 (18)0.0243 (3)
H32A0.34190.15960.31280.029*
H32B0.31060.10710.14460.029*
C330.25834 (8)0.05403 (7)0.3758 (2)0.0287 (3)
H33A0.28950.03110.38710.034*
H33B0.25220.06970.49410.034*
C340.18337 (7)0.00219 (7)0.3031 (2)0.0269 (3)
H34A0.18970.02040.18830.032*
H34B0.15930.04460.38420.032*
C350.13473 (8)0.03197 (7)0.2808 (2)0.0278 (3)
H35A0.12580.04710.39700.033*
H35B0.08660.00520.23170.033*
C360.17028 (7)0.09904 (7)0.15881 (19)0.0254 (3)
H36A0.17080.08260.03730.030*
H36B0.14060.12380.15980.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (4)0.0171 (4)0.0370 (6)0.0047 (3)0.0021 (4)0.0052 (4)
N10.0197 (5)0.0174 (5)0.0222 (5)0.0094 (4)0.0005 (5)0.0003 (4)
C110.0197 (5)0.0195 (6)0.0181 (6)0.0094 (5)0.0004 (5)0.0010 (5)
C120.0243 (7)0.0205 (6)0.0417 (8)0.0124 (6)0.0024 (6)0.0020 (6)
C130.0307 (7)0.0223 (6)0.0355 (8)0.0065 (5)0.0005 (6)0.0082 (6)
C140.0187 (6)0.0226 (6)0.0345 (7)0.0020 (5)0.0059 (6)0.0001 (6)
C150.0163 (6)0.0256 (7)0.0517 (9)0.0085 (5)0.0034 (6)0.0044 (7)
C160.0178 (5)0.0219 (6)0.0426 (8)0.0087 (5)0.0002 (6)0.0080 (6)
O20.0164 (4)0.0225 (4)0.0380 (5)0.0106 (4)0.0043 (4)0.0059 (4)
N20.0164 (5)0.0171 (5)0.0227 (6)0.0066 (4)0.0001 (4)0.0002 (4)
C210.0198 (6)0.0198 (6)0.0188 (6)0.0109 (5)0.0006 (5)0.0007 (5)
C220.0179 (7)0.0229 (7)0.0364 (9)0.0096 (6)0.0009 (5)0.0032 (5)
C230.0213 (6)0.0404 (8)0.0327 (8)0.0168 (6)0.0065 (6)0.0102 (6)
C240.0280 (6)0.0415 (8)0.0276 (7)0.0260 (6)0.0011 (6)0.0021 (6)
C250.0320 (7)0.0256 (6)0.0361 (8)0.0204 (6)0.0038 (6)0.0032 (6)
C260.0229 (6)0.0222 (6)0.0346 (8)0.0138 (5)0.0075 (6)0.0080 (6)
O30.0240 (4)0.0180 (4)0.0317 (5)0.0123 (4)0.0072 (4)0.0023 (4)
N30.0184 (5)0.0192 (5)0.0199 (6)0.0101 (4)0.0000 (4)0.0001 (4)
C310.0186 (6)0.0192 (6)0.0187 (6)0.0097 (5)0.0010 (5)0.0003 (5)
C320.0199 (7)0.0237 (7)0.0330 (8)0.0136 (6)0.0031 (5)0.0039 (5)
C330.0380 (8)0.0286 (7)0.0284 (7)0.0234 (6)0.0045 (6)0.0003 (6)
C340.0348 (7)0.0182 (6)0.0285 (7)0.0137 (5)0.0038 (7)0.0033 (6)
C350.0229 (7)0.0166 (6)0.0385 (8)0.0060 (5)0.0025 (6)0.0009 (6)
C360.0239 (6)0.0163 (5)0.0343 (7)0.0087 (5)0.0076 (6)0.0007 (5)
Geometric parameters (Å, º) top
O1—N11.4084 (13)C23—H23B0.9900
O1—H1O0.882 (16)C24—C251.5239 (19)
N1—C111.2768 (16)C24—H24A0.9900
C11—C161.4998 (17)C24—H24B0.9900
C11—C121.5037 (18)C25—C261.5316 (19)
C12—C131.528 (2)C25—H25A0.9900
C12—H12A0.9900C25—H25B0.9900
C12—H12B0.9900C26—H26A0.9900
C13—C141.5202 (19)C26—H26B0.9900
C13—H13A0.9900O3—N31.4111 (13)
C13—H13B0.9900O3—H3O0.90 (2)
C14—C151.5283 (18)N3—C311.2815 (16)
C14—H14A0.9900C31—C361.4975 (16)
C14—H14B0.9900C31—C321.5007 (18)
C15—C161.529 (2)C32—C331.531 (2)
C15—H15A0.9900C32—H32A0.9900
C15—H15B0.9900C32—H32B0.9900
C16—H16A0.9900C33—C341.5222 (19)
C16—H16B0.9900C33—H33A0.9900
O2—N21.4103 (13)C33—H33B0.9900
O2—H2O0.883 (16)C34—C351.5218 (19)
N2—C211.2772 (16)C34—H34A0.9900
C21—C261.5008 (17)C34—H34B0.9900
C21—C221.5014 (18)C35—C361.5335 (19)
C22—C231.532 (2)C35—H35A0.9900
C22—H22A0.9900C35—H35B0.9900
C22—H22B0.9900C36—H36A0.9900
C23—C241.5253 (19)C36—H36B0.9900
C23—H23A0.9900
N1—O1—H1O104.0 (10)C25—C24—H24A109.6
C11—N1—O1113.57 (10)C23—C24—H24A109.6
N1—C11—C16125.79 (11)C25—C24—H24B109.6
N1—C11—C12117.66 (11)C23—C24—H24B109.6
C16—C11—C12116.54 (11)H24A—C24—H24B108.1
C11—C12—C13111.30 (12)C24—C25—C26111.79 (11)
C11—C12—H12A109.4C24—C25—H25A109.3
C13—C12—H12A109.4C26—C25—H25A109.3
C11—C12—H12B109.4C24—C25—H25B109.3
C13—C12—H12B109.4C26—C25—H25B109.3
H12A—C12—H12B108.0H25A—C25—H25B107.9
C14—C13—C12110.97 (12)C21—C26—C25111.29 (11)
C14—C13—H13A109.4C21—C26—H26A109.4
C12—C13—H13A109.4C25—C26—H26A109.4
C14—C13—H13B109.4C21—C26—H26B109.4
C12—C13—H13B109.4C25—C26—H26B109.4
H13A—C13—H13B108.0H26A—C26—H26B108.0
C13—C14—C15110.27 (11)N3—O3—H3O103.6 (11)
C13—C14—H14A109.6C31—N3—O3113.33 (10)
C15—C14—H14A109.6N3—C31—C36125.86 (11)
C13—C14—H14B109.6N3—C31—C32117.24 (12)
C15—C14—H14B109.6C36—C31—C32116.90 (11)
H14A—C14—H14B108.1C31—C32—C33111.69 (11)
C14—C15—C16111.71 (12)C31—C32—H32A109.3
C14—C15—H15A109.3C33—C32—H32A109.3
C16—C15—H15A109.3C31—C32—H32B109.3
C14—C15—H15B109.3C33—C32—H32B109.3
C16—C15—H15B109.3H32A—C32—H32B107.9
H15A—C15—H15B107.9C34—C33—C32110.92 (12)
C11—C16—C15111.45 (12)C34—C33—H33A109.5
C11—C16—H16A109.3C32—C33—H33A109.5
C15—C16—H16A109.3C34—C33—H33B109.5
C11—C16—H16B109.3C32—C33—H33B109.5
C15—C16—H16B109.3H33A—C33—H33B108.0
H16A—C16—H16B108.0C35—C34—C33110.63 (11)
N2—O2—H2O103.9 (10)C35—C34—H34A109.5
C21—N2—O2113.30 (10)C33—C34—H34A109.5
N2—C21—C26126.11 (11)C35—C34—H34B109.5
N2—C21—C22117.32 (11)C33—C34—H34B109.5
C26—C21—C22116.57 (11)H34A—C34—H34B108.1
C21—C22—C23111.04 (12)C34—C35—C36111.54 (11)
C21—C22—H22A109.4C34—C35—H35A109.3
C23—C22—H22A109.4C36—C35—H35A109.3
C21—C22—H22B109.4C34—C35—H35B109.3
C23—C22—H22B109.4C36—C35—H35B109.3
H22A—C22—H22B108.0H35A—C35—H35B108.0
C24—C23—C22110.90 (12)C31—C36—C35111.19 (11)
C24—C23—H23A109.5C31—C36—H36A109.4
C22—C23—H23A109.5C35—C36—H36A109.4
C24—C23—H23B109.5C31—C36—H36B109.4
C22—C23—H23B109.5C35—C36—H36B109.4
H23A—C23—H23B108.0H36A—C36—H36B108.0
C25—C24—C23110.19 (10)
O1—N1—C11—C161.9 (2)C22—C23—C24—C2558.66 (16)
O1—N1—C11—C12176.80 (12)C23—C24—C25—C2657.65 (16)
N1—C11—C12—C13132.54 (14)N2—C21—C26—C25132.95 (13)
C16—C11—C12—C1348.65 (18)C22—C21—C26—C2547.87 (16)
C11—C12—C13—C1453.21 (17)C24—C25—C26—C2151.13 (16)
C12—C13—C14—C1558.60 (17)O3—N3—C31—C362.95 (19)
C13—C14—C15—C1657.61 (18)O3—N3—C31—C32176.31 (11)
N1—C11—C16—C15133.91 (14)N3—C31—C32—C33132.85 (13)
C12—C11—C16—C1547.40 (18)C36—C31—C32—C3347.82 (17)
C14—C15—C16—C1150.90 (17)C31—C32—C33—C3451.75 (15)
O2—N2—C21—C261.11 (18)C32—C33—C34—C3557.97 (16)
O2—N2—C21—C22178.06 (11)C33—C34—C35—C3658.11 (17)
N2—C21—C22—C23131.55 (13)N3—C31—C36—C35133.36 (13)
C26—C21—C22—C2349.19 (16)C32—C31—C36—C3547.37 (17)
C21—C22—C23—C2453.44 (15)C34—C35—C36—C3151.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N30.882 (16)1.896 (16)2.7696 (14)170.4 (14)
O2—H2O···N10.883 (16)1.892 (16)2.7666 (13)170.9 (14)
O3—H3O···N20.90 (2)1.89 (2)2.7800 (14)169.7 (16)

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H11NOC6H11NO
Mr113.16113.16
Crystal system, space groupTrigonal, P3Trigonal, P3
Temperature (K)110100
a, c (Å)20.9830 (2), 7.6436 (1)20.9830 (3), 7.6210 (1)
V3)2914.50 (5)2905.88 (7)
Z1818
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.30 × 0.21 × 0.150.38 × 0.30 × 0.24
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius CAD-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
52734, 4446, 3695 12992, 4440, 3993
Rint0.0510.03
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.03 0.034, 0.089, 1.04
No. of reflections44464440
No. of parameters230230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.210.26, 0.16

Computer programs: COLLECT (Nonius, 1999), HKL-2000 (Otwinowski & Minor, 1997), HKL-2000), EVALCCD (Duisenberg et al., 2003) and SORTAV (Blessing, 1997), HKL-2000, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
O1—N11.4101 (15)N2—C211.2757 (19)
N1—C111.2782 (18)O3—N31.4126 (15)
O2—N21.4112 (15)N3—C311.2859 (19)
C11—N1—O1113.58 (11)N2—C21—C22117.50 (13)
N1—C11—C16125.68 (13)C31—N3—O3113.06 (12)
N1—C11—C12117.79 (13)N3—C31—C36125.78 (13)
C21—N2—O2113.49 (12)N3—C31—C32117.16 (14)
N2—C21—C26125.97 (13)
O1—N1—C11—C161.8 (2)N2—C21—C22—C23131.58 (15)
N1—C11—C12—C13132.61 (16)O3—N3—C31—C362.8 (2)
O2—N2—C21—C261.3 (2)N3—C31—C32—C33133.04 (15)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N30.884 (18)1.884 (18)2.7653 (17)175.3 (16)
O2—H2O···N10.908 (17)1.861 (17)2.7632 (15)171.9 (15)
O3—H3O···N20.89 (2)1.89 (2)2.7834 (17)176.2 (18)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds