Download citation
Download citation
link to html
The Au...Au distance in the title compound, [Au2Cl2(C30H24P2)], is 2.996 (1) Å, typical of an Au...Au interaction. The two P—Au—Cl arms `cross' at the Au centers, with a Cl—Au...Au—Cl torsion angle of −63.92 (7)°. Only a small deviation from linearity is observed in the coordination around the Au atoms. Related phosphine–gold(I) chloride structures with intra- and intermolecular Au...Au interactions are surveyed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002154/fg1679sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002154/fg1679Isup2.hkl
Contains datablock I

CCDC reference: 207994

Comment top

The chemistry of dinuclear gold(I) phosphine complexes is quite extensive (Foley et al., 1995; Brandys & Puddephatt, 2001; Khan et al., 1989). Recently, we investigated photochemical isomerization in the dinuclear gold(I) complexes cis-Au2X2(dppee), where dppee is 1,2-bis(diphenylphosphino)ethylene and X is Cl, Br, I or SR, in which the Au atoms are constrained to be within bonding distance, versus trans-Au2X2(dppee), where an intramolecular approach is precluded (Foley et al., 1995). We report here a dinuclear linear gold(I) complex, (I), of the potentially chelating ligand, bis(diphenylphosphino)benzene. In the title complex, (I), the phenyl ring is rigid and hence cis-trans isomerization is precluded. \sch

The crystal structure of (I) reveals the two AuI atoms to have a linear coordination. The Au···Au bond distance in compounds showing aurophilic interactions ranges from 2.8 Å (strong interaction) to >3.5 Å (weak interaction). The strength of this attraction has been determined experimentally to be ca 7–11 kcal mol (1 kcal mol−1 = 4.184 kJ mol−1) (Schmidbaur, Graf & Muller, 1988; Narayanaswamy et al., 1993). The Au···Au distance of 2.966 (1) Å in (I) indicates a strong aurophilic attraction, similar to that found in [Au2(S2C2B10H10)(dppbz)] [2.9771 (10) Å; Crespo et al., 1997] and shorter than that in cis-(AuCl)2dppee [3.05 (1) Å; Jones, 1980].

The Au—Cl bond lengths in (I) [2.293 (2) Å] are longer than the Au—P bonds [2.236 (2) Å] and fall within the expected range of similar phosphine-gold(I) complexes. Chemically equivalent bonds in the two P—Au—Cl arms are equivalent within experimental error. The two P—Au—Cl arms `cross' at the Au centers, with a Cl—Au···Au—Cl torsion angle of −63.92 (7)°. The hindered rotation about the PCCP linkage helps the two Au atoms to maintain the aurophilic interaction. The P—Au—Cl angle [173.21 (6)°] deviates only slightly from linearity. It is difficult to know whether this deviation is a result of Au···Au bonding or crystal packing forces. A survey of 20 phosphine-gold(I) chloride structures in the Cambridge Structural Database (Version?; Allen, 2002) that contain Au···Au bonds reveals that the P—Au—Cl angles average 174°, but there is no correlation between bond angle and Au···Au bond distance. However, complexes without Au···Au bonds have angles closer to 180°. For example, in Ph3PAuCl and iPr3PAuCl, with no Au···Au bond, the P—Au—Cl angles are 179.68 (Baenziger et al., 1976) and 178.03°, respectively (Angermaier et al., 1994).

Phosphine-gold(I) chloride complexes containing Au···Au bonds can be grouped into two broad categories: those with intramolecular Au···Au interactions, as in (I), and those with intermolecular Au···Au interactions. Complexes with intramolecular Au···Au interactions have bis- or tris(phosphine) ligands that are linked and have restricted rotation about the phosphine ligand backbone. Rotation is restricted by virtue of a rigid backbone, for example in dppbz or cis-dppee, or by a small bite angle between P atoms that imposes steric restraints, as in Ph2PNHPPh2 or Ph2PCF2PPh2. The intramolecular Au···Au distances in these complexes range from 2.925 to 3.281 Å and the absolute values of the Cl—Au···Au—Cl torsion angles range from 30.51 to 76.41° (Schmidbaur, Graf & Muller, 1988; Schmidbaur, Reber et al., 1988; Zank et al., 1998; Lange et al., 1997; Schmidbaur et al., 1989; Jones & Bembenek, 1996; Bardaji et al., 2000; Cerrada et al., 2002; Stutzer et al., 1992; Jones, 1980; this work). Additional intermolecular Au···Au interactions may also be present.

Complexes in the second category (i.e. with intermolecular Au···Au interactions) are either mononuclear phosphine-gold(I) chloride complexes, or the phosphines are linked by conformationally flexible backbones, as in Ph2P(CH2)nPPh2, where n = 2, 3, 5, 7 and 8. The mononuclear complexes in this category form dimers or trimers via intermolecular Au···Au interactions if the substituents on P are not too bulky, e.g. Ph(CH3)2PAuCl (Au···Au 3.092 Å; Toronto et al., 1996). Bisphosphine-gold(I) chloride complexes with flexible backbones tend to crystallize with the alkane backbone fully extended and intermolecular Au···Au interactions link up the dinuclear gold complexes to form extended chains. It is interesting to note that, for complexes with intermolecular Au···Au interactions, the absolute value of the Cl—Au···Au—Cl torsion angles are larger, ranging from 94.2 to 135°, while the Au···Au interactions are also slightly longer on average, ranging from 3.061 to 3.233 Å (Hollatz et al., 1999; Attar et al., 1990; Balch & Fung, 1990; Van Calcar et al., 1997; Banger et al., 1999; Toronto et al., 1996; Tzeng et al., 1996; Schmidbaur et al., 1992.) The exceptions are for n = 2, which forms a dimer via intermolecular Au···Au bonds (3.189 Å), with Cl—Au···Au—Cl torsion angles of −74.87 and 82.44° (Bates & Waters, 1985), and n = 4 (Schmidbaur et al., 1992) and n = 6 (Van Calcar et al., 1995), in which no Au···Au interactions were found.

Experimental top

Bis(diphenylphosphino)benzene was added to gold(I) thiodiethanol chloride, prepared in situ, in methanol (1:2 stoichiometric ratio), and a white precipitate formed immediately. The mixture was stirred for 1 h, filtered and washed with methanol. Colorless crystals of (I) were obtained by slow diffusion of diethylether into a dichloromethane solution of the title compound.

Refinement top

H-atom positions were calculated based on geometric criteria and H atoms were treated with a riding model, with Uiso(H) = 1.2Ueq(C). Compound (I) crystallized in S-shaped layers with what appeared to be badly disordered Et2O. The solvent resided in the channels created by the layers. The crystallographic refinement was completed with the solvent contribution subtracted from the data using SQUEEZE (Spek, 1992).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Version 5.10; Siemens, 1996); program(s) used to refine structure: SHELXTL (Version 5.10); molecular graphics: SHELXTL (Version 5.03; Siemens, 1996); software used to prepare material for publication: SHELXTL (Version 5.03).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity.
[µ-o-Phenylenebis(diphenylphosphine)-κ2P:P']bis[chlorogold(I)] top
Crystal data top
[Au2Cl2(C30H24P2)]F(000) = 3408
Mr = 911.27Dx = 1.769 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5866 reflections
a = 16.9558 (3) Åθ = 2.4–28.3°
b = 18.1603 (2) ŵ = 8.83 mm1
c = 22.2255 (1) ÅT = 293 K
V = 6843.73 (15) Å3Needle, colorless
Z = 80.45 × 0.12 × 0.08 mm
Data collection top
Bruker SMART 1K Platform CCD area-detector
diffractometer
8478 independent reflections
Radiation source: sealed tube5769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 0.75 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1822
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2324
Tmin = 0.100, Tmax = 0.493l = 2924
45724 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
8478 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Au2Cl2(C30H24P2)]V = 6843.73 (15) Å3
Mr = 911.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.9558 (3) ŵ = 8.83 mm1
b = 18.1603 (2) ÅT = 293 K
c = 22.2255 (1) Å0.45 × 0.12 × 0.08 mm
Data collection top
Bruker SMART 1K Platform CCD area-detector
diffractometer
8478 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5769 reflections with I > 2σ(I)
Tmin = 0.100, Tmax = 0.493Rint = 0.061
45724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
8478 reflectionsΔρmin = 0.58 e Å3
325 parameters
Special details top

Experimental. The first 100 frames of data were recollected for a decay correction. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program.

The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Original values: _exptl_absorpt_correction_T_min 0.1093 _exptl_absorpt_correction_T_max 0.5385

Note that the absorption correction parameters Tmin and Tmax also reflect beam corrections, etc. As a result, the numerical values for Tmin and Tmax may differ from expected values based solely on absorption effects and crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(dppbz)Au2Cl2 crystallizes with a badly disordered solvent which appears to be Et2O. A suitable disorder model could not be resolved, thus the solvent contribution was subtracted from the reflection data using the program Squeeze (A. Spek, PLATON92).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.135794 (13)0.818536 (12)0.485925 (11)0.04068 (7)
Au20.289535 (14)0.890413 (13)0.454850 (11)0.04387 (7)
Cl10.09958 (11)0.76355 (11)0.39730 (8)0.0657 (5)
Cl20.34647 (11)0.77803 (9)0.43696 (9)0.0671 (5)
P10.15885 (9)0.88150 (8)0.57083 (7)0.0379 (3)
P20.24745 (10)1.00589 (9)0.46856 (7)0.0395 (4)
C10.1029 (3)0.8481 (3)0.6350 (2)0.0389 (13)
C20.0304 (4)0.8141 (3)0.6259 (3)0.0492 (16)
H2A0.01100.80980.58690.059*
C30.0127 (4)0.7869 (4)0.6721 (3)0.0627 (19)
H3A0.06140.76490.66490.075*
C40.0160 (5)0.7920 (4)0.7298 (3)0.071 (2)
H4A0.01280.77260.76170.086*
C50.0874 (5)0.8259 (5)0.7405 (3)0.080 (2)
H5A0.10680.83010.77950.096*
C60.1297 (4)0.8536 (4)0.6925 (3)0.0643 (19)
H6A0.17780.87670.69970.077*
C70.2596 (3)0.8836 (3)0.5974 (3)0.0440 (15)
C80.2947 (4)0.9461 (4)0.6204 (3)0.0517 (16)
H8A0.26490.98880.62430.062*
C90.3722 (4)0.9472 (5)0.6377 (3)0.068 (2)
H9A0.39510.99010.65240.081*
C100.4154 (4)0.8835 (6)0.6329 (3)0.078 (3)
H10A0.46800.88390.64470.094*
C110.3837 (4)0.8198 (5)0.6115 (3)0.073 (2)
H11A0.41420.77730.60920.087*
C120.3060 (4)0.8190 (4)0.5932 (3)0.0593 (18)
H12A0.28400.77590.57810.071*
C130.1280 (3)0.9774 (3)0.5595 (2)0.0398 (14)
C140.1609 (3)1.0240 (3)0.5150 (3)0.0370 (13)
C150.1266 (4)1.0934 (3)0.5069 (3)0.0467 (15)
H15A0.14641.12380.47680.056*
C160.0645 (4)1.1189 (3)0.5415 (3)0.0524 (17)
H16A0.04391.16580.53560.063*
C170.0340 (4)1.0729 (4)0.5846 (3)0.0608 (19)
H17A0.00801.08870.60820.073*
C180.0652 (4)1.0030 (3)0.5935 (3)0.0551 (18)
H18A0.04350.97270.62300.066*
C190.3252 (4)1.0625 (3)0.5012 (2)0.0400 (14)
C200.4007 (4)1.0541 (4)0.4790 (3)0.0538 (17)
H20A0.40981.02140.44750.065*
C210.4635 (4)1.0941 (4)0.5031 (3)0.063 (2)
H21A0.51401.08820.48760.076*
C220.4508 (4)1.1412 (4)0.5488 (3)0.0619 (19)
H22A0.49281.16760.56500.074*
C230.3757 (4)1.1505 (4)0.5720 (3)0.0617 (19)
H23A0.36761.18230.60420.074*
C240.3122 (4)1.1124 (3)0.5471 (3)0.0527 (16)
H24A0.26141.12050.56140.063*
C250.2224 (3)1.0478 (3)0.3963 (3)0.0447 (15)
C260.2502 (4)1.1160 (4)0.3797 (3)0.0547 (17)
H26A0.28431.14160.40490.066*
C270.2272 (5)1.1460 (4)0.3256 (3)0.068 (2)
H27A0.24531.19240.31440.082*
C280.1781 (5)1.1079 (5)0.2884 (3)0.080 (2)
H28A0.16281.12850.25190.095*
C290.1513 (5)1.0399 (6)0.3041 (4)0.090 (3)
H29A0.11761.01460.27830.108*
C300.1734 (4)1.0083 (4)0.3578 (3)0.067 (2)
H30A0.15600.96140.36810.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03905 (13)0.04091 (13)0.04208 (13)0.00083 (11)0.00073 (11)0.00414 (11)
Au20.04114 (14)0.03848 (13)0.05201 (14)0.00123 (11)0.00902 (11)0.00405 (11)
Cl10.0616 (11)0.0775 (13)0.0581 (11)0.0126 (9)0.0093 (9)0.0255 (9)
Cl20.0608 (12)0.0450 (10)0.0954 (14)0.0077 (8)0.0168 (10)0.0132 (9)
P10.0376 (9)0.0366 (9)0.0395 (8)0.0006 (7)0.0017 (7)0.0002 (7)
P20.0382 (9)0.0377 (9)0.0427 (9)0.0002 (7)0.0043 (7)0.0016 (7)
C10.038 (3)0.043 (3)0.035 (3)0.005 (3)0.000 (3)0.004 (3)
C20.052 (4)0.056 (4)0.040 (4)0.009 (3)0.007 (3)0.005 (3)
C30.051 (4)0.073 (5)0.065 (5)0.012 (4)0.008 (4)0.009 (4)
C40.066 (5)0.087 (6)0.061 (5)0.014 (4)0.021 (4)0.008 (4)
C50.076 (6)0.123 (7)0.041 (4)0.010 (5)0.001 (4)0.000 (4)
C60.057 (5)0.086 (5)0.050 (4)0.014 (4)0.002 (4)0.006 (4)
C70.037 (3)0.057 (4)0.038 (3)0.004 (3)0.005 (3)0.006 (3)
C80.055 (4)0.049 (4)0.051 (4)0.006 (3)0.009 (3)0.002 (3)
C90.052 (5)0.078 (6)0.072 (5)0.013 (4)0.016 (4)0.017 (4)
C100.046 (5)0.132 (8)0.057 (5)0.010 (5)0.007 (4)0.015 (5)
C110.055 (5)0.096 (6)0.067 (5)0.032 (5)0.007 (4)0.006 (5)
C120.054 (4)0.065 (5)0.059 (4)0.014 (4)0.002 (3)0.007 (4)
C130.035 (3)0.044 (3)0.040 (3)0.007 (3)0.000 (3)0.001 (3)
C140.035 (3)0.035 (3)0.040 (3)0.003 (2)0.000 (3)0.004 (3)
C150.045 (4)0.041 (3)0.054 (4)0.008 (3)0.007 (3)0.009 (3)
C160.047 (4)0.043 (4)0.067 (4)0.011 (3)0.001 (3)0.010 (3)
C170.044 (4)0.066 (5)0.073 (5)0.022 (3)0.008 (4)0.005 (4)
C180.064 (5)0.053 (4)0.048 (4)0.008 (3)0.016 (3)0.007 (3)
C190.038 (3)0.042 (3)0.040 (4)0.005 (3)0.001 (3)0.006 (3)
C200.047 (4)0.060 (4)0.055 (4)0.002 (3)0.004 (3)0.003 (3)
C210.044 (4)0.080 (5)0.066 (5)0.002 (4)0.006 (3)0.003 (4)
C220.044 (4)0.062 (5)0.080 (5)0.006 (3)0.008 (4)0.008 (4)
C230.070 (5)0.050 (4)0.065 (5)0.008 (4)0.004 (4)0.010 (4)
C240.048 (4)0.047 (4)0.063 (4)0.005 (3)0.002 (3)0.004 (3)
C250.037 (4)0.052 (4)0.044 (4)0.003 (3)0.001 (3)0.001 (3)
C260.055 (4)0.057 (5)0.052 (4)0.002 (3)0.005 (3)0.001 (3)
C270.087 (6)0.061 (5)0.057 (5)0.021 (4)0.012 (4)0.014 (4)
C280.088 (6)0.108 (7)0.042 (4)0.020 (6)0.010 (4)0.004 (5)
C290.083 (7)0.114 (8)0.074 (6)0.020 (6)0.026 (5)0.006 (5)
C300.071 (5)0.075 (5)0.056 (5)0.017 (4)0.010 (4)0.003 (4)
Geometric parameters (Å, º) top
Au1—P12.2408 (15)C13—C181.386 (8)
Au1—Cl12.2921 (16)C13—C141.415 (8)
Au1—Au22.9960 (3)C14—C151.401 (8)
Au2—P22.2360 (16)C15—C161.383 (8)
Au2—Cl22.2925 (16)C15—H15A0.9300
P1—C71.807 (6)C16—C171.373 (9)
P1—C11.817 (6)C16—H16A0.9300
P1—C131.837 (6)C17—C181.389 (8)
P2—C191.821 (6)C17—H17A0.9300
P2—C141.824 (6)C18—H18A0.9300
P2—C251.828 (6)C19—C201.381 (9)
C1—C61.360 (8)C19—C241.384 (8)
C1—C21.391 (8)C20—C211.396 (9)
C2—C31.355 (8)C20—H20A0.9300
C2—H2A0.9300C21—C221.345 (9)
C3—C41.374 (10)C21—H21A0.9300
C3—H3A0.9300C22—C231.384 (9)
C4—C51.379 (10)C22—H22A0.9300
C4—H4A0.9300C23—C241.394 (9)
C5—C61.380 (9)C23—H23A0.9300
C5—H5A0.9300C24—H24A0.9300
C6—H6A0.9300C25—C261.374 (8)
C7—C81.381 (8)C25—C301.392 (9)
C7—C121.415 (8)C26—C271.377 (9)
C8—C91.369 (9)C26—H26A0.9300
C8—H8A0.9300C27—C281.363 (11)
C9—C101.372 (11)C27—H27A0.9300
C9—H9A0.9300C28—C291.361 (11)
C10—C111.362 (11)C28—H28A0.9300
C10—H10A0.9300C29—C301.377 (10)
C11—C121.379 (9)C29—H29A0.9300
C11—H11A0.9300C30—H30A0.9300
C12—H12A0.9300
P1—Au1—Cl1173.07 (6)C18—C13—C14119.0 (5)
P1—Au1—Au279.63 (4)C18—C13—P1117.5 (4)
Cl1—Au1—Au2102.99 (5)C14—C13—P1123.4 (4)
P2—Au2—Cl2173.21 (6)C15—C14—C13117.6 (5)
P2—Au2—Au195.71 (4)C15—C14—P2115.1 (4)
Cl2—Au2—Au191.06 (5)C13—C14—P2127.3 (4)
C7—P1—C1104.1 (3)C16—C15—C14123.1 (6)
C7—P1—C13107.1 (3)C16—C15—H15A118.5
C1—P1—C13106.0 (3)C14—C15—H15A118.5
C7—P1—Au1116.8 (2)C17—C16—C15118.1 (6)
C1—P1—Au1113.57 (19)C17—C16—H16A120.9
C13—P1—Au1108.59 (19)C15—C16—H16A120.9
C19—P2—C14104.8 (3)C16—C17—C18120.8 (6)
C19—P2—C25106.4 (3)C16—C17—H17A119.6
C14—P2—C25103.7 (3)C18—C17—H17A119.6
C19—P2—Au2110.6 (2)C13—C18—C17121.4 (6)
C14—P2—Au2120.19 (19)C13—C18—H18A119.3
C25—P2—Au2110.2 (2)C17—C18—H18A119.3
C6—C1—C2117.7 (6)C20—C19—C24118.9 (6)
C6—C1—P1122.6 (5)C20—C19—P2117.8 (5)
C2—C1—P1119.7 (4)C24—C19—P2123.3 (5)
C3—C2—C1121.9 (6)C19—C20—C21120.8 (6)
C3—C2—H2A119.0C19—C20—H20A119.6
C1—C2—H2A119.0C21—C20—H20A119.6
C2—C3—C4119.4 (7)C22—C21—C20120.0 (7)
C2—C3—H3A120.3C22—C21—H21A120.0
C4—C3—H3A120.3C20—C21—H21A120.0
C3—C4—C5120.1 (7)C21—C22—C23120.4 (7)
C3—C4—H4A119.9C21—C22—H22A119.8
C5—C4—H4A119.9C23—C22—H22A119.8
C4—C5—C6119.1 (7)C22—C23—C24120.2 (7)
C4—C5—H5A120.5C22—C23—H23A119.9
C6—C5—H5A120.5C24—C23—H23A119.9
C1—C6—C5121.7 (7)C19—C24—C23119.7 (6)
C1—C6—H6A119.1C19—C24—H24A120.1
C5—C6—H6A119.1C23—C24—H24A120.1
C8—C7—C12117.7 (6)C26—C25—C30120.3 (6)
C8—C7—P1123.1 (5)C26—C25—P2122.0 (5)
C12—C7—P1119.2 (5)C30—C25—P2117.6 (5)
C9—C8—C7122.0 (7)C25—C26—C27119.5 (7)
C9—C8—H8A119.0C25—C26—H26A120.2
C7—C8—H8A119.0C27—C26—H26A120.2
C8—C9—C10118.6 (7)C28—C27—C26120.1 (8)
C8—C9—H9A120.7C28—C27—H27A119.9
C10—C9—H9A120.7C26—C27—H27A119.9
C11—C10—C9122.2 (7)C29—C28—C27120.6 (8)
C11—C10—H10A118.9C29—C28—H28A119.7
C9—C10—H10A118.9C27—C28—H28A119.7
C10—C11—C12119.2 (7)C28—C29—C30120.6 (8)
C10—C11—H11A120.4C28—C29—H29A119.7
C12—C11—H11A120.4C30—C29—H29A119.7
C11—C12—C7120.3 (7)C29—C30—C25118.7 (7)
C11—C12—H12A119.8C29—C30—H30A120.7
C7—C12—H12A119.8C25—C30—H30A120.7

Experimental details

Crystal data
Chemical formula[Au2Cl2(C30H24P2)]
Mr911.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.9558 (3), 18.1603 (2), 22.2255 (1)
V3)6843.73 (15)
Z8
Radiation typeMo Kα
µ (mm1)8.83
Crystal size (mm)0.45 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART 1K Platform CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.100, 0.493
No. of measured, independent and
observed [I > 2σ(I)] reflections
45724, 8478, 5769
Rint0.061
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.076, 1.05
No. of reflections8478
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.58

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Version 5.10; Siemens, 1996), SHELXTL (Version 5.10), SHELXTL (Version 5.03; Siemens, 1996), SHELXTL (Version 5.03).

Selected geometric parameters (Å, º) top
Au1—P12.2408 (15)Au2—P22.2360 (16)
Au1—Cl12.2921 (16)Au2—Cl22.2925 (16)
Au1—Au22.9960 (3)
P1—Au1—Cl1173.07 (6)P2—Au2—Cl2173.21 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds