Download citation
Download citation
link to html
A `missing' member of the inverse crown ether family, namely μ4-oxo-tetrakis(μ-2,2,6,6-tetra­methyl­piperidinido)­di­mag­nes­ium­(II)­disodium(I), [Na2Mg2O(C9H18N)4], has been synthesized by blocking the alternative aromatic metallation route via the use of sterically hindered 1,3,5-mesityl­ene as a solvent. [Na2Mg2O(NR2)4] (NR2 is 2,2,6,6-tetra­methyl­piperidinide) is shown to form a cationic planar eight-membered ring with alternating metal and N atoms, which captures at its core an oxide guest that lies on an inversion centre [principal dimensions: Na—O = 2.2405 (11) Å, Na—N = 2.445 (3) and 2.572 (3) Å, Mg—O = 1.8673 (9) Å, and Mg—N = 2.032 (2) and 2.063 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011727/fg1696sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011727/fg1696Isup2.hkl
Contains datablock I

CCDC reference: 219545

Comment top

Lithium (and to a lesser extent sodium and potassium) amides find a wide range of uses in synthetic chemistry, and the literature on these compounds is vast [for pertinent examples see Gregory et al. (1991) and Mulvey (1991)]. In constrast, magnesium bis(amides) have been largely neglected to date, although recent studies have demonstrated their effectiveness in the fields of aldehyde/ketone addition (Allan et al., 1997; Allan et al., 1999) and asymmetric synthesis (Henderson et al., 2000). Recently, our group has attempted to combine the properties of the two distinct reagents, namely the relatively low nucleophilicity and strong Brønsted basicity of lithium amides and the selectivity and moderated reactivity of the magnesium bis(amides), into a single compound by preparing mixed alkali-metal–magnesium amides. We have been largely successful in producing a series of mixed-metal synergic amide bases involving three different bulky secondary amides in diisopropyl amide, hexamethyldisilazide (HMDS) and 2,2,6,6-tetramethylpiperidide (TMP), and have isolated a number of unique products from their subsequent reactions with various substrates. For a review of this work see Mulvey (2001). In the absence of a suitable substrate, the bases act as highly efficient oxygen scavengers, thus producing compounds known as `inverse crown ethers', which contain oxo and/or peroxo dianions as `guests' in their eight-membered cationic `host' ring cores. These compounds? have the general formula [M2M'2(NR2)4(O2)x(O)1 − x]. When NR2 is HMDS, the series in which M is Li, Na or K and M' is Mg, and those in which M is Na or K and M' is Zn, have been crystallographically characterized (Mulvey, 2001). Moving to TMP as the amide, the analogous compound involving Li and Mg can be made easily, but with Na (and indeed K), a novel alternative reaction involving the reaction solvent takes place. This reaction affords larger 12-membered host rings, which contain solvent-derived benzene (C6H42−) or toluene (C6H3(CH3)2−) dianions (in the case of Na) and 24-membered rings hosting six benzene- (C6H5) or six toluene-based [C6H4(CH3)] monoanions (in the case of K) (Kennedy et al., 1998; Andrews et al., 2000). Surprisingly, in the toluene cases, the most acidic methyl H atom, which would normally be deprotonated with conventional bases (Schlosser, 2001) under thermodynamic conditions (Broaddus, 1966), is left untouched and only ring deprotonation occurs. With a judicious shift to a different aromatic solvent (1,3,5-mesitylene), whereby ring metallation is highly sterically unfavoured, we were successful in synthesizing, for the first time, the title compound, [Na2Mg2TMP4(O)], (I). No arene metallation was detected.

As with the other eight-membered cationic rings mentioned above, the molecular structure of (I) is based on alternating metal and N atoms, with a guest oxide anion on the inversion centre at the centre of the ring. The ring and its guest are coplanar, while the TMP rings adopt chair conformations, with the Mg atoms in equatorial positions and the Na atoms in axial positions. This conformation leads to the organic ring systems lying perpendicular to the inorganic ring. In general, the structural detail of these species seems to be controlled by the coordination needs of the Mg atoms (Mulvey, 2001). There is some evidence here to support this hypothesis, in that the geometry about the Mg atom in (I) is similar to that of the HMDS analogue (Kennedy et al., 1998), while the Na-atom geometry is relatively flexibile. The Mg—N distances are 2.032 (2) and 2.063 (2) Å in (I), compared to 2.049 (1) and 2.055 (1) Å in the HMDS analogue, while the respective N—Mg—N angles are 144.48 (11) and 141.60 (5)°. The corresponding distances and angles at the Na atom are 2.445 (3) Å, 2.572 (3) Å and 166.57 (9) ° for (I) and 2.549 (1) Å, 2.595 (1) Å and 159.84 (2) ° for the HMDS relative. Little detailed geometrical comparison can be made with the lithium relative [Li2Mg2TMP4(O)], as this structure has disordered metal sites (Kennedy et al., 1998). However, we do note that substituting the larger Na atoms for Li atoms moves the metal further from the oxide core and gives a reflex exocyclic N—Na—N angle. This change, together with the inherent coordinative unsaturation of the three-coordinate Na atoms, allows several short Na···Me contacts to form [the closest is Na···C6 at 3.105 (3) Å].

Experimental top

n-BuNa was synthesized according to the method described by Lochmann et al. (1966) and was then suspended (5 mmol) in hexane (10 ml). A 0.875 M solution of dibutylmagnesium (5 mmol) in heptane was added dropwise, resulting in an exothermic reaction and an orange solution. This solution was stirred overnight, and it gradually darkened and a white precipitate formed. The mixture was filtered through Celite and then all solvents were removed under a vacuum to leave an orange oil. Mesitylene (5 ml) was added, and the mixture was stirred at ambient temperature until all the oil had dissolved and a red solution had formed. Colourless crystals suitable for X-ray analysis formed after a few days from the solution, which had darkened to a near-black colour.

Refinement top

H atoms were refined as riding atoms, with C—H distances in the range 0.98–0.99 Å.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and Collect (Hooft, 1998); cell refinement: DENZO and Collect; data reduction: DENZO and Collect; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with 50% displacement ellipsoids and H atoms omitted for clarity, * = 2 − x, −y, −z.
(I) top
Crystal data top
[Na2Mg2O(C9H18N)4]F(000) = 740
Mr = 671.58Dx = 1.117 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6087 reflections
a = 11.7971 (6) Åθ = 1.9–24.2°
b = 11.5539 (7) ŵ = 0.11 mm1
c = 15.313 (1) ÅT = 123 K
β = 106.956 (2)°Cuboid, colourless
V = 1996.5 (2) Å30.35 × 0.12 × 0.10 mm
Z = 2
Data collection top
Nonius Kappa CCD
diffractometer
2228 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 24.2°, θmin = 1.9°
ϕ and ω scansh = 1313
6087 measured reflectionsk = 1313
3178 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.6466P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Na2Mg2O(C9H18N)4]V = 1996.5 (2) Å3
Mr = 671.58Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.7971 (6) ŵ = 0.11 mm1
b = 11.5539 (7) ÅT = 123 K
c = 15.313 (1) Å0.35 × 0.12 × 0.10 mm
β = 106.956 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2228 reflections with I > 2σ(I)
6087 measured reflectionsRint = 0.046
3178 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3178 reflectionsΔρmin = 0.32 e Å3
212 parameters
Special details top

Experimental. Crystal becomming cloudy whilst mounting. Weak diffraction.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.82034 (10)0.02515 (11)0.01897 (8)0.0358 (4)
Mg11.05554 (8)0.12790 (8)0.07478 (7)0.0238 (3)
O11.00000.00000.00000.0276 (7)
N10.9146 (2)0.1864 (2)0.11675 (16)0.0242 (6)
N20.7710 (2)0.1545 (2)0.08435 (16)0.0250 (6)
C10.9202 (3)0.1622 (3)0.2130 (2)0.0270 (7)
C20.8026 (3)0.1891 (3)0.2327 (2)0.0328 (8)
H2A0.74190.13280.19990.039*
H2B0.81320.18000.29890.039*
C30.7593 (3)0.3108 (3)0.2038 (2)0.0396 (9)
H3A0.68160.32360.21490.048*
H3B0.81620.36800.24020.048*
C40.7473 (3)0.3266 (3)0.1035 (2)0.0341 (8)
H4A0.72370.40760.08600.041*
H4B0.68330.27550.06750.041*
C50.8624 (3)0.2994 (3)0.0792 (2)0.0282 (7)
C60.9417 (3)0.0313 (3)0.2282 (2)0.0337 (8)
H6A0.95410.01780.29440.050*
H6C1.01010.01280.20690.050*
H6B0.86690.00740.19230.050*
C71.0227 (3)0.2238 (3)0.2835 (2)0.0352 (8)
H7A1.09680.21040.26840.053*
H7B1.02990.19320.34460.053*
H7C1.00660.30710.28240.053*
C80.8295 (3)0.2898 (3)0.0250 (2)0.0346 (8)
H8A0.90010.26910.04310.052*
H8B0.79870.36430.05250.052*
H8C0.76890.23000.04620.052*
C90.9478 (3)0.4029 (3)0.1072 (2)0.0351 (8)
H9A0.96250.41850.17250.053*
H9B0.91220.47140.07200.053*
H9C1.02280.38470.09490.053*
C100.7330 (3)0.2369 (3)0.0254 (2)0.0282 (7)
C110.6332 (3)0.1851 (3)0.0083 (2)0.0323 (8)
H11A0.60300.24530.04170.039*
H11B0.66590.12130.05140.039*
C120.5305 (3)0.1388 (3)0.0697 (2)0.0340 (8)
H12A0.47330.09840.04420.041*
H12B0.48880.20430.10730.041*
C130.5754 (3)0.0552 (3)0.1296 (2)0.0322 (8)
H13A0.60420.01640.09450.039*
H13B0.50880.03380.18340.039*
C140.6762 (2)0.1073 (3)0.1622 (2)0.0272 (7)
C150.8412 (3)0.2592 (3)0.0579 (2)0.0313 (8)
H15A0.90290.29880.03810.047*
H15B0.81750.30780.10210.047*
H15C0.87190.18530.08650.047*
C160.6942 (3)0.3575 (3)0.0673 (2)0.0374 (8)
H16A0.61750.35110.11410.056*
H16B0.68710.41070.01940.056*
H16C0.75350.38710.09510.056*
C170.7315 (3)0.0110 (3)0.2042 (2)0.0352 (8)
H17A0.77090.04450.15670.053*
H17B0.66950.02850.25160.053*
H17C0.78980.04430.23140.053*
C180.6222 (3)0.1934 (3)0.2404 (2)0.0375 (8)
H18A0.68590.23620.25520.056*
H18B0.57590.15090.29440.056*
H18C0.57040.24790.22120.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0325 (7)0.0360 (8)0.0397 (8)0.0033 (6)0.0118 (6)0.0092 (6)
Mg10.0230 (5)0.0248 (6)0.0235 (5)0.0011 (4)0.0066 (4)0.0026 (4)
O10.0257 (15)0.0291 (17)0.0291 (17)0.0025 (13)0.0098 (13)0.0062 (14)
N10.0241 (13)0.0273 (14)0.0214 (13)0.0034 (11)0.0070 (11)0.0001 (11)
N20.0204 (13)0.0275 (14)0.0263 (14)0.0001 (11)0.0055 (11)0.0027 (11)
C10.0245 (16)0.0336 (18)0.0225 (16)0.0021 (14)0.0064 (13)0.0032 (14)
C20.0299 (18)0.043 (2)0.0279 (18)0.0033 (15)0.0126 (15)0.0069 (15)
C30.0302 (18)0.046 (2)0.046 (2)0.0040 (16)0.0175 (16)0.0102 (18)
C40.0281 (17)0.0299 (18)0.044 (2)0.0051 (14)0.0102 (15)0.0005 (16)
C50.0267 (16)0.0265 (17)0.0311 (18)0.0010 (14)0.0080 (14)0.0006 (14)
C60.0323 (18)0.041 (2)0.0291 (18)0.0004 (15)0.0109 (15)0.0035 (16)
C70.0334 (18)0.041 (2)0.0296 (18)0.0017 (15)0.0061 (15)0.0030 (16)
C80.0316 (18)0.0353 (19)0.0343 (19)0.0042 (15)0.0054 (15)0.0048 (16)
C90.0355 (18)0.0284 (18)0.040 (2)0.0009 (15)0.0086 (15)0.0008 (16)
C100.0270 (16)0.0298 (18)0.0277 (17)0.0014 (14)0.0079 (14)0.0041 (14)
C110.0321 (18)0.040 (2)0.0273 (17)0.0018 (15)0.0127 (14)0.0056 (15)
C120.0242 (17)0.044 (2)0.0354 (19)0.0004 (15)0.0114 (15)0.0004 (16)
C130.0265 (16)0.039 (2)0.0286 (18)0.0036 (14)0.0043 (14)0.0055 (15)
C140.0240 (16)0.0326 (18)0.0236 (16)0.0003 (14)0.0048 (13)0.0015 (14)
C150.0300 (17)0.0333 (18)0.0318 (18)0.0016 (14)0.0108 (15)0.0069 (15)
C160.0354 (19)0.0323 (19)0.044 (2)0.0038 (15)0.0102 (16)0.0050 (16)
C170.0293 (17)0.043 (2)0.0315 (18)0.0041 (15)0.0062 (15)0.0081 (16)
C180.0309 (18)0.053 (2)0.0252 (18)0.0010 (16)0.0035 (15)0.0000 (16)
Geometric parameters (Å, º) top
Na1—O12.2405 (11)C7—H7A0.98
Na1—N12.445 (3)C7—H7B0.98
Na1—N22.572 (3)C7—H7C0.98
Na1—Mg12.9079 (15)C8—H8A0.98
Na1—Mg1i2.9254 (15)C8—H8B0.98
Na1—C63.105 (3)C8—H8C0.98
Na1—H6B2.5763C9—H9A0.98
Mg1—O11.8673 (9)C9—H9B0.98
Mg1—N2i2.032 (2)C9—H9C0.98
Mg1—N12.063 (2)C10—C111.537 (4)
Mg1—Na1i2.9254 (15)C10—C151.540 (4)
O1—Mg1i1.8673 (9)C10—C161.547 (4)
O1—Na1i2.2405 (11)C11—C121.528 (4)
N1—C11.483 (4)C11—H11A0.99
N1—C51.486 (4)C11—H11B0.99
N2—C101.470 (4)C12—C131.529 (4)
N2—C141.481 (4)C12—H12A0.99
N2—Mg1i2.032 (2)C12—H12B0.99
C1—C21.535 (4)C13—C141.540 (4)
C1—C61.539 (4)C13—H13A0.99
C1—C71.541 (4)C13—H13B0.99
C2—C31.517 (4)C14—C171.524 (4)
C2—H2A0.99C14—C181.545 (4)
C2—H2B0.99C15—H15A0.98
C3—C41.512 (5)C15—H15B0.98
C3—H3A0.99C15—H15C0.98
C3—H3B0.99C16—H16A0.98
C4—C51.542 (4)C16—H16B0.98
C4—H4A0.99C16—H16C0.98
C4—H4B0.99C17—H17A0.98
C5—C81.533 (4)C17—H17B0.98
C5—C91.542 (4)C17—H17C0.98
C6—H6A0.99C18—H18A0.98
C6—H6C0.98C18—H18B0.98
C6—H6B0.99C18—H18C0.98
O1—Na1—N184.24 (6)Na1—C6—H6A159.3
O1—Na1—N282.45 (6)C1—C6—H6C106.3
N1—Na1—N2166.57 (9)Na1—C6—H6C80.1
O1—Na1—Mg139.95 (3)H6A—C6—H6C114.5
N1—Na1—Mg144.29 (6)C1—C6—H6B106.1
N2—Na1—Mg1122.40 (7)Na1—C6—H6B49.8
O1—Na1—Mg1i39.66 (3)H6A—C6—H6B109.5
N1—Na1—Mg1i123.89 (7)H6C—C6—H6B113.6
N2—Na1—Mg1i42.79 (6)C1—C7—H7A109.5
Mg1—Na1—Mg1i79.62 (4)C1—C7—H7B109.5
O1—Na1—C688.15 (7)H7A—C7—H7B109.5
N1—Na1—C650.22 (8)C1—C7—H7C109.5
N2—Na1—C6127.36 (9)H7A—C7—H7C109.5
Mg1—Na1—C664.79 (7)H7B—C7—H7C109.5
Mg1i—Na1—C6111.96 (7)C5—C8—H8A109.5
O1—Na1—H6B100.9C5—C8—H8B109.5
N1—Na1—H6B63.8H8A—C8—H8B109.5
N2—Na1—H6B117.2C5—C8—H8C109.5
Mg1—Na1—H6B81.9H8A—C8—H8C109.5
Mg1i—Na1—H6B115.5H8B—C8—H8C109.5
C6—Na1—H6B17.2C5—C9—H9A109.5
O1—Mg1—N2i109.26 (8)C5—C9—H9B109.5
O1—Mg1—N1106.25 (8)H9A—C9—H9B109.5
N2i—Mg1—N1144.48 (11)C5—C9—H9C109.5
O1—Mg1—Na150.40 (3)H9A—C9—H9C109.5
N2i—Mg1—Na1159.65 (8)H9B—C9—H9C109.5
N1—Mg1—Na155.87 (7)N2—C10—C11110.8 (2)
O1—Mg1—Na1i49.98 (3)N2—C10—C15106.8 (2)
N2i—Mg1—Na1i59.28 (7)C11—C10—C15108.6 (2)
N1—Mg1—Na1i156.21 (8)N2—C10—C16115.7 (2)
Na1—Mg1—Na1i100.38 (4)C11—C10—C16109.1 (2)
Mg1i—O1—Mg1180.00 (6)C15—C10—C16105.5 (2)
Mg1i—O1—Na190.35 (4)C12—C11—C10112.6 (2)
Mg1—O1—Na189.65 (4)C12—C11—H11A109.1
Mg1i—O1—Na1i89.65 (4)C10—C11—H11A109.1
Mg1—O1—Na1i90.35 (4)C12—C11—H11B109.1
Na1—O1—Na1i180.00 (6)C10—C11—H11B109.1
C1—N1—C5116.3 (2)H11A—C11—H11B107.8
C1—N1—Mg1116.22 (17)C11—C12—C13110.8 (2)
C5—N1—Mg1116.64 (17)C11—C12—H12A109.5
C1—N1—Na1110.19 (17)C13—C12—H12A109.5
C5—N1—Na1111.66 (17)C11—C12—H12B109.5
Mg1—N1—Na179.84 (9)C13—C12—H12B109.5
C10—N2—C14116.1 (2)H12A—C12—H12B108.1
C10—N2—Mg1i122.36 (18)C12—C13—C14112.5 (3)
C14—N2—Mg1i120.71 (18)C12—C13—H13A109.1
C10—N2—Na1101.51 (17)C14—C13—H13A109.1
C14—N2—Na1100.38 (16)C12—C13—H13B109.1
Mg1i—N2—Na177.93 (8)C14—C13—H13B109.1
N1—C1—C2112.2 (2)H13A—C13—H13B107.8
N1—C1—C6107.0 (2)N2—C14—C17107.0 (2)
C2—C1—C6106.7 (2)N2—C14—C13110.9 (2)
N1—C1—C7114.0 (2)C17—C14—C13108.5 (3)
C2—C1—C7109.8 (2)N2—C14—C18115.5 (2)
C6—C1—C7106.7 (2)C17—C14—C18105.9 (2)
C3—C2—C1112.2 (3)C13—C14—C18108.7 (2)
C3—C2—H2A109.2C10—C15—H15A109.5
C1—C2—H2A109.2C10—C15—H15B109.5
C3—C2—H2B109.2H15A—C15—H15B109.5
C1—C2—H2B109.2C10—C15—H15C109.5
H2A—C2—H2B107.9H15A—C15—H15C109.5
C4—C3—C2109.4 (3)H15B—C15—H15C109.5
C4—C3—H3A109.8C10—C16—H16A109.5
C2—C3—H3A109.8C10—C16—H16B109.5
C4—C3—H3B109.8H16A—C16—H16B109.5
C2—C3—H3B109.8C10—C16—H16C109.5
H3A—C3—H3B108.2H16A—C16—H16C109.5
C3—C4—C5113.1 (3)H16B—C16—H16C109.5
C3—C4—H4A109.0C14—C17—H17A109.5
C5—C4—H4A109.0C14—C17—H17B109.5
C3—C4—H4B109.0H17A—C17—H17B109.5
C5—C4—H4B109.0C14—C17—H17C109.5
H4A—C4—H4B107.8H17A—C17—H17C109.5
N1—C5—C8106.8 (2)H17B—C17—H17C109.5
N1—C5—C4112.4 (2)C14—C18—H18A109.5
C8—C5—C4107.1 (2)C14—C18—H18B109.5
N1—C5—C9114.2 (2)H18A—C18—H18B109.5
C8—C5—C9107.0 (3)C14—C18—H18C109.5
C4—C5—C9108.9 (3)H18A—C18—H18C109.5
C1—C6—Na182.01 (17)H18B—C18—H18C109.5
C1—C6—H6A106.1
N2i—Mg1—O1—Na1179.18 (9)C1—C2—C3—C456.8 (3)
N1—Mg1—O1—Na11.36 (8)C2—C3—C4—C555.2 (4)
N2i—Mg1—O1—Na1i0.82 (9)C1—N1—C5—C8162.4 (2)
N1—Mg1—O1—Na1i178.64 (8)Mg1—N1—C5—C854.5 (3)
N1—Na1—O1—Mg1i178.89 (7)Na1—N1—C5—C834.7 (2)
N2—Na1—O1—Mg1i0.62 (6)C1—N1—C5—C445.2 (3)
C6—Na1—O1—Mg1i128.69 (7)Mg1—N1—C5—C4171.7 (2)
N1—Na1—O1—Mg11.11 (7)Na1—N1—C5—C482.5 (2)
N2—Na1—O1—Mg1179.38 (6)C1—N1—C5—C979.6 (3)
C6—Na1—O1—Mg151.31 (7)Mg1—N1—C5—C963.5 (3)
O1—Mg1—N1—C1106.35 (19)Na1—N1—C5—C9152.8 (2)
N2i—Mg1—N1—C172.8 (3)C3—C4—C5—N149.3 (4)
O1—Mg1—N1—C5110.50 (18)C3—C4—C5—C8166.3 (3)
N2i—Mg1—N1—C570.4 (3)C3—C4—C5—C978.3 (3)
O1—Mg1—N1—Na11.26 (8)N1—C1—C6—Na125.62 (18)
N2i—Mg1—N1—Na1179.61 (15)C2—C1—C6—Na194.6 (2)
O1—Na1—N1—C1113.33 (17)C7—C1—C6—Na1148.1 (2)
N2—Na1—N1—C1105.9 (4)O1—Na1—C6—C1103.07 (16)
C6—Na1—N1—C120.93 (16)N1—Na1—C6—C119.03 (15)
O1—Na1—N1—C5115.79 (17)N2—Na1—C6—C1177.88 (15)
N2—Na1—N1—C5123.2 (4)C14—N2—C10—C1153.3 (3)
C6—Na1—N1—C5151.8 (2)Mg1i—N2—C10—C11137.3 (2)
O1—Na1—N1—Mg11.02 (6)Na1—N2—C10—C1154.4 (2)
N2—Na1—N1—Mg18.4 (4)C14—N2—C10—C15171.4 (2)
C6—Na1—N1—Mg193.42 (11)Mg1i—N2—C10—C1519.2 (3)
O1—Na1—N2—C10120.41 (16)Na1—N2—C10—C1563.7 (2)
N1—Na1—N2—C10113.0 (4)C14—N2—C10—C1671.6 (3)
C6—Na1—N2—C1038.6 (2)Mg1i—N2—C10—C1697.8 (3)
O1—Na1—N2—C14120.04 (15)Na1—N2—C10—C16179.3 (2)
N1—Na1—N2—C14127.4 (4)N2—C10—C11—C1252.2 (3)
C6—Na1—N2—C14158.13 (15)C15—C10—C11—C12169.2 (3)
O1—Na1—N2—Mg1i0.58 (6)C16—C10—C11—C1276.3 (3)
N1—Na1—N2—Mg1i8.0 (4)C10—C11—C12—C1352.6 (4)
C6—Na1—N2—Mg1i82.41 (11)C11—C12—C13—C1452.1 (4)
C5—N1—C1—C247.0 (3)C10—N2—C14—C17171.2 (2)
Mg1—N1—C1—C2169.70 (19)Mg1i—N2—C14—C1719.3 (3)
Na1—N1—C1—C281.3 (2)Na1—N2—C14—C1762.8 (2)
C5—N1—C1—C6163.8 (2)C10—N2—C14—C1353.0 (3)
Mg1—N1—C1—C653.0 (3)Mg1i—N2—C14—C13137.5 (2)
Na1—N1—C1—C635.4 (2)Na1—N2—C14—C1355.4 (2)
C5—N1—C1—C778.5 (3)C10—N2—C14—C1871.2 (3)
Mg1—N1—C1—C764.8 (3)Mg1i—N2—C14—C1898.3 (3)
Na1—N1—C1—C7153.1 (2)Na1—N2—C14—C18179.6 (2)
N1—C1—C2—C352.6 (3)C12—C13—C14—N251.3 (3)
C6—C1—C2—C3169.5 (3)C12—C13—C14—C17168.6 (3)
C7—C1—C2—C375.2 (3)C12—C13—C14—C1876.7 (3)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Na2Mg2O(C9H18N)4]
Mr671.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)11.7971 (6), 11.5539 (7), 15.313 (1)
β (°) 106.956 (2)
V3)1996.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.12 × 0.10
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6087, 3178, 2228
Rint0.046
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.141, 1.04
No. of reflections3178
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: DENZO (Otwinowski & Minor, 1997) and Collect (Hooft, 1998), DENZO and Collect, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Na1—O12.2405 (11)Mg1—O11.8673 (9)
Na1—N12.445 (3)Mg1—N2i2.032 (2)
Na1—N22.572 (3)Mg1—N12.063 (2)
O1—Na1—N184.24 (6)N2i—Mg1—N1144.48 (11)
O1—Na1—N282.45 (6)Mg1i—O1—Na190.35 (4)
N1—Na1—N2166.57 (9)Mg1—O1—Na189.65 (4)
O1—Mg1—N2i109.26 (8)Mg1—N1—Na179.84 (9)
O1—Mg1—N1106.25 (8)Mg1i—N2—Na177.93 (8)
Symmetry code: (i) x+2, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds