Download citation
Download citation
link to html
The crystal structure of a prospective olefin catalyst, namely {2-[1-acetyl-5-(2-hydroxy­phenyl)-4-phenyl-1,2,4-di­aza­phospholan-3-yl]­phenyl acetate-κP}chloro­(η4-cyclo­octa-1,5-diene)rhodium(I) di­chloro­methane solvate, [RhCl(C8H12)(C24H23N2O4P)]·CH2Cl2, has been determined at 173 K. The five-membered heterocycle of the phosphine ligand is in a slightly distorted twist conformation. An intramolecular N1—H1...Cl1 hydrogen bond contributes to the adopted conformation and may additionally participate in secondary interactions with substrates during catalysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002142/fg1680sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002142/fg1680Isup2.hkl
Contains datablock I

CCDC reference: 211732

Comment top

Rhodium complexes utilizing chiral phosphine ligands, such as 1,2-bis[(2R,5R)-2,5-dimethylphospholano]benzene [(R,R)—Me-DuPHOS], have become important compounds in catalyzing highly enantioselective asymmetric hydrogenation reactions (Burk et al., 1999). In this study, the title complex, (I), of rhodium coordinated by 1,2,4-diazaphospholane, which is a structural analog of DuPHOS, has been successfully synthesized and structurally characterized. Diazaphospholane-based phosphine ligands are a potentially attractive class of ligand in catalyst development, because these compounds are readily synthesized and easily varied (Landis et al., 2001). \sch

Compound (I) is a rhodium(I) complex where the metal center is formally in a square-planar coordination environment. The ligands about Rh consist of a multiply substituted 1,2,4-diazaphospholane, Cl and cycloocta-1,5-diene (COD). While the Rh—Cl1 and Rh—P distances are typical, statistically significant differences are observed between the corresponding Rh-olefin [Rh-centroid(CC)] bonds of COD in (I) (Table 1). The Rh-olefin distance trans to P [2.108 (2) Å] is 0.104 Å longer than the Rh-olefin separation trans to Cl [2.004 (2) Å]. In 85 compounds containing 161 relevant bonds reported to the Cambridge Structural Database (CSD, Version?; Allen, 2002), the corresponding values for Rh-olefin bonds trans to P average 2.12 (3) Å. When the trans ligand is Cl, however, the average Rh-olefin distance is 1.99 (2) Å for 40 compounds containing 48 relevant bonds. The disparity observed between the Rh-olefin bonds is due to the differing trans influence effects of P, a strong σ donor, compared with Cl, a weak π and σ donor (Miessler & Tarr, 1999). Additionally, the C1C2 distance is 0.03 Å shorter than the C5C6 distance (Table 1). However, these distances fall in the expected range for coordinated olefins.

The conformation of the five-membered heterocycle P/C9/N1/N2/C10 in (I) was characterized according to Cremer & Pople (1975). Typically, the most stable spatial arrangement of five-membered rings such as cyclopentane is either the twist or the energetically similar envelope conformation, and the most favorable combination of steric, electronic and non-bonding interactions determine the adopted conformation (March, 1992). The generalized puckering coordinates q2 [0.472 (2) Å] and ϕ2 [56.6 (3)°] suggest that the spatial arrangement of the ring atoms in (I) is essentially the twist form 3T2, with a very minor contribution of the envelope 3E form, where atom N1 acts as the `flap' atom of the envelope.

The twist conformation of the ring in (I) is stabilized by an intramolecular N1—H1···Cl1 hydrogen-bonding interaction (Table 2). The corresponding values for 105 compounds with 130 similar hydrogen bonds reported to the CSD average 3.24 (9) Å and 162 (7)°. Therefore, the distance observed in (I) is indicative of a relatively strong hydrogen bond. The observed N1—H1···Cl1 hydrogen bond may also play a role in the future development of this class of catalysts, due to possible participation in `secondary interactions'. Such interactions have been proposed or are believed to be potentially important in increasing enantioselectivity by forming non-bonding contacts with the reacting substrates (Sawamura & Ito, 1992). Steric interactions also contribute to the conformation adopted by (I), as the majority of the bulky ring substituents occupy pseudo-equatorial positions. Additionally, ester atoms O1, O2, C23 and C24 are nearly perpendicular to the phenyl ring (atoms C17—C22), to mitigate steric repulsion between atoms O2 and H21.

In the lattice of (I), there are intermolecular hydrogen-bonding interactions between symmetry-related molecules. These O4—H4···O3(-x, 1 − y, 2 − z) interactions result in the formation of dimers of rhodium complexes (Table 2). The corresponding values for 67 compounds with 74 similar hydrogen bonds in structures reported to the CSD averag 2.68 (6) Å and 168 (7)°, and compare reasonably well with the O···O hydrogen bond in (I).

Experimental top

A CH2Cl2 solution of the multiply substituted 1,2,4-diazaphospholane ligand was treated with 0.5 equivalents of [RhCl(cycloocta-1,5-diene)]2 in CH2Cl2 at room temperature. The mixture was stirred for 1 h and dried in vacuo to yield the yellow title solid, (I), in quantitative yield. Crystals suitable for X-ray structure determination were obtained by slow crystallization from CH2Cl2 and hexanes (Ratio?) at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 1.6 (m, 4H, CH2), 1.94 (b, 1H), 2.07 (s, 3H, CH3), 2.15 (b, 1H), 2.34 (b, 2H), 2.57 (s, 3H, CH3), 2.72 (b, 1H), 3.02 (b, 1H), 5.34 (b, 2H), 6.32 (b, 2H), 6.39 (d, 1H, J = 8 Hz), 6.7 (m 2H), 7.0 (m, 2H), 7.07–7.25 (m, 6H), 7.35 (m, 2H), 8.25 (d, 1H), 8.95 (b, 1H); 31P{1H} NMR (CDCl3, δ, p.p.m.): 67.4 (d, JRh—P = 157.4 Hz).

Refinement top

Hydroxyl and methyl H atoms were constrained to an ideal geometry, with Uiso(H) = 1.5Ueq(O,C) and allowed to rotate freely about their C—O or C—C bonds, respectively. All other H atoms except H1 were constrained and allowed to ride on their C atoms, with Uiso(H) = 1.2Ueq(C). Atom H1 bonded to N1 was positioned from inspection of difference maps and refined subject to a DFIX restraint of 0.90 (2) Å, with Uiso(H) = 1.2Ueq(N). A residual peak of electron density (0.80 e Å−3) was located in a chemically unreasonable position in the vicinity of the Rh atom and considered to be noise.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and all H atoms except for H1 and H4 have been omitted for clarity.
{2-[1-acetyl-5-(2-hydroxyphenyl)-4-phenyl-1,2,4-diazaphospholan-3-yl]phenyl acetate-κP}chloro(cycloocta-1,5-diene-κ4C1,C2,C5,C6)rhodium(I) dichloromethane solvate top
Crystal data top
[Rh(C8H12)(C24H23N2O4P)Cl]·CH2Cl2Z = 2
Mr = 765.88F(000) = 784
Triclinic, P1Dx = 1.539 Mg m3
a = 11.6420 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8755 (5) ÅCell parameters from 5120 reflections
c = 12.7087 (6) Åθ = 2.0–25.0°
α = 102.261 (10)°µ = 0.85 mm1
β = 103.03 (1)°T = 173 K
γ = 95.789 (10)°Needle, orange
V = 1652.21 (17) Å30.45 × 0.15 × 0.08 mm
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
6453 independent reflections
Radiation source: fine-focus sealed tube5873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.702, Tmax = 0.935k = 1414
13910 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.8831P]
where P = (Fo2 + 2Fc2)/3
6453 reflections(Δ/σ)max < 0.001
403 parametersΔρmax = 0.80 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
[Rh(C8H12)(C24H23N2O4P)Cl]·CH2Cl2γ = 95.789 (10)°
Mr = 765.88V = 1652.21 (17) Å3
Triclinic, P1Z = 2
a = 11.6420 (5) ÅMo Kα radiation
b = 11.8755 (5) ŵ = 0.85 mm1
c = 12.7087 (6) ÅT = 173 K
α = 102.261 (10)°0.45 × 0.15 × 0.08 mm
β = 103.03 (1)°
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
6453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5873 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.935Rint = 0.029
13910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.80 e Å3
6453 reflectionsΔρmin = 0.45 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh0.275305 (15)0.173446 (15)0.961962 (14)0.02008 (8)
P0.16239 (5)0.25500 (5)0.83422 (5)0.01927 (13)
Cl10.45876 (5)0.26706 (6)0.94431 (6)0.03173 (15)
Cl20.25111 (8)0.90356 (8)0.64874 (8)0.0566 (2)
Cl30.47067 (10)1.04469 (13)0.65436 (11)0.0907 (4)
O10.29847 (16)0.25175 (16)0.51988 (15)0.0311 (4)
O20.3692 (2)0.4348 (2)0.5184 (2)0.0597 (7)
O30.14376 (16)0.63148 (15)0.84877 (16)0.0300 (4)
O40.00898 (15)0.37233 (15)1.02488 (14)0.0259 (4)
H40.03730.37671.06710.039*
N10.31141 (18)0.40651 (18)0.78875 (17)0.0232 (4)
H10.3696 (17)0.391 (2)0.8413 (16)0.028*
N20.23813 (17)0.47493 (17)0.84293 (16)0.0215 (4)
C10.3652 (2)0.1696 (2)1.1325 (2)0.0293 (6)
H1A0.44010.22741.16590.035*
C20.3799 (2)0.0694 (2)1.0649 (2)0.0297 (6)
H20.46320.06751.05680.036*
C30.3096 (3)0.0493 (2)1.0522 (2)0.0349 (6)
H3A0.28340.05051.12090.042*
H3B0.36180.10941.04230.042*
C40.2000 (3)0.0788 (2)0.9524 (2)0.0328 (6)
H4A0.22370.11620.88490.039*
H4B0.13970.13590.96520.039*
C50.1440 (2)0.0262 (2)0.9320 (2)0.0254 (5)
H50.08460.01070.85820.030*
C60.1220 (2)0.1149 (2)1.0126 (2)0.0231 (5)
H60.05030.15060.98540.028*
C70.1487 (2)0.1174 (2)1.1362 (2)0.0280 (5)
H7A0.13870.03631.14460.034*
H7B0.09010.15791.16880.034*
C80.2755 (2)0.1788 (2)1.2013 (2)0.0306 (6)
H8A0.27280.26231.23130.037*
H8B0.30230.14431.26540.037*
C90.2338 (2)0.2956 (2)0.72495 (19)0.0229 (5)
H90.28530.23640.70440.027*
C100.1602 (2)0.41415 (19)0.89699 (19)0.0201 (5)
H100.07730.43170.87380.024*
C110.0109 (2)0.1831 (2)0.76125 (19)0.0238 (5)
C120.0016 (2)0.0844 (2)0.6755 (2)0.0299 (6)
H120.07180.05790.66020.036*
C130.1097 (3)0.0251 (2)0.6127 (2)0.0379 (7)
H130.11570.04170.55410.046*
C140.2119 (3)0.0629 (3)0.6352 (2)0.0390 (7)
H140.28810.02250.59190.047*
C150.2034 (2)0.1595 (3)0.7206 (2)0.0350 (6)
H150.27380.18510.73610.042*
C160.0925 (2)0.2195 (2)0.7839 (2)0.0277 (5)
H160.08720.28560.84300.033*
C170.1522 (2)0.3105 (2)0.6195 (2)0.0236 (5)
C180.0421 (2)0.3493 (2)0.6149 (2)0.0277 (5)
H180.01680.37000.68150.033*
C190.0306 (3)0.3585 (2)0.5161 (2)0.0324 (6)
H190.10530.38460.51520.039*
C200.0052 (3)0.3295 (3)0.4179 (2)0.0365 (6)
H200.04570.33350.34940.044*
C210.1143 (3)0.2950 (2)0.4208 (2)0.0345 (6)
H210.14030.27650.35430.041*
C220.1869 (2)0.2873 (2)0.5207 (2)0.0270 (5)
C230.3848 (3)0.3366 (3)0.5149 (2)0.0394 (7)
C240.4964 (3)0.2877 (3)0.5041 (3)0.0549 (9)
H24A0.54800.34190.47980.082*
H24B0.47560.21240.44920.082*
H24C0.53850.27680.57640.082*
C250.2201 (2)0.5778 (2)0.8182 (2)0.0232 (5)
C260.2995 (2)0.6241 (2)0.7537 (2)0.0332 (6)
H26A0.28070.70030.74340.050*
H26B0.28630.56980.68080.050*
H26C0.38320.63260.79480.050*
C270.2024 (2)0.44839 (19)1.02271 (19)0.0217 (5)
C280.3175 (2)0.5021 (2)1.0798 (2)0.0326 (6)
H280.37360.51881.03920.039*
C290.3520 (3)0.5318 (3)1.1953 (2)0.0417 (7)
H290.43180.56701.23310.050*
C300.2706 (3)0.5103 (3)1.2551 (2)0.0385 (7)
H300.29400.53121.33420.046*
C310.1542 (2)0.4579 (2)1.1997 (2)0.0293 (6)
H310.09780.44391.24080.035*
C320.1207 (2)0.4262 (2)1.0843 (2)0.0222 (5)
C330.3886 (3)0.9835 (3)0.7328 (3)0.0543 (9)
H33A0.37401.04620.79100.065*
H33B0.43510.93130.77020.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh0.02073 (11)0.01997 (11)0.02029 (11)0.00314 (7)0.00422 (7)0.00757 (7)
P0.0213 (3)0.0184 (3)0.0181 (3)0.0022 (2)0.0041 (2)0.0058 (2)
Cl10.0223 (3)0.0366 (3)0.0400 (4)0.0030 (3)0.0067 (3)0.0194 (3)
Cl20.0517 (5)0.0661 (6)0.0541 (5)0.0065 (4)0.0065 (4)0.0277 (4)
Cl30.0603 (7)0.1134 (10)0.0835 (8)0.0229 (6)0.0200 (6)0.0069 (7)
O10.0345 (10)0.0339 (10)0.0267 (9)0.0056 (8)0.0138 (8)0.0050 (8)
O20.0591 (15)0.0464 (14)0.0784 (18)0.0038 (12)0.0293 (14)0.0185 (13)
O30.0350 (10)0.0235 (9)0.0383 (10)0.0078 (8)0.0173 (8)0.0118 (8)
O40.0255 (9)0.0287 (9)0.0238 (9)0.0000 (7)0.0103 (7)0.0049 (7)
N10.0226 (10)0.0243 (10)0.0252 (11)0.0052 (8)0.0089 (8)0.0079 (8)
N20.0240 (10)0.0211 (10)0.0222 (10)0.0031 (8)0.0096 (8)0.0072 (8)
C10.0227 (12)0.0409 (15)0.0234 (13)0.0020 (11)0.0011 (10)0.0147 (11)
C20.0248 (13)0.0401 (15)0.0315 (14)0.0140 (11)0.0076 (11)0.0199 (12)
C30.0379 (15)0.0338 (15)0.0447 (16)0.0174 (12)0.0170 (13)0.0219 (13)
C40.0464 (16)0.0209 (12)0.0354 (15)0.0072 (11)0.0154 (12)0.0100 (11)
C50.0298 (13)0.0216 (12)0.0240 (12)0.0010 (10)0.0059 (10)0.0075 (10)
C60.0235 (12)0.0238 (12)0.0235 (12)0.0007 (9)0.0065 (10)0.0096 (10)
C70.0288 (13)0.0334 (14)0.0242 (13)0.0052 (11)0.0087 (10)0.0094 (11)
C80.0337 (14)0.0370 (14)0.0210 (12)0.0059 (11)0.0051 (11)0.0085 (11)
C90.0284 (12)0.0228 (12)0.0212 (12)0.0076 (10)0.0101 (10)0.0075 (9)
C100.0214 (11)0.0191 (11)0.0218 (12)0.0029 (9)0.0083 (9)0.0061 (9)
C110.0291 (13)0.0217 (12)0.0194 (11)0.0012 (10)0.0005 (9)0.0101 (9)
C120.0373 (15)0.0238 (12)0.0267 (13)0.0019 (11)0.0036 (11)0.0083 (10)
C130.0528 (18)0.0276 (14)0.0247 (14)0.0053 (13)0.0010 (12)0.0046 (11)
C140.0344 (15)0.0428 (16)0.0303 (15)0.0127 (13)0.0070 (12)0.0137 (13)
C150.0278 (14)0.0428 (16)0.0336 (15)0.0008 (12)0.0021 (11)0.0167 (12)
C160.0284 (13)0.0302 (13)0.0231 (12)0.0005 (10)0.0028 (10)0.0094 (10)
C170.0310 (13)0.0193 (11)0.0213 (12)0.0024 (10)0.0069 (10)0.0068 (9)
C180.0362 (14)0.0264 (13)0.0244 (13)0.0068 (11)0.0111 (11)0.0098 (10)
C190.0347 (14)0.0319 (14)0.0352 (15)0.0095 (11)0.0083 (12)0.0166 (12)
C200.0413 (16)0.0417 (16)0.0246 (13)0.0032 (13)0.0001 (12)0.0138 (12)
C210.0462 (17)0.0355 (15)0.0226 (13)0.0033 (12)0.0108 (12)0.0080 (11)
C220.0321 (13)0.0234 (12)0.0253 (13)0.0017 (10)0.0079 (10)0.0063 (10)
C230.0397 (16)0.0468 (18)0.0279 (14)0.0021 (13)0.0104 (12)0.0037 (13)
C240.0373 (18)0.072 (2)0.0475 (19)0.0001 (16)0.0139 (15)0.0020 (17)
C250.0255 (12)0.0213 (12)0.0224 (12)0.0002 (10)0.0054 (10)0.0066 (9)
C260.0353 (15)0.0294 (14)0.0440 (16)0.0055 (11)0.0187 (13)0.0189 (12)
C270.0272 (12)0.0174 (11)0.0211 (12)0.0039 (9)0.0069 (10)0.0049 (9)
C280.0325 (14)0.0354 (14)0.0278 (13)0.0021 (11)0.0109 (11)0.0029 (11)
C290.0338 (15)0.0527 (18)0.0270 (14)0.0090 (13)0.0005 (12)0.0001 (13)
C300.0450 (17)0.0438 (16)0.0201 (13)0.0019 (13)0.0060 (12)0.0002 (12)
C310.0360 (14)0.0304 (13)0.0238 (13)0.0032 (11)0.0121 (11)0.0075 (10)
C320.0264 (12)0.0168 (11)0.0246 (12)0.0056 (9)0.0071 (10)0.0058 (9)
C330.060 (2)0.055 (2)0.0416 (18)0.0155 (17)0.0002 (16)0.0102 (16)
Geometric parameters (Å, º) top
Rh—C52.111 (2)C10—C271.513 (3)
Rh—C62.130 (2)C10—H101.0000
Rh—C12.197 (2)C11—C161.387 (4)
Rh—C22.235 (2)C11—C121.396 (3)
Rh—P2.2943 (6)C12—C131.387 (4)
Rh—Cl12.3856 (7)C12—H120.9500
P—C111.823 (2)C13—C141.381 (4)
P—C91.891 (2)C13—H130.9500
P—C101.894 (2)C14—C151.379 (4)
Cl2—C331.759 (4)C14—H140.9500
Cl3—C331.741 (4)C15—C161.387 (4)
O1—C231.372 (4)C15—H150.9500
O1—C221.408 (3)C16—H160.9500
O2—C231.191 (4)C17—C221.385 (3)
O3—C251.230 (3)C17—C181.399 (4)
O4—C321.361 (3)C18—C191.379 (4)
O4—H40.8400C18—H180.9500
N1—N21.425 (3)C19—C201.389 (4)
N1—C91.478 (3)C19—H190.9500
N1—H10.90 (2)C20—C211.369 (4)
N2—C251.349 (3)C20—H200.9500
N2—C101.475 (3)C21—C221.384 (4)
C1—C21.362 (4)C21—H210.9500
C1—C81.504 (4)C23—C241.497 (4)
C1—H1A1.0000C24—H24A0.9800
C2—C31.514 (4)C24—H24B0.9800
C2—H21.0000C24—H24C0.9800
C3—C41.533 (4)C25—C261.504 (3)
C3—H3A0.9900C26—H26A0.9800
C3—H3B0.9900C26—H26B0.9800
C4—C51.507 (3)C26—H26C0.9800
C4—H4A0.9900C27—C281.385 (4)
C4—H4B0.9900C27—C321.400 (3)
C5—C61.392 (3)C28—C291.387 (4)
C5—H51.0000C28—H280.9500
C6—C71.524 (3)C29—C301.379 (4)
C6—H61.0000C29—H290.9500
C7—C81.539 (4)C30—C311.390 (4)
C7—H7A0.9900C30—H300.9500
C7—H7B0.9900C31—C321.387 (4)
C8—H8A0.9900C31—H310.9500
C8—H8B0.9900C33—H33A0.9900
C9—C171.514 (3)C33—H33B0.9900
C9—H91.0000
C5—Rh—C638.30 (9)N2—C10—P102.59 (14)
C5—Rh—C196.54 (10)C27—C10—P113.63 (16)
C6—Rh—C181.77 (9)N2—C10—H10109.2
C5—Rh—C280.65 (10)C27—C10—H10109.2
C6—Rh—C288.77 (9)P—C10—H10109.2
C1—Rh—C235.79 (10)C16—C11—C12119.2 (2)
C5—Rh—P94.10 (7)C16—C11—P125.22 (19)
C6—Rh—P91.45 (7)C12—C11—P115.59 (19)
C1—Rh—P152.83 (8)C13—C12—C11120.2 (3)
C2—Rh—P171.17 (7)C13—C12—H12119.9
C5—Rh—Cl1152.42 (7)C11—C12—H12119.9
C6—Rh—Cl1167.60 (7)C14—C13—C12120.0 (3)
C1—Rh—Cl189.06 (7)C14—C13—H13120.0
C2—Rh—Cl188.63 (7)C12—C13—H13120.0
P—Rh—Cl192.97 (2)C15—C14—C13120.0 (3)
C11—P—C9106.33 (11)C15—C14—H14120.0
C11—P—C10109.41 (11)C13—C14—H14120.0
C9—P—C1090.90 (10)C14—C15—C16120.4 (3)
C11—P—Rh119.06 (8)C14—C15—H15119.8
C9—P—Rh116.79 (8)C16—C15—H15119.8
C10—P—Rh110.70 (8)C15—C16—C11120.1 (3)
C23—O1—C22114.8 (2)C15—C16—H16119.9
C32—O4—H4109.5C11—C16—H16119.9
N2—N1—C9106.00 (18)C22—C17—C18116.5 (2)
N2—N1—H1108.3 (18)C22—C17—C9119.7 (2)
C9—N1—H1108.6 (18)C18—C17—C9123.8 (2)
C25—N2—N1118.78 (19)C19—C18—C17121.6 (2)
C25—N2—C10122.50 (19)C19—C18—H18119.2
N1—N2—C10116.35 (18)C17—C18—H18119.2
C2—C1—C8125.3 (2)C18—C19—C20120.0 (3)
C2—C1—Rh73.63 (15)C18—C19—H19120.0
C8—C1—Rh108.41 (16)C20—C19—H19120.0
C2—C1—H1A114.0C21—C20—C19119.5 (2)
C8—C1—H1A114.0C21—C20—H20120.3
Rh—C1—H1A114.0C19—C20—H20120.3
C1—C2—C3123.9 (2)C20—C21—C22119.8 (2)
C1—C2—Rh70.58 (14)C20—C21—H21120.1
C3—C2—Rh111.47 (17)C22—C21—H21120.1
C1—C2—H2114.3C21—C22—C17122.4 (2)
C3—C2—H2114.3C21—C22—O1117.9 (2)
Rh—C2—H2114.3C17—C22—O1119.6 (2)
C2—C3—C4111.8 (2)O2—C23—O1122.7 (3)
C2—C3—H3A109.3O2—C23—C24126.5 (3)
C4—C3—H3A109.3O1—C23—C24110.7 (3)
C2—C3—H3B109.3C23—C24—H24A109.5
C4—C3—H3B109.3C23—C24—H24B109.5
H3A—C3—H3B107.9H24A—C24—H24B109.5
C5—C4—C3113.4 (2)C23—C24—H24C109.5
C5—C4—H4A108.9H24A—C24—H24C109.5
C3—C4—H4A108.9H24B—C24—H24C109.5
C5—C4—H4B108.9O3—C25—N2121.4 (2)
C3—C4—H4B108.9O3—C25—C26121.9 (2)
H4A—C4—H4B107.7N2—C25—C26116.7 (2)
C6—C5—C4126.2 (2)C25—C26—H26A109.5
C6—C5—Rh71.59 (14)C25—C26—H26B109.5
C4—C5—Rh111.16 (17)H26A—C26—H26B109.5
C6—C5—H5113.4C25—C26—H26C109.5
C4—C5—H5113.4H26A—C26—H26C109.5
Rh—C5—H5113.4H26B—C26—H26C109.5
C5—C6—C7124.0 (2)C28—C27—C32118.5 (2)
C5—C6—Rh70.10 (14)C28—C27—C10123.2 (2)
C7—C6—Rh113.14 (16)C32—C27—C10118.3 (2)
C5—C6—H6114.0C27—C28—C29121.1 (2)
C7—C6—H6114.0C27—C28—H28119.4
Rh—C6—H6114.0C29—C28—H28119.4
C6—C7—C8113.2 (2)C30—C29—C28120.0 (3)
C6—C7—H7A108.9C30—C29—H29120.0
C8—C7—H7A108.9C28—C29—H29120.0
C6—C7—H7B108.9C29—C30—C31120.0 (2)
C8—C7—H7B108.9C29—C30—H30120.0
H7A—C7—H7B107.7C31—C30—H30120.0
C1—C8—C7113.6 (2)C32—C31—C30119.9 (2)
C1—C8—H8A108.8C32—C31—H31120.1
C7—C8—H8A108.8C30—C31—H31120.1
C1—C8—H8B108.8O4—C32—C31122.9 (2)
C7—C8—H8B108.8O4—C32—C27116.5 (2)
H8A—C8—H8B107.7C31—C32—C27120.6 (2)
N1—C9—C17111.29 (19)Cl3—C33—Cl2111.29 (19)
N1—C9—P101.19 (15)Cl3—C33—H33A109.4
C17—C9—P117.69 (17)Cl2—C33—H33A109.4
N1—C9—H9108.7Cl3—C33—H33B109.4
C17—C9—H9108.7Cl2—C33—H33B109.4
P—C9—H9108.7H33A—C33—H33B108.0
N2—C10—C27112.88 (19)
C5—Rh—P—C113.21 (12)C10—P—C9—N135.10 (15)
C6—Rh—P—C1135.05 (12)Rh—P—C9—N178.73 (15)
C1—Rh—P—C11109.72 (18)C11—P—C9—C1724.2 (2)
Cl1—Rh—P—C11156.54 (10)C10—P—C9—C1786.35 (19)
C5—Rh—P—C9126.64 (11)Rh—P—C9—C17159.82 (15)
C6—Rh—P—C9164.90 (11)C25—N2—C10—C2790.4 (3)
C1—Rh—P—C9120.42 (17)N1—N2—C10—C27107.3 (2)
Cl1—Rh—P—C926.69 (9)C25—N2—C10—P146.94 (19)
C5—Rh—P—C10131.26 (10)N1—N2—C10—P15.4 (2)
C6—Rh—P—C1093.00 (10)C11—P—C10—N2120.18 (15)
C1—Rh—P—C1018.32 (17)C9—P—C10—N212.51 (16)
Cl1—Rh—P—C1075.41 (8)Rh—P—C10—N2106.69 (13)
C9—N1—N2—C25118.3 (2)C11—P—C10—C27117.64 (17)
C9—N1—N2—C1044.7 (2)C9—P—C10—C27134.69 (18)
C5—Rh—C1—C263.97 (16)Rh—P—C10—C2715.49 (18)
C6—Rh—C1—C299.42 (16)C9—P—C11—C16121.6 (2)
P—Rh—C1—C2176.37 (13)C10—P—C11—C1624.7 (2)
Cl1—Rh—C1—C288.96 (15)Rh—P—C11—C16104.0 (2)
C5—Rh—C1—C858.45 (19)C9—P—C11—C1257.8 (2)
C6—Rh—C1—C823.01 (18)C10—P—C11—C12154.69 (18)
C2—Rh—C1—C8122.4 (3)Rh—P—C11—C1276.66 (19)
P—Rh—C1—C853.9 (3)C16—C11—C12—C131.2 (4)
Cl1—Rh—C1—C8148.62 (18)P—C11—C12—C13178.2 (2)
C8—C1—C2—C32.1 (4)C11—C12—C13—C140.4 (4)
Rh—C1—C2—C3103.3 (2)C12—C13—C14—C150.4 (4)
C8—C1—C2—Rh101.3 (2)C13—C14—C15—C160.4 (4)
C5—Rh—C2—C1115.21 (17)C14—C15—C16—C110.4 (4)
C6—Rh—C2—C177.58 (16)C12—C11—C16—C151.2 (4)
Cl1—Rh—C2—C190.30 (15)P—C11—C16—C15178.15 (19)
C5—Rh—C2—C34.61 (18)N1—C9—C17—C2293.3 (3)
C6—Rh—C2—C342.24 (19)P—C9—C17—C22150.64 (19)
C1—Rh—C2—C3119.8 (3)N1—C9—C17—C1885.3 (3)
Cl1—Rh—C2—C3149.89 (18)P—C9—C17—C1830.8 (3)
C1—C2—C3—C494.5 (3)C22—C17—C18—C193.2 (4)
Rh—C2—C3—C414.0 (3)C9—C17—C18—C19178.2 (2)
C2—C3—C4—C534.0 (3)C17—C18—C19—C200.4 (4)
C3—C4—C5—C644.2 (4)C18—C19—C20—C211.8 (4)
C3—C4—C5—Rh37.9 (3)C19—C20—C21—C221.2 (4)
C1—Rh—C5—C667.82 (16)C20—C21—C22—C171.7 (4)
C2—Rh—C5—C699.99 (15)C20—C21—C22—O1179.9 (2)
P—Rh—C5—C687.15 (14)C18—C17—C22—C213.8 (4)
Cl1—Rh—C5—C6168.42 (12)C9—C17—C22—C21177.5 (2)
C6—Rh—C5—C4122.6 (2)C18—C17—C22—O1177.8 (2)
C1—Rh—C5—C454.78 (19)C9—C17—C22—O10.8 (3)
C2—Rh—C5—C422.60 (18)C23—O1—C22—C2177.8 (3)
P—Rh—C5—C4150.25 (17)C23—O1—C22—C17103.8 (3)
Cl1—Rh—C5—C445.8 (3)C22—O1—C23—O24.8 (4)
C4—C5—C6—C71.9 (4)C22—O1—C23—C24175.0 (2)
Rh—C5—C6—C7105.1 (2)N1—N2—C25—O3168.6 (2)
C4—C5—C6—Rh103.2 (3)C10—N2—C25—O36.7 (4)
C1—Rh—C6—C5111.64 (16)N1—N2—C25—C2612.6 (3)
C2—Rh—C6—C576.40 (15)C10—N2—C25—C26174.5 (2)
P—Rh—C6—C594.78 (14)N2—C10—C27—C2818.1 (3)
Cl1—Rh—C6—C5154.4 (3)P—C10—C27—C2898.1 (2)
C5—Rh—C6—C7119.5 (2)N2—C10—C27—C32160.9 (2)
C1—Rh—C6—C77.88 (18)P—C10—C27—C3282.8 (2)
C2—Rh—C6—C743.13 (18)C32—C27—C28—C291.0 (4)
P—Rh—C6—C7145.70 (17)C10—C27—C28—C29180.0 (3)
Cl1—Rh—C6—C734.8 (4)C27—C28—C29—C301.4 (5)
C5—C6—C7—C889.7 (3)C28—C29—C30—C310.5 (5)
Rh—C6—C7—C88.8 (3)C29—C30—C31—C320.8 (4)
C2—C1—C8—C748.0 (3)C30—C31—C32—O4178.5 (2)
Rh—C1—C8—C734.6 (3)C30—C31—C32—C271.2 (4)
C6—C7—C8—C129.5 (3)C28—C27—C32—O4179.4 (2)
N2—N1—C9—C1777.0 (2)C10—C27—C32—O41.5 (3)
N2—N1—C9—P48.85 (18)C28—C27—C32—C310.3 (4)
C11—P—C9—N1145.63 (15)C10—C27—C32—C31178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.841.822.654 (2)173
N1—H1···Cl10.90 (2)2.34 (2)3.167 (2)152 (2)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Rh(C8H12)(C24H23N2O4P)Cl]·CH2Cl2
Mr765.88
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.6420 (5), 11.8755 (5), 12.7087 (6)
α, β, γ (°)102.261 (10), 103.03 (1), 95.789 (10)
V3)1652.21 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.45 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.702, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
13910, 6453, 5873
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections6453
No. of parameters403
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.45

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected bond lengths (Å) top
Rh—P2.2943 (6)C1—C21.362 (4)
Rh—Cl12.3856 (7)C5—C61.392 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.841.822.654 (2)173
N1—H1···Cl10.90 (2)2.34 (2)3.167 (2)152 (2)
Symmetry code: (i) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds