Download citation
Download citation
link to html
The title novel vanadium borophosphate compound, bis(1,4-diazo­nia­[2.2.2]­octane) μ3-oxo-oxopenta-μ-phosphato-diboronvanadium monohydrate phosphoric acid solvate, containing the cluster anion [VO(PO3OH)5B2O]4−, has been synthesized under mild hydro­thermal conditions. Extensive O—H...O and N—H...O hydrogen bonding is observed between the molecular units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002683/fg1684sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002683/fg1684Isup2.hkl
Contains datablock I

CCDC reference: 207995

Comment top

Borophosphates with anionic [BxPyOz]p- frameworks or isolated clusters represent a rather broad class of compounds that have received much attention recently (Kniep et al., 1999; Cheetham et al., 1999; Bontchev et al., 1999b). In particular, several cluster compounds containing V have been synthesized and structurally characterized (Bontchev et al., 1999b; Bontchev et al., 2000a; Bontchev et al., 2000b). The clusters are mostly anionic species, built up of tetrahedral PO4 units in combination with triangular BO3 or tetrahedral BO4 units. Most of these vanadium borophosphate clusters contain several V atoms in each cluster unit. Our work has focused on the synthesis of metal borophosphates that exhibit structure-dependent magnetic properties (Kritikos et al., 2001). The title borophosphate, (N2C6H14)2[VO(PO3OH)5B2O]·H3PO4·H2O, (I), containing one VO2+ unit, is one of few borophosphate compounds containing a single VO2+ centre within the borophosphate anion. Hence, to the best of our knowledge, the only described example of a borophosphate cluster containing a single V atom is the anion [VO(PO3OH)4(B3O3OH)]4−, which is present in (N2C6H14)2[VO(PO3OH)4(B3O3OH)]·4H2O (Bontchev et al., 1999a Is this the correct reference? The original CIF simply stated 1999). Although the two cluster anions have the same charge, they exhibit different P:B ratios; 5:3 for (I) and 4:3 for the Bontchev cluster. \sch

The geometry of the molecular anionic unit [VO(PO3OH)5B2O]4− in (I) (Fig. 1) is, however, rather similar to the Bontchev anionic cluster. The V atom is hexacoordinated, with one short terminal VO bond, one elongated V—O contact to an O atom that is only bonded to the B atoms, and four intermediate-range V—O bonds where the O atoms belong to the cluster phosphate groups. All five P atoms in the borophosphate anion exhibit tetrahedral coordination. One of the two terminal P—O bonds in each tetrahedron is significantly elongated due to protonation [1.535 (2)–1.572 (2) Å].

All H-atom positions were unequivocally revealed in difference maps and show that atoms O4, O8, O12, O16 and O20 in the phosphate groups are protonated. Bond-valence sum (BVS) calculations (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) were also made and are in accord with the protonation pattern obtained from the difference maps.

The solid state structure of (I) is rather complex. The asymmetric unit consists of a borophosphate [VO(PO3OH)5B2O]4− anion that is charge-balanced by two crystallographically independent (N2C6H14)2+ cations, and two solvated molecules, H3PO4 and H2O. These molecular species are connected to each other through a network of homonuclear O—H···O and heteronuclear N—H···O hydrogen bonds. In particular, intermolecular pair-wise interactions, of which some are charge assisted, exist between the following units [dabco is bis(1,4-diaza[2.2.2]octane) and VBPO is the vanadium borophosphate]: dabco-VBPO cluster, VBPO cluster-VBPO cluster, H3PO4—VBPO cluster, dabco-H3PO4 and dabco-H2O. Intramolecular O12···O15 [2.623 (3) Å] and O20···O6 [2.585 (3) Å] hydrogen bonds, classified as self (S) patterns, are present within the VBPO cluster (Fig. 2).

Looking at larger structural units reveals that several hydrogen-bond patterns can be distinguished. Some of the hydrogen bonds that propagate from the borophosphate anion in the asymmetric unit of (I) are shown in Fig. 2. A number of rings, (R), or chains of rings, (R)[C] (Bernstein et al., 1995), are present in the structure. In particular, several rings emanate from the H3PO4 molecule. Particularly noteworthy is the very short O25···O18v distance [2.428 (4) Å; symmetry code: (v) 1 − x, 1 − y, z], indicating the presence of a very strong hydrogen bond between H3PO4 and VBPO units.

Table 2. Short N—H···O and O—H···O contacts (Å, °)

Experimental top

NH4VO3 and dabco (1,4-diazabicyclo[2,2,2]octane)were purchased from ABCR and Aldrich, respectively, and used as received. All other chemicals used were from commercial sources and of reagent grade quality. In a typical experiment, a mixture of NH4VO3 (0.117 g, 1.00 mmol), H3PO4 (0.40 ml, 6.88 mmol), ZnCl2 (0.267 g, 1.96 mmol), C6H12N2 (dabco; 0.120 g, 1.07 mmol), H3BO3 (0.130 g, 2.10 mmol) and H2O (2.00 ml, 111 mmol) was added to a 5 ml Teflon-lined stainless steel autoclave and heated under autogenous pressure (453 K, 3 d). The initial pH of the solution was approximately 2.5, and after completion of the reaction the pH value had decreased to 2.0. After temperature quenching, the reaction mixture was left to stand undisturbed at room temperature. During this period of crystallization, the viscosity of the liquid increased markedly. After 7–14 d, block-shaped pale-blue crystals of (I) appeared. A scanning electron microscope (SEM, Jeol 820) equipped for energy dispersive analysis of X-ray spectra (EDS, LINK AN 10000) was used for determining the elemental atomic ratios between the elements V and P in (I). The result was a V:P ratio of 1:5.98. The analyses were performed on the same crystals that were used for single-crystal X-ray diffraction. It has been understood that the anionic borophosphate complex can only be formed under synthetic conditions where divalent metal ions such as Zn2+ and Mg2+ are present in the reaction mixture. However, none of these ions could be detected in the EDS analysis of (I). In the case of Co2+, the EDS analysis showed a partial incorporation just above the detection limit. This indicates that a partial substitution of the VO2+ site for other divalent cations is possible.

Refinement top

All H atoms, except H27A and H27B, were constrained to idealized geometries, with C—H distances of 0.97 Å, N—H distances of 0.91 Å and O—H distances of 0.82 Å Is this added text OK?. All H atoms were assigned isotropic displacement parameters of 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: IPDS (Stoe & Cie, 1997); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 2003) and DIAMOND (Brandenburg, 2001).

Figures top
[Figure 1] Fig. 1. A view of the [VO(PO3OH)5B2O]4− anion in (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view showing some of the hydrogen bonds from the [VO(PO3OH)5B2O]4− anion in (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms marked with an asterisk (*), double asterisk (**) or hash (#) are at the symmetry positions (1 − x, 1 − y, −z), (2 − x, 1 − y, −z) and (1 + x, 3/2 − y, z − 1/2), respectively.
µ3-oxo-oxopenta-µ-phosphato-diboron vanadium bis(1,4-diazonia[2.2.2]octane) monohydrate phosphoric acid solvate top
Crystal data top
(N2C6H14)2[VO(PO4H)5B2O]·H2O·H3PO4F(000) = 1908
Mr = 928.84Dx = 1.906 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5000 reflections
a = 13.4882 (15) Åθ = 2.3–28.0°
b = 12.2569 (13) ŵ = 0.71 mm1
c = 19.6281 (18) ÅT = 293 K
β = 94.113 (12)°Block-shaped, pale blue
V = 3236.6 (6) Å30.19 × 0.12 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
7428 independent reflections
Radiation source: fine-focus sealed tube6006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.3°
ϕ oscillation scansh = 1717
Absorption correction: numerical
X-SHAPE and X-RED; Stoe & Cie, 1997)
k = 1616
Tmin = 0.879, Tmax = 0.938l = 2423
30473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.9891P]
where P = (Fo2 + 2Fc2)/3
7428 reflections(Δ/σ)max = 0.001
483 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
(N2C6H14)2[VO(PO4H)5B2O]·H2O·H3PO4V = 3236.6 (6) Å3
Mr = 928.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4882 (15) ŵ = 0.71 mm1
b = 12.2569 (13) ÅT = 293 K
c = 19.6281 (18) Å0.19 × 0.12 × 0.10 mm
β = 94.113 (12)°
Data collection top
Stoe IPDS
diffractometer
7428 independent reflections
Absorption correction: numerical
X-SHAPE and X-RED; Stoe & Cie, 1997)
6006 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.938Rint = 0.039
30473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.81 e Å3
7428 reflectionsΔρmin = 0.66 e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.71828 (3)0.78670 (3)0.16028 (2)0.01453 (10)
P10.74382 (4)0.96597 (5)0.08808 (3)0.01678 (13)
P20.94315 (4)0.86147 (5)0.12056 (3)0.01900 (14)
P30.68651 (4)1.04620 (5)0.14519 (3)0.01593 (13)
P40.52714 (4)0.78683 (5)0.05567 (3)0.01727 (13)
P50.78963 (5)0.61096 (5)0.04647 (3)0.01956 (14)
P60.23020 (4)0.63720 (5)0.13206 (3)0.01714 (13)
O10.82104 (13)0.96239 (14)0.14012 (10)0.0235 (4)
O20.78353 (13)1.01609 (13)0.01967 (9)0.0208 (4)
O30.70998 (14)0.84849 (15)0.07304 (10)0.0254 (4)
O40.65465 (15)1.03185 (18)0.11871 (11)0.0329 (5)
H410.61681.04490.08890.049*
O50.90059 (12)0.92684 (15)0.05752 (10)0.0230 (4)
O61.00231 (13)0.76595 (16)0.09603 (12)0.0322 (5)
O70.86254 (12)0.83116 (16)0.16704 (10)0.0249 (4)
O81.01490 (14)0.93903 (17)0.16472 (11)0.0302 (4)
H811.06560.94930.14500.045*
O90.70167 (13)1.14126 (13)0.19431 (9)0.0210 (4)
O100.77572 (13)1.04328 (13)0.09928 (10)0.0216 (4)
O110.67750 (13)0.93840 (14)0.18215 (10)0.0229 (4)
O120.58899 (14)1.07296 (16)0.10113 (11)0.0294 (4)
H1210.56691.01700.08280.044*
O130.57789 (13)0.75713 (16)0.12460 (10)0.0262 (4)
O140.59685 (13)0.76145 (17)0.00221 (10)0.0275 (4)
O150.48945 (14)0.90274 (16)0.05260 (12)0.0317 (5)
O160.44099 (14)0.70462 (17)0.03714 (10)0.0304 (4)
H1610.41290.68960.07160.046*
O170.76581 (16)0.69934 (15)0.00856 (10)0.0305 (4)
O180.74692 (18)0.50114 (16)0.02499 (12)0.0409 (6)
O190.75430 (16)0.64764 (14)0.11394 (10)0.0300 (4)
O200.90470 (15)0.59582 (19)0.05141 (13)0.0414 (6)
H2010.93170.65470.06000.062*
O210.72902 (12)0.86664 (13)0.05172 (9)0.0175 (3)
O220.71480 (14)0.73386 (15)0.23475 (10)0.0242 (4)
O230.34197 (12)0.64073 (15)0.13645 (11)0.0264 (4)
O240.19049 (17)0.5908 (3)0.19777 (13)0.0604 (9)
H240.23100.60230.23010.091*
O250.18085 (19)0.5662 (3)0.07675 (14)0.0564 (8)
H250.21550.56400.04410.085*
O260.19260 (17)0.7542 (2)0.1237 (2)0.0764 (11)
H260.13640.75380.10470.115*
O270.80419 (19)0.49715 (19)0.21476 (13)0.0406 (6)
H27A0.805 (3)0.506 (4)0.257 (3)0.061*
H27B0.787 (3)0.556 (4)0.194 (2)0.061*
N10.57059 (14)0.30495 (16)0.18197 (11)0.0183 (4)
H10.60800.24380.18980.022*
N20.46899 (16)0.47310 (17)0.16013 (12)0.0245 (5)
H20.43200.53450.15240.029*
C10.40085 (18)0.3763 (2)0.16156 (16)0.0267 (6)
H1A0.35680.37450.12030.032*
H1B0.36060.38140.20050.032*
C20.6077 (2)0.3651 (2)0.12248 (15)0.0268 (6)
H2A0.61030.31630.08380.032*
H2B0.67420.39250.13420.032*
C30.46439 (19)0.2723 (2)0.16676 (17)0.0278 (6)
H3A0.44290.22570.20290.033*
H3B0.45720.23220.12410.033*
C40.5790 (2)0.3747 (2)0.24460 (15)0.0302 (6)
H4A0.64840.38600.25940.036*
H4B0.54670.33940.28130.036*
C50.5290 (2)0.4839 (2)0.22713 (17)0.0321 (6)
H5A0.48620.50430.26270.039*
H5B0.57900.54030.22400.039*
C60.5376 (2)0.4598 (2)0.10401 (17)0.0337 (7)
H6A0.57540.52620.09880.040*
H6B0.49970.44480.06120.040*
N30.05811 (18)0.71573 (19)0.35649 (13)0.0298 (5)
H30.10590.66330.35660.036*
N40.07089 (18)0.8594 (2)0.35558 (16)0.0378 (6)
H40.11840.91200.35530.045*
B10.79514 (19)0.9607 (2)0.04696 (14)0.0164 (5)
B20.70014 (19)0.7974 (2)0.00588 (14)0.0163 (5)
C70.0040 (3)0.6962 (2)0.29747 (18)0.0404 (8)
H7A0.03610.70450.25480.049*
H7B0.03070.62260.29950.049*
C80.1073 (2)0.8252 (3)0.34921 (17)0.0345 (6)
H8A0.14390.84020.38900.041*
H8B0.15390.82580.30920.041*
C90.0881 (2)0.7787 (3)0.3015 (2)0.0414 (8)
H9A0.15100.74180.31190.050*
H9B0.09090.81540.25790.050*
C100.0051 (3)0.7097 (3)0.42208 (18)0.0422 (8)
H10A0.04110.64120.42490.051*
H10B0.03600.71430.46050.051*
C110.0780 (3)0.8053 (4)0.4234 (2)0.0577 (11)
H11A0.06210.85710.45840.069*
H11B0.14520.77910.43400.069*
C120.0287 (2)0.9114 (3)0.3423 (2)0.0499 (10)
H12A0.03470.94220.29670.060*
H12B0.03680.96970.37490.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01776 (19)0.01314 (17)0.0130 (2)0.00111 (13)0.00357 (14)0.00006 (13)
P10.0153 (3)0.0202 (3)0.0152 (3)0.0021 (2)0.0032 (2)0.0048 (2)
P20.0126 (3)0.0221 (3)0.0223 (4)0.0029 (2)0.0009 (2)0.0011 (2)
P30.0168 (3)0.0135 (3)0.0178 (3)0.0022 (2)0.0031 (2)0.0031 (2)
P40.0130 (3)0.0221 (3)0.0171 (3)0.0029 (2)0.0038 (2)0.0009 (2)
P50.0259 (3)0.0148 (3)0.0188 (4)0.0029 (2)0.0074 (2)0.0030 (2)
P60.0130 (3)0.0200 (3)0.0188 (3)0.0009 (2)0.0038 (2)0.0014 (2)
O10.0230 (9)0.0248 (9)0.0239 (11)0.0006 (7)0.0102 (7)0.0015 (7)
O20.0286 (9)0.0169 (8)0.0167 (9)0.0029 (7)0.0004 (7)0.0045 (6)
O30.0354 (10)0.0247 (9)0.0159 (10)0.0107 (7)0.0009 (7)0.0037 (7)
O40.0281 (10)0.0471 (12)0.0235 (11)0.0175 (9)0.0018 (8)0.0080 (9)
O50.0161 (8)0.0313 (9)0.0221 (10)0.0043 (7)0.0047 (6)0.0065 (7)
O60.0177 (9)0.0276 (10)0.0512 (14)0.0088 (7)0.0028 (8)0.0028 (9)
O70.0171 (8)0.0348 (10)0.0224 (11)0.0012 (7)0.0002 (7)0.0076 (8)
O80.0205 (9)0.0423 (11)0.0280 (12)0.0088 (8)0.0036 (7)0.0063 (9)
O90.0269 (9)0.0165 (8)0.0195 (10)0.0049 (6)0.0008 (7)0.0052 (6)
O100.0244 (9)0.0179 (8)0.0234 (10)0.0026 (6)0.0085 (7)0.0041 (7)
O110.0301 (9)0.0160 (8)0.0239 (10)0.0032 (7)0.0106 (7)0.0002 (7)
O120.0255 (9)0.0250 (9)0.0363 (12)0.0045 (7)0.0081 (8)0.0065 (8)
O130.0223 (9)0.0333 (10)0.0225 (11)0.0093 (7)0.0011 (7)0.0057 (7)
O140.0182 (8)0.0427 (11)0.0226 (11)0.0101 (8)0.0075 (7)0.0088 (8)
O150.0216 (9)0.0275 (10)0.0458 (14)0.0054 (7)0.0002 (8)0.0011 (9)
O160.0236 (9)0.0428 (11)0.0253 (11)0.0187 (8)0.0059 (7)0.0040 (8)
O170.0448 (12)0.0275 (10)0.0204 (11)0.0144 (8)0.0091 (8)0.0001 (7)
O180.0613 (14)0.0228 (10)0.0424 (14)0.0152 (9)0.0309 (11)0.0145 (9)
O190.0566 (13)0.0168 (8)0.0179 (11)0.0090 (8)0.0120 (8)0.0007 (7)
O200.0279 (10)0.0380 (12)0.0580 (16)0.0110 (9)0.0000 (10)0.0174 (11)
O210.0200 (8)0.0172 (8)0.0155 (9)0.0035 (6)0.0025 (6)0.0010 (6)
O220.0322 (10)0.0243 (9)0.0167 (10)0.0024 (7)0.0070 (7)0.0019 (7)
O230.0142 (8)0.0298 (10)0.0358 (12)0.0052 (7)0.0065 (7)0.0094 (8)
O240.0326 (12)0.125 (3)0.0235 (14)0.0378 (14)0.0002 (9)0.0155 (14)
O250.0429 (13)0.085 (2)0.0431 (17)0.0204 (13)0.0183 (11)0.0418 (14)
O260.0212 (11)0.0244 (11)0.182 (4)0.0070 (9)0.0037 (16)0.0134 (16)
O270.0602 (15)0.0323 (11)0.0291 (13)0.0194 (10)0.0019 (10)0.0007 (9)
N10.0184 (9)0.0166 (9)0.0197 (11)0.0050 (7)0.0009 (7)0.0004 (7)
N20.0205 (10)0.0193 (10)0.0344 (14)0.0060 (8)0.0075 (9)0.0030 (9)
C10.0171 (11)0.0249 (12)0.0382 (17)0.0009 (9)0.0027 (10)0.0020 (11)
C20.0262 (13)0.0319 (14)0.0237 (15)0.0068 (10)0.0118 (10)0.0024 (10)
C30.0190 (12)0.0209 (12)0.0433 (18)0.0019 (9)0.0012 (11)0.0010 (11)
C40.0380 (15)0.0307 (14)0.0215 (16)0.0036 (11)0.0015 (11)0.0072 (11)
C50.0291 (14)0.0274 (13)0.0401 (18)0.0036 (11)0.0052 (12)0.0138 (12)
C60.0351 (15)0.0320 (14)0.0357 (18)0.0082 (12)0.0155 (12)0.0137 (12)
N30.0333 (12)0.0299 (12)0.0271 (14)0.0146 (9)0.0088 (10)0.0036 (9)
N40.0233 (11)0.0228 (11)0.068 (2)0.0050 (9)0.0106 (11)0.0034 (11)
B10.0175 (12)0.0160 (11)0.0162 (14)0.0004 (9)0.0035 (9)0.0005 (9)
B20.0157 (11)0.0197 (12)0.0139 (14)0.0009 (9)0.0041 (9)0.0008 (9)
C70.058 (2)0.0294 (15)0.037 (2)0.0068 (13)0.0237 (15)0.0078 (12)
C80.0234 (13)0.0421 (16)0.0381 (19)0.0021 (12)0.0033 (11)0.0001 (13)
C90.0385 (17)0.0365 (16)0.052 (2)0.0041 (13)0.0246 (15)0.0046 (14)
C100.060 (2)0.0374 (17)0.0287 (19)0.0018 (15)0.0016 (14)0.0057 (13)
C110.052 (2)0.070 (3)0.048 (3)0.0164 (19)0.0158 (17)0.0132 (19)
C120.0315 (16)0.0265 (15)0.094 (3)0.0082 (12)0.0169 (17)0.0003 (16)
Geometric parameters (Å, º) top
V1—O221.6026 (19)O27—H27B0.85 (5)
V1—O111.9944 (17)N1—C41.495 (3)
V1—O132.0043 (18)N1—C31.497 (3)
V1—O192.0079 (18)N1—C21.497 (3)
V1—O72.0159 (17)N1—H10.9100
V1—O212.3592 (17)N2—C61.498 (3)
P1—O11.5107 (18)N2—C51.500 (4)
P1—O41.5350 (19)N2—C11.502 (3)
P1—O21.5376 (19)N2—H20.9100
P1—O31.5454 (18)C1—C31.536 (4)
P2—O61.5147 (19)C1—H1A0.9700
P2—O71.5149 (18)C1—H1B0.9700
P2—O51.5493 (19)C2—C61.523 (4)
P2—O81.572 (2)C2—H2A0.9700
P3—O111.5164 (18)C2—H2B0.9700
P3—O91.5168 (17)C3—H3A0.9700
P3—O101.5546 (18)C3—H3B0.9700
P3—O121.5564 (19)C4—C51.527 (4)
P4—O151.509 (2)C4—H4A0.9700
P4—O131.516 (2)C4—H4B0.9700
P4—O141.5570 (19)C5—H5A0.9700
P4—O161.5612 (18)C5—H5B0.9700
P5—O191.5077 (19)C6—H6A0.9700
P5—O181.512 (2)C6—H6B0.9700
P5—O171.547 (2)N3—C101.494 (4)
P5—O201.559 (2)N3—C71.497 (4)
P6—O231.5045 (18)N3—C81.499 (4)
P6—O251.509 (2)N3—H30.9100
P6—O261.526 (2)N4—C91.482 (4)
P6—O241.540 (2)N4—C111.483 (5)
O2—B11.472 (3)N4—C121.492 (4)
O3—B21.474 (3)N4—H40.9100
O4—H410.8200C7—C91.518 (4)
O5—B11.482 (3)C7—H7A0.9700
O8—H810.8200C7—H7B0.9700
O10—B11.478 (3)C8—C121.510 (4)
O12—H1210.8200C8—H8A0.9700
O14—B21.468 (3)C8—H8B0.9700
O16—H1610.8200C9—H9A0.9700
O17—B21.497 (3)C9—H9B0.9700
O20—H2010.8200C10—C111.528 (5)
O21—B21.444 (3)C10—H10A0.9700
O21—B11.465 (3)C10—H10B0.9700
O24—H240.8200C11—H11A0.9700
O25—H250.8200C11—H11B0.9700
O26—H260.8200C12—H12A0.9700
O27—H27A0.83 (5)C12—H12B0.9700
O22—V1—O1198.85 (9)N1—C2—C6108.9 (2)
O22—V1—O1399.03 (9)N1—C2—H2A109.9
O11—V1—O1388.60 (8)C6—C2—H2A109.9
O22—V1—O1995.39 (9)N1—C2—H2B109.9
O11—V1—O19165.53 (8)C6—C2—H2B109.9
O13—V1—O1986.65 (9)H2A—C2—H2B108.3
O22—V1—O798.07 (9)N1—C3—C1108.2 (2)
O11—V1—O790.78 (8)N1—C3—H3A110.1
O13—V1—O7162.78 (8)C1—C3—H3A110.1
O19—V1—O789.74 (9)N1—C3—H3B110.1
O22—V1—O21178.02 (8)C1—C3—H3B110.1
O11—V1—O2180.97 (7)H3A—C3—H3B108.4
O13—V1—O2182.95 (7)N1—C4—C5108.1 (2)
O19—V1—O2184.88 (7)N1—C4—H4A110.1
O7—V1—O2179.96 (7)C5—C4—H4A110.1
O1—P1—O4108.02 (11)N1—C4—H4B110.1
O1—P1—O2112.84 (10)C5—C4—H4B110.1
O4—P1—O2110.24 (11)H4A—C4—H4B108.4
O1—P1—O3109.24 (11)N2—C5—C4108.7 (2)
O4—P1—O3109.33 (12)N2—C5—H5A109.9
O2—P1—O3107.13 (10)C4—C5—H5A109.9
O6—P2—O7114.78 (12)N2—C5—H5B109.9
O6—P2—O5108.62 (12)C4—C5—H5B109.9
O7—P2—O5111.53 (10)H5A—C5—H5B108.3
O6—P2—O8108.97 (11)N2—C6—C2108.3 (2)
O7—P2—O8104.85 (11)N2—C6—H6A110.0
O5—P2—O8107.80 (11)C2—C6—H6A110.0
O11—P3—O9112.14 (10)N2—C6—H6B110.0
O11—P3—O10110.44 (10)C2—C6—H6B110.0
O9—P3—O10108.14 (10)H6A—C6—H6B108.4
O11—P3—O12110.85 (11)C10—N3—C7110.0 (3)
O9—P3—O12105.14 (10)C10—N3—C8110.4 (2)
O10—P3—O12109.96 (12)C7—N3—C8109.8 (2)
O15—P4—O13113.01 (12)C10—N3—H3108.9
O15—P4—O14112.23 (12)C7—N3—H3108.9
O13—P4—O14110.21 (11)C8—N3—H3108.9
O15—P4—O16110.82 (12)C9—N4—C11110.0 (3)
O13—P4—O16109.50 (11)C9—N4—C12110.2 (3)
O14—P4—O16100.34 (10)C11—N4—C12110.3 (3)
O19—P5—O18111.86 (12)C9—N4—H4108.8
O19—P5—O17109.97 (10)C11—N4—H4108.8
O18—P5—O17111.88 (13)C12—N4—H4108.8
O19—P5—O20110.90 (13)O21—B1—O2113.1 (2)
O18—P5—O20105.60 (13)O21—B1—O10110.82 (19)
O17—P5—O20106.42 (13)O2—B1—O10106.80 (19)
O23—P6—O25116.51 (13)O21—B1—O5110.66 (19)
O23—P6—O26107.65 (12)O2—B1—O5107.07 (19)
O25—P6—O26109.8 (2)O10—B1—O5108.1 (2)
O23—P6—O24111.71 (12)O21—B2—O14109.98 (19)
O25—P6—O24103.17 (16)O21—B2—O3114.5 (2)
O26—P6—O24107.7 (2)O14—B2—O3108.5 (2)
B1—O2—P1126.88 (15)O21—B2—O17111.9 (2)
B2—O3—P1127.82 (17)O14—B2—O17109.1 (2)
P1—O4—H41109.5O3—B2—O17102.60 (19)
B1—O5—P2123.62 (16)N3—C7—C9108.1 (2)
P2—O7—V1139.26 (12)N3—C7—H7A110.1
P2—O8—H81109.5C9—C7—H7A110.1
B1—O10—P3126.97 (15)N3—C7—H7B110.1
P3—O11—V1132.57 (11)C9—C7—H7B110.1
P3—O12—H121109.5H7A—C7—H7B108.4
P4—O13—V1128.55 (11)N3—C8—C12109.0 (2)
B2—O14—P4126.92 (17)N3—C8—H8A109.9
P4—O16—H161109.5C12—C8—H8A109.9
B2—O17—P5129.18 (17)N3—C8—H8B109.9
P5—O19—V1138.85 (12)C12—C8—H8B109.9
P5—O20—H201109.5H8A—C8—H8B108.3
B2—O21—B1122.93 (19)N4—C9—C7109.1 (2)
B2—O21—V1115.63 (14)N4—C9—H9A109.9
B1—O21—V1117.49 (14)C7—C9—H9A109.9
P6—O24—H24109.5N4—C9—H9B109.9
P6—O25—H25109.5C7—C9—H9B109.9
P6—O26—H26109.5H9A—C9—H9B108.3
H27A—O27—H27B111 (4)N3—C10—C11107.6 (3)
C4—N1—C3109.4 (2)N3—C10—H10A110.2
C4—N1—C2110.5 (2)C11—C10—H10A110.2
C3—N1—C2110.2 (2)N3—C10—H10B110.2
C4—N1—H1108.9C11—C10—H10B110.2
C3—N1—H1108.9H10A—C10—H10B108.5
C2—N1—H1108.9N4—C11—C10109.1 (3)
C6—N2—C5109.3 (2)N4—C11—H11A109.9
C6—N2—C1109.8 (2)C10—C11—H11A109.9
C5—N2—C1110.2 (2)N4—C11—H11B109.9
C6—N2—H2109.1C10—C11—H11B109.9
C5—N2—H2109.1H11A—C11—H11B108.3
C1—N2—H2109.1N4—C12—C8108.4 (3)
N2—C1—C3108.5 (2)N4—C12—H12A110.0
N2—C1—H1A110.0C8—C12—H12A110.0
C3—C1—H1A110.0N4—C12—H12B110.0
N2—C1—H1B110.0C8—C12—H12B110.0
C3—C1—H1B110.0H12A—C12—H12B108.4
H1A—C1—H1B108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.911.782.674 (3)167
N3—H3···O1ii0.911.832.728 (3)167
N2—H2···O230.911.792.694 (3)171
N4—H4···O27iii0.912.072.816 (4)139
O16—H161···O230.821.752.563 (3)170
O24—H24···O9iv0.821.752.558 (3)169
O25—H25···O18v0.821.682.428 (4)150
O26—H26···O6vi0.821.812.589 (3)158
O27—H27A···O1vii0.84 (6)2.05 (6)2.884 (3)174 (3)
O27—H27B···O190.85 (5)1.96 (4)2.753 (3)155 (4)
O27—H27B···O220.85 (5)2.54 (5)3.177 (3)132 (3)
O4—H41···O15viii0.821.772.543 (3)158
O8—H81···O1ix0.821.882.597 (3)145
O12—H121···O150.821.822.623 (3)165
O20—H201···O60.821.782.585 (3)166
Symmetry codes: (i) x, y1, z; (ii) x1, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x, y+3/2, z+1/2; (viii) x+1, y+2, z; (ix) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula(N2C6H14)2[VO(PO4H)5B2O]·H2O·H3PO4
Mr928.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4882 (15), 12.2569 (13), 19.6281 (18)
β (°) 94.113 (12)
V3)3236.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.19 × 0.12 × 0.10
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
X-SHAPE and X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.879, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
30473, 7428, 6006
Rint0.039
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.10
No. of reflections7428
No. of parameters483
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.66

Computer programs: IPDS (Stoe & Cie, 1997), IPDS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 2003) and DIAMOND (Brandenburg, 2001).

Selected bond lengths (Å) top
V1—O221.6026 (19)P4—O131.516 (2)
V1—O111.9944 (17)P4—O141.5570 (19)
V1—O132.0043 (18)P4—O161.5612 (18)
V1—O192.0079 (18)P5—O191.5077 (19)
V1—O72.0159 (17)P5—O181.512 (2)
V1—O212.3592 (17)P5—O171.547 (2)
P1—O11.5107 (18)P5—O201.559 (2)
P1—O41.5350 (19)P6—O231.5045 (18)
P1—O21.5376 (19)P6—O251.509 (2)
P1—O31.5454 (18)P6—O261.526 (2)
P2—O61.5147 (19)P6—O241.540 (2)
P2—O71.5149 (18)O2—B11.472 (3)
P2—O51.5493 (19)O3—B21.474 (3)
P2—O81.572 (2)O5—B11.482 (3)
P3—O111.5164 (18)O10—B11.478 (3)
P3—O91.5168 (17)O14—B21.468 (3)
P3—O101.5546 (18)O17—B21.497 (3)
P3—O121.5564 (19)O21—B21.444 (3)
P4—O151.509 (2)O21—B11.465 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.911.782.674 (3)167
N3—H3···O1ii0.911.832.728 (3)167
N2—H2···O230.911.792.694 (3)171
N4—H4···O27iii0.912.072.816 (4)139
O16—H161···O230.821.752.563 (3)170
O24—H24···O9iv0.821.752.558 (3)169
O25—H25···O18v0.821.682.428 (4)150
O26—H26···O6vi0.821.812.589 (3)158
O27—H27A···O1vii0.84 (6)2.05 (6)2.884 (3)174 (3)
O27—H27B···O190.85 (5)1.96 (4)2.753 (3)155 (4)
O27—H27B···O220.85 (5)2.54 (5)3.177 (3)132 (3)
O4—H41···O15viii0.821.772.543 (3)158
O8—H81···O1ix0.821.882.597 (3)145
O12—H121···O150.821.822.623 (3)165
O20—H201···O60.821.782.585 (3)166
Symmetry codes: (i) x, y1, z; (ii) x1, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x, y+3/2, z+1/2; (viii) x+1, y+2, z; (ix) x+2, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds