Download citation
Download citation
link to html
The syntheses and X-ray analyses of two fuco­pyran­osides, the monosaccharide benzyl 3,4-di-O-acetyl-2-hydro­xy-β-D-fuco­pyran­oside, C17H22O7, and the disaccharide 1-benzyl O-(2,3-di-O-acetyl-4,6-O-benzyl­idene-β-D-gluco­pyran­osyl)-(1\rightarrow2)-3,4-O-iso­propyl­idene-β-D-fuco­pyran­oside, C33H40O12, are de­scribed. The different substituents induce small conformational changes on the fuco­pyran­oside ring. However, the conformation of the benzyl group varies from (+)gauche for the monosaccharide to synperiplanar for the disaccharide.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012556/fg1655sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012556/fg1655Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012556/fg1655IIsup3.hkl
Contains datablock II

CCDC references: 195612; 195613

Comment top

Fucose is an important deoxysugar found recently as a constituent unit of glycoresins from the genus Ipomea (Bah & Pereda-Miranda, 1997). These glycoresins, called tricolorins, have attracted great interest from the biological and chemical points of view. As part of a strategy directed towards the synthesis of analogues of the mentioned glycosides, the syntheses and X-ray analyses of benzyl fucopyranoside, (I) (Fig. 1), and the closely related benzyl disaccharide, (II) (Fig. 2), have been performed and the results are presented here. \sch

In both compounds, the pyranoside rings have a 4C1 chair conformation, with all substituents oriented at equatorial positions, except the substituent at position C4 of the glucopyranoside moiety, which exhibits an axial orientation. For compound (II), the equatorial orientation at position 3 in the fucopyranoside ring is frustrated by the formation of a five-membered ring. Therefore, a biaxial conformation is observed, with an angle of 53.9 (2)° between the C3—O3 bond and the Cremer-Pople plane, calculated as defined in Cremer & Pople (1975) and defined, in both compounds, by the atoms C1—C5 and O5.

The isopropylidene group also produces the significant deviation from the ideal 4C1 chair conformation observed in the fucopyranoside of compound (II), as can be seen when comparing the puckering parameters (Cremer & Pople, 1975) in both fucopyranoside rings [Q = 0.572 (2)°, θ = 176.9 (2)° and ϕ = 186 (3)° for (I), and Q = 0.556 (3)°, θ = 159.9 (3)° and ϕ = 220.9 (8)° for (II)]. In compound (II), the effect of the benzylidene group on the glucopyranosil conformation is smaller, and the ring defined by atoms O10 and C17—C21 is very close to the ideal 4C1 chair conformation [Q = 0.597 (3)°, θ = 170.7 (3)° and ϕ = 156.0 (16)°].

The angle between the glycosidic bond and the normals to both Cremer-Pople planes, calculated for both fucopyranoside rings, are 68.7 (1)° for (I) and 76.0 (2)° for (II). Due to the exoanomeric effect, the substituent on C1, in this case the benzyl group, should prefer a (+) gauche conformation (Jeffrey, 1990). This is the case in (I), as can be seen in the C12—C11—O1—C1 torsion angle, but not in (II), which shows a clear synperiplanar conformation, with atoms C1, O1, C10 and C11 in almost the same plane [largest deviation from the least-squares plane 0.023 (1) Å for which atom?]. It is also noticeable that, for (I), the C5—O5, C1—O5 and C1—O1 bond distances (Table 1) are closer to the standard values for an axial glycosidic bond (1.434, 1.419 and 1.398 Å, respectively) than for an equatorial one (1.426, 1.428 and 1.385 Å, respectively) (Jeffrey & Taylor, 1980; Jeffrey, 1990). In (II), these bond distances (Table 3) do not correspond clearly to equatorial or axial cases.

In the disaccharide, (II), atoms O5, C1, C2, O2, C17, C18 and C19 are almost co-planar [largest deviation from the least squares plane -0.109 (2) Å for C19]. Therefore, three atoms of each saccharide lie in the plane defined by the glycosidic linkage. For each pyranoside, the rest of the atoms lie on one side of this plane, the two rings being on opposite sides of the plane. For this reason, the O10—C17—O2—C2 torsion angle is almost equal to C3—C2—O2—C17. This conformation can be partly due to the weak hydrogen bond joining C17 in the glucopyranoside and O3 in the fucopyranoside (Table 4).

An O—H···O hydrogen bond is observed in (I) between the hydroxy group and one of the acetate O atoms (Table 2). Due to this intermolecular interaction, the molecules form chains along the b direction (Fig. 3). There are also weak C—H···O interactions involving the benzyl group as donor and the pyranoside group as acceptor, which join the chains along the a direction. For compound (II), there are no strong hydrogen-bond interactions, due to the absence of hydroxyl groups. The only significant intermolecular interaction is a weak C—H···O hydrogen bond (Table 4) joining the molecules in the a direction.

Experimental top

Compound (I) (Scheme) was prepared using fucose (Lerner, 1993) as the starting material, which was peracetylated with acetic anhydride. Bromination of the anomeric C atom was performed using a mixed hydrobromic acid-acetic acid solution (30%; ratio of acids?) to produce intermediate (1), which was subsequently reacted with benzyl alcohol under Koenigs-Knorr conditions to yield glycoside (2) (Igarashi, 1977). Deacetylation with sodium methoxide solution afforded a compound which was treated with two equivalents of acetic anhydride to produce (I). Spectroscopic analysis for (I): 1H NMR (CDCl3, 300 MHz, δ, p.p.m.): 1.3 (d, 3H), 2.0 and 2.2 (both s, 3H), 3.8 (m, 1H), 3.9 (dd, 1H), 4.4 (d, 1H), 4.6 (d, 1H), 4.95 (dd, 1H), 5.0 (d, 1H), 5.22 (dd, 1H), 7.4 (m, 5H). Compound (II) (Scheme) was prepared according to Fischer O-glycoside coupling-reaction conditions, consisting of the reaction between fucose and benzyl alcohol under a controlled stream of HCl gas to produce benzyl fucose (Searle et al., 1996). Acetonide formation was performed under standard conditions (acetone, 2,2-dimethoxypropane, P-TsOH as catalyst), to afford the intermediate glycosyl acceptor, (3), which was coupled with 2,3-di-O-acetyl-4,6-O-benzylidene glucopyranosyl trichloroacetimidate, (4) (Larson & Heathcock, 1997), under AgOTf catalysis to generate the desired disaccharide, (II), in 50% yield. Spectroscopic analysis for (II): 1H NMR (CDCl3, 300 MHz, δ, p.p.m.): 1.3 (s, 3H), 1.4 (d, 3H), 1.5 (s, 3H), 2.0, 2.1 (s, 6H), 3.4 (m, 1H), 3.7 (m, 4H), 3.9 (dd, 1H), 4.0 (m, 2H), 4.3 (d, 1H), 4.6 (d, 1H), 4.9 (t, 2H), 5.0 (t, 1H), 5.4 (s, 1H), 7.3 (m, 10H).

Refinement top

The absolute configurations of these two light-atom structures were not determined by the present X-ray analyses but were already known from the known configuration of the starting materials. H atoms were placed on calculated positions, with C—H = 0.93–0.98 Å Is this added text correct?, and their isotropic displacement parameters were fixed to 1.2 or 1.5 times the Uiso of the bonded atom.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 50% displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (II) showing 50% displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A drawing of the unit cell of (I) viewed along the a axis. Dashed lines indicate hydrogen bonds. Atom O7* is at symmetry position (2 - x, y + 1/2, 1 - z) and atom O2# is at symmetry position (2 - x, y - 1/2, 1 - z).
(I) benzyl 2-hydroxo-3,4-di-O-acetyl-β-D-fucopyranoside top
Crystal data top
C17H22O7F(000) = 360
Mr = 338.36Dx = 1.273 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 15 reflections
a = 8.735 (2) Åθ = 11.2–12.6°
b = 9.526 (2) ŵ = 0.10 mm1
c = 10.605 (3) ÅT = 293 K
β = 91.00 (2)°Prism, colourless
V = 882.4 (5) Å30.85 × 0.70 × 0.32 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
non–profiled ω/2θ scansθmax = 30.4°, θmin = 2.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 012
Tmin = 0.890, Tmax = 0.965k = 130
2982 measured reflectionsl = 1515
2820 independent reflections3 standard reflections every 60 min
2457 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0964P)2 + 0.0099P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max = 0.004
S = 1.09Δρmax = 0.23 e Å3
2820 reflectionsΔρmin = 0.16 e Å3
221 parameters
Crystal data top
C17H22O7V = 882.4 (5) Å3
Mr = 338.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.735 (2) ŵ = 0.10 mm1
b = 9.526 (2) ÅT = 293 K
c = 10.605 (3) Å0.85 × 0.70 × 0.32 mm
β = 91.00 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2457 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.890, Tmax = 0.9653 standard reflections every 60 min
2982 measured reflections intensity decay: none
2820 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2820 reflectionsΔρmin = 0.16 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93177 (18)0.7069 (2)0.25656 (14)0.0433 (3)
H11.03710.67830.27700.052*
C20.86241 (18)0.78169 (18)0.36932 (14)0.0418 (3)
H20.76080.81840.34650.05*
C30.85001 (17)0.67704 (18)0.47599 (13)0.0394 (3)
H30.95310.65220.50640.047*
C40.76643 (17)0.54421 (17)0.43430 (14)0.0413 (3)
H40.76950.47470.50240.05*
C50.8412 (2)0.4843 (2)0.31704 (17)0.0487 (4)
H50.94670.45750.33880.058*
C60.7596 (3)0.3583 (3)0.2631 (2)0.0718 (6)
H6A0.81250.32570.19010.108*
H6B0.65670.38380.23940.108*
H6C0.75740.28510.32520.108*
C70.5017 (2)0.5503 (2)0.4878 (2)0.0527 (4)
C80.3486 (2)0.6008 (3)0.4429 (2)0.0643 (5)
H8A0.34630.70150.44520.096*
H8B0.27080.56410.49670.096*
H8C0.33000.56920.35810.096*
C90.8020 (2)0.7019 (2)0.69494 (15)0.0457 (3)
C100.6959 (3)0.7658 (4)0.7866 (2)0.0757 (7)
H10A0.70450.71710.86560.114*
H10B0.59270.75880.75460.114*
H10C0.72190.86290.79870.114*
C111.0074 (2)0.7551 (3)0.04565 (17)0.0605 (5)
H11A0.99530.82560.01980.073*
H11B0.95770.67000.01590.073*
C121.1764 (2)0.7259 (2)0.06563 (15)0.0493 (4)
C131.2672 (3)0.8160 (3)0.1345 (2)0.0640 (5)
H131.22400.89520.17080.077*
C141.4228 (3)0.7906 (5)0.1507 (2)0.0859 (10)
H141.48210.85220.19890.103*
C151.4893 (3)0.6779 (5)0.0975 (3)0.0923 (11)
H151.59370.66170.10820.111*
C161.3995 (5)0.5870 (4)0.0268 (4)0.0987 (12)
H161.44400.50930.01090.118*
C171.2414 (3)0.6107 (3)0.0112 (2)0.0707 (6)
H171.18140.54850.03580.085*
O10.93110 (14)0.80326 (18)0.15765 (12)0.0542 (3)
O20.95875 (17)0.89248 (17)0.41208 (13)0.0593 (4)
H2A0.98500.94000.35170.089*
O30.76822 (14)0.74379 (14)0.57660 (10)0.0447 (3)
O40.60999 (12)0.57921 (15)0.40270 (11)0.0451 (3)
O50.84441 (14)0.58883 (16)0.21977 (11)0.0494 (3)
O60.5285 (2)0.4934 (4)0.58677 (19)0.0944 (8)
O70.90249 (19)0.6210 (2)0.72177 (12)0.0636 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (6)0.0554 (9)0.0360 (6)0.0019 (6)0.0041 (5)0.0038 (6)
C20.0410 (6)0.0460 (8)0.0384 (6)0.0049 (6)0.0028 (5)0.0016 (6)
C30.0381 (6)0.0463 (8)0.0340 (6)0.0032 (6)0.0050 (4)0.0018 (5)
C40.0411 (6)0.0447 (7)0.0383 (6)0.0020 (6)0.0043 (5)0.0001 (6)
C50.0530 (8)0.0490 (8)0.0441 (7)0.0015 (7)0.0065 (6)0.0069 (7)
C60.0934 (17)0.0573 (12)0.0649 (12)0.0120 (12)0.0135 (11)0.0174 (10)
C70.0491 (7)0.0566 (10)0.0528 (9)0.0065 (7)0.0127 (6)0.0030 (8)
C80.0450 (8)0.0678 (13)0.0805 (13)0.0014 (8)0.0121 (8)0.0020 (11)
C90.0529 (8)0.0478 (8)0.0363 (6)0.0025 (7)0.0030 (5)0.0039 (6)
C100.0856 (14)0.0989 (19)0.0431 (8)0.0313 (15)0.0139 (9)0.0047 (11)
C110.0567 (9)0.0863 (15)0.0387 (7)0.0029 (10)0.0044 (6)0.0106 (9)
C120.0589 (9)0.0535 (9)0.0358 (6)0.0015 (7)0.0132 (6)0.0104 (6)
C130.0626 (11)0.0766 (14)0.0531 (10)0.0059 (11)0.0118 (8)0.0030 (10)
C140.0637 (12)0.135 (3)0.0596 (12)0.0153 (17)0.0082 (9)0.0097 (16)
C150.0643 (13)0.132 (3)0.0811 (16)0.0172 (18)0.0157 (12)0.037 (2)
C160.112 (2)0.086 (2)0.100 (2)0.046 (2)0.0504 (19)0.0271 (18)
C170.0922 (15)0.0526 (11)0.0680 (12)0.0005 (11)0.0243 (11)0.0034 (10)
O10.0509 (6)0.0688 (8)0.0431 (6)0.0081 (6)0.0078 (4)0.0133 (6)
O20.0680 (8)0.0585 (8)0.0516 (7)0.0243 (7)0.0042 (6)0.0018 (6)
O30.0488 (5)0.0498 (6)0.0355 (5)0.0073 (5)0.0060 (4)0.0016 (4)
O40.0383 (4)0.0543 (6)0.0428 (5)0.0034 (5)0.0034 (4)0.0037 (5)
O50.0509 (6)0.0602 (7)0.0373 (5)0.0027 (6)0.0033 (4)0.0035 (5)
O60.0712 (9)0.138 (2)0.0752 (11)0.0016 (12)0.0211 (8)0.0479 (14)
O70.0775 (9)0.0712 (10)0.0419 (6)0.0229 (8)0.0024 (6)0.0011 (6)
Geometric parameters (Å, º) top
C1—O11.394 (2)C8—H8C0.96
C1—O51.411 (2)C9—O71.199 (2)
C1—C21.527 (2)C9—O31.3445 (19)
C1—H10.98C9—C101.485 (3)
C2—O21.419 (2)C10—H10A0.96
C2—C31.513 (2)C10—H10B0.96
C2—H20.98C10—H10C0.96
C3—O31.4419 (17)C11—O11.447 (2)
C3—C41.523 (2)C11—C121.513 (3)
C3—H30.98C11—H11A0.97
C4—O41.4403 (18)C11—H11B0.97
C4—C51.526 (2)C12—C171.368 (3)
C4—H40.98C12—C131.371 (3)
C5—O51.434 (2)C13—C141.389 (4)
C5—C61.503 (3)C13—H130.93
C5—H50.98C14—C151.349 (6)
C6—H6A0.96C14—H140.93
C6—H6B0.96C15—C161.381 (6)
C6—H6C0.96C15—H150.93
C7—O61.202 (3)C16—C171.406 (5)
C7—O41.346 (2)C16—H160.93
C7—C81.492 (3)C17—H170.93
C8—H8A0.96O2—H2A0.82
C8—H8B0.96
O1—C1—O5108.78 (13)C7—C8—H8C109.5
O1—C1—C2106.60 (14)H8A—C8—H8C109.5
O5—C1—C2111.65 (12)H8B—C8—H8C109.5
O1—C1—H1109.9O7—C9—O3124.04 (15)
O5—C1—H1109.9O7—C9—C10124.83 (17)
C2—C1—H1109.9O3—C9—C10111.11 (17)
O2—C2—C3107.50 (13)C9—C10—H10A109.5
O2—C2—C1110.87 (13)C9—C10—H10B109.5
C3—C2—C1108.22 (14)H10A—C10—H10B109.5
O2—C2—H2110.1C9—C10—H10C109.5
C3—C2—H2110.1H10A—C10—H10C109.5
C1—C2—H2110.1H10B—C10—H10C109.5
O3—C3—C2107.82 (13)O1—C11—C12113.94 (15)
O3—C3—C4109.86 (12)O1—C11—H11A108.8
C2—C3—C4111.76 (12)C12—C11—H11A108.8
O3—C3—H3109.1O1—C11—H11B108.8
C2—C3—H3109.1C12—C11—H11B108.8
C4—C3—H3109.1H11A—C11—H11B107.7
O4—C4—C3108.88 (13)C17—C12—C13119.1 (2)
O4—C4—C5108.35 (13)C17—C12—C11120.0 (2)
C3—C4—C5109.75 (13)C13—C12—C11120.9 (2)
O4—C4—H4109.9C12—C13—C14120.9 (3)
C3—C4—H4109.9C12—C13—H13119.6
C5—C4—H4109.9C14—C13—H13119.6
O5—C5—C6107.17 (16)C15—C14—C13121.0 (3)
O5—C5—C4109.90 (14)C15—C14—H14119.5
C6—C5—C4113.70 (16)C13—C14—H14119.5
O5—C5—H5108.6C14—C15—C16118.8 (3)
C6—C5—H5108.6C14—C15—H15120.6
C4—C5—H5108.6C16—C15—H15120.6
C5—C6—H6A109.5C15—C16—C17120.7 (3)
C5—C6—H6B109.5C15—C16—H16119.6
H6A—C6—H6B109.5C17—C16—H16119.6
C5—C6—H6C109.5C12—C17—C16119.5 (3)
H6A—C6—H6C109.5C12—C17—H17120.2
H6B—C6—H6C109.5C16—C17—H17120.2
O6—C7—O4123.3 (2)C1—O1—C11114.44 (16)
O6—C7—C8125.73 (19)C2—O2—H2A109.5
O4—C7—C8110.94 (18)C9—O3—C3117.19 (13)
C7—C8—H8A109.5C7—O4—C4118.14 (14)
C7—C8—H8B109.5C1—O5—C5111.84 (12)
H8A—C8—H8B109.5
O1—C1—C2—O266.54 (17)C13—C14—C15—C160.4 (5)
O5—C1—C2—O2174.80 (13)C14—C15—C16—C170.5 (5)
O1—C1—C2—C3175.78 (12)C13—C12—C17—C160.0 (3)
O5—C1—C2—C357.13 (16)C11—C12—C17—C16177.9 (2)
O2—C2—C3—O366.81 (16)C15—C16—C17—C120.7 (4)
C1—C2—C3—O3173.38 (12)O5—C1—O1—C1165.48 (18)
O2—C2—C3—C4172.35 (13)C2—C1—O1—C11174.01 (14)
C1—C2—C3—C452.54 (16)C12—C11—O1—C162.4 (3)
O3—C3—C4—O454.24 (15)O7—C9—O3—C35.6 (3)
C2—C3—C4—O465.38 (15)C10—C9—O3—C3172.74 (19)
O3—C3—C4—C5172.68 (13)C2—C3—O3—C9150.35 (14)
C2—C3—C4—C553.06 (17)C4—C3—O3—C987.64 (16)
O4—C4—C5—O563.03 (18)O6—C7—O4—C42.2 (4)
C3—C4—C5—O555.72 (17)C8—C7—O4—C4176.70 (17)
O4—C4—C5—C657.1 (2)C3—C4—O4—C7101.17 (18)
C3—C4—C5—C6175.85 (17)C5—C4—O4—C7139.52 (17)
O1—C11—C12—C17139.1 (2)O1—C1—O5—C5179.48 (13)
O1—C11—C12—C1343.0 (3)C2—C1—O5—C563.19 (17)
C17—C12—C13—C140.9 (3)C6—C5—O5—C1174.24 (15)
C11—C12—C13—C14178.7 (2)C4—C5—O5—C161.74 (17)
C12—C13—C14—C151.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7i0.822.142.878 (2)150
C15—H15···O5ii0.932.573.447 (3)158
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y, z.
(II) O-(2,3-di-O-acetyl-4,6-O-benzylidene-β-D-glucopyranosyl)- (1 2)–3,4-O-isopropylidene-β-D-fucopyranoside top
Crystal data top
C33H40O12F(000) = 1336
Mr = 628.65Dx = 1.286 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.901 (1) Åθ = 11.9–20.9°
b = 14.261 (1) ŵ = 0.10 mm1
c = 25.583 (1) ÅT = 293 K
V = 3247.4 (4) Å3Prism, colourless
Z = 40.65 × 0.50 × 0.32 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0
non–profiled ω/2θ scansθmax = 30.4°, θmin = 2.4°
Absorption correction: ψ scan
(North et al., 1968)
h = 120
Tmin = 0.905, Tmax = 0.965k = 200
5471 measured reflectionsl = 036
5471 independent reflections3 standard reflections every 60 min
2832 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0882P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max = 0.022
S = 0.89Δρmax = 0.21 e Å3
5471 reflectionsΔρmin = 0.19 e Å3
411 parameters
Crystal data top
C33H40O12V = 3247.4 (4) Å3
Mr = 628.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.901 (1) ŵ = 0.10 mm1
b = 14.261 (1) ÅT = 293 K
c = 25.583 (1) Å0.65 × 0.50 × 0.32 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2832 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.905, Tmax = 0.9653 standard reflections every 60 min
5471 measured reflections intensity decay: none
5471 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.89Δρmax = 0.21 e Å3
5471 reflectionsΔρmin = 0.19 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1685 (3)0.68255 (18)0.51999 (9)0.0470 (6)
H10.06690.70520.51240.056*
C20.1662 (3)0.61609 (18)0.56627 (9)0.0444 (6)
H20.26860.59490.57390.053*
C30.1024 (3)0.66820 (18)0.61399 (9)0.0469 (6)
H30.00720.67170.61130.056*
C40.1670 (3)0.76676 (18)0.62111 (10)0.0496 (6)
H40.09950.80400.64310.06*
C50.1974 (4)0.81875 (18)0.57041 (11)0.0548 (7)
H50.10120.84080.55650.066*
C60.2994 (5)0.9027 (2)0.57687 (13)0.0773 (10)
H6A0.39040.88370.59400.116*
H6B0.24960.94940.59760.116*
H6C0.32280.92820.54310.116*
C70.2672 (4)0.6736 (2)0.68490 (11)0.0590 (8)
C80.4014 (5)0.6097 (3)0.68855 (17)0.0974 (13)
H8A0.43480.59350.65400.146*
H8B0.37410.55360.70710.146*
H8C0.48100.64100.70690.146*
C90.2161 (6)0.7123 (3)0.73726 (12)0.0899 (13)
H9A0.29940.74180.75450.135*
H9B0.17870.66210.75860.135*
H9C0.13780.75760.73180.135*
C100.2136 (4)0.6927 (2)0.43067 (10)0.0569 (7)
H10A0.27090.75010.43460.068*
H10B0.10900.70940.42550.068*
C110.2699 (3)0.63912 (19)0.38400 (10)0.0492 (6)
C120.3568 (4)0.5600 (2)0.38771 (12)0.0614 (7)
H120.38000.53600.42050.074*
C130.4111 (4)0.5149 (2)0.34319 (15)0.0754 (9)
H130.47040.46150.34620.091*
C140.3764 (5)0.5501 (3)0.29519 (15)0.0822 (11)
H140.41190.52060.26520.099*
C150.2899 (6)0.6281 (3)0.29106 (12)0.0882 (12)
H150.26640.65150.25810.106*
C160.2365 (4)0.6731 (3)0.33477 (12)0.0724 (9)
H160.17770.72670.33120.087*
C170.0720 (3)0.46527 (17)0.58895 (10)0.0431 (5)
H170.03820.48940.62280.052*
C180.0343 (3)0.39002 (19)0.56967 (10)0.0451 (6)
H180.00750.37240.53380.054*
C190.0314 (3)0.30273 (17)0.60481 (9)0.0436 (6)
H190.08140.31640.63810.052*
C200.1281 (3)0.27292 (17)0.61463 (10)0.0423 (5)
H200.17200.24890.58210.051*
C210.2185 (3)0.35700 (18)0.63348 (9)0.0440 (6)
H210.17200.38260.66510.053*
C230.2839 (3)0.17493 (19)0.66415 (11)0.0483 (6)
H230.33080.15120.63210.058*
C220.3760 (3)0.3259 (2)0.64573 (13)0.0605 (8)
H22A0.42530.30370.61430.073*
H22B0.43370.37790.65970.073*
C240.2842 (3)0.09979 (18)0.70513 (10)0.0465 (6)
C250.3745 (4)0.0221 (2)0.69959 (12)0.0568 (7)
H250.43530.01640.67020.068*
C260.3761 (4)0.0474 (2)0.73705 (14)0.0682 (9)
H260.43650.10000.73250.082*
C270.2896 (4)0.0392 (2)0.78065 (15)0.0722 (9)
H270.28900.08660.80560.087*
C280.2025 (4)0.0402 (2)0.78763 (14)0.0726 (9)
H280.14630.04700.81800.087*
C290.1983 (3)0.1090 (2)0.75006 (12)0.0600 (7)
H290.13800.16160.75480.072*
C300.2503 (3)0.2075 (3)0.59460 (14)0.0634 (8)
C310.3233 (4)0.1410 (3)0.55849 (17)0.0901 (12)
H31A0.36630.09030.57810.135*
H31B0.25020.11680.53440.135*
H31C0.40110.17280.53940.135*
C320.2699 (4)0.4179 (3)0.52700 (19)0.0807 (12)
C330.4168 (4)0.4691 (4)0.5345 (2)0.137 (2)
H33A0.40630.53270.52270.206*
H33B0.44350.46860.57080.206*
H33C0.49400.43850.51460.206*
O10.2281 (2)0.63696 (13)0.47667 (7)0.0540 (5)
O20.0753 (2)0.53732 (12)0.55201 (6)0.0496 (4)
O30.1431 (2)0.62353 (13)0.66183 (7)0.0536 (5)
O40.3019 (2)0.74719 (13)0.64901 (7)0.0560 (5)
O50.2644 (2)0.75863 (13)0.53258 (7)0.0545 (5)
O60.1837 (2)0.42944 (15)0.57032 (8)0.0602 (5)
O70.1095 (2)0.22851 (13)0.57805 (7)0.0546 (5)
O80.1324 (2)0.20144 (13)0.65362 (7)0.0486 (4)
O90.3666 (2)0.25224 (14)0.68334 (8)0.0564 (5)
O100.2186 (2)0.42692 (13)0.59347 (7)0.0485 (4)
O110.2303 (4)0.3766 (3)0.48987 (13)0.1122 (11)
O120.3056 (3)0.2422 (3)0.63190 (11)0.1018 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0541 (15)0.0464 (14)0.0405 (13)0.0003 (13)0.0022 (11)0.0039 (11)
C20.0482 (14)0.0428 (12)0.0422 (12)0.0004 (12)0.0027 (11)0.0062 (11)
C30.0511 (15)0.0487 (14)0.0410 (12)0.0036 (12)0.0002 (12)0.0058 (11)
C40.0570 (16)0.0433 (13)0.0486 (14)0.0069 (13)0.0021 (12)0.0016 (11)
C50.0713 (19)0.0421 (13)0.0511 (14)0.0071 (14)0.0062 (14)0.0070 (12)
C60.112 (3)0.0471 (16)0.073 (2)0.008 (2)0.002 (2)0.0100 (15)
C70.073 (2)0.0507 (15)0.0530 (15)0.0087 (15)0.0156 (15)0.0126 (13)
C80.092 (3)0.079 (2)0.121 (3)0.001 (2)0.037 (3)0.031 (3)
C90.143 (4)0.077 (2)0.0504 (17)0.035 (3)0.008 (2)0.0035 (16)
C100.0728 (19)0.0505 (15)0.0473 (14)0.0054 (16)0.0066 (14)0.0079 (12)
C110.0518 (15)0.0495 (14)0.0462 (13)0.0041 (13)0.0032 (12)0.0048 (12)
C120.0698 (19)0.0556 (17)0.0588 (16)0.0005 (16)0.0022 (16)0.0076 (14)
C130.080 (2)0.0600 (19)0.086 (2)0.0064 (18)0.0084 (19)0.0096 (18)
C140.103 (3)0.076 (2)0.068 (2)0.001 (2)0.016 (2)0.0156 (19)
C150.124 (3)0.096 (3)0.0455 (16)0.012 (3)0.001 (2)0.0007 (18)
C160.089 (2)0.075 (2)0.0537 (16)0.017 (2)0.0007 (17)0.0081 (16)
C170.0461 (13)0.0439 (13)0.0393 (12)0.0019 (12)0.0003 (11)0.0015 (11)
C180.0429 (13)0.0475 (13)0.0450 (12)0.0009 (12)0.0007 (11)0.0025 (11)
C190.0432 (13)0.0442 (13)0.0435 (13)0.0053 (12)0.0014 (11)0.0023 (11)
C200.0439 (13)0.0414 (13)0.0415 (12)0.0009 (11)0.0013 (11)0.0005 (11)
C210.0446 (13)0.0440 (14)0.0434 (12)0.0022 (12)0.0031 (11)0.0064 (10)
C230.0455 (14)0.0496 (14)0.0499 (14)0.0046 (13)0.0003 (12)0.0021 (12)
C220.0443 (14)0.0550 (16)0.0820 (19)0.0085 (14)0.0093 (15)0.0199 (15)
C240.0450 (13)0.0456 (14)0.0489 (14)0.0008 (12)0.0045 (12)0.0010 (11)
C250.0595 (17)0.0504 (15)0.0604 (16)0.0046 (15)0.0028 (14)0.0059 (13)
C260.0681 (19)0.0479 (16)0.089 (2)0.0034 (16)0.0100 (19)0.0049 (16)
C270.0637 (19)0.0608 (19)0.092 (2)0.0101 (18)0.0055 (19)0.0273 (18)
C280.0621 (18)0.079 (2)0.076 (2)0.002 (2)0.0120 (17)0.0218 (18)
C290.0518 (16)0.0623 (17)0.0659 (17)0.0072 (15)0.0066 (14)0.0090 (15)
C300.0440 (16)0.0705 (19)0.076 (2)0.0038 (15)0.0117 (15)0.0110 (17)
C310.070 (2)0.082 (2)0.119 (3)0.012 (2)0.032 (2)0.008 (2)
C320.057 (2)0.090 (3)0.095 (3)0.015 (2)0.026 (2)0.048 (2)
C330.059 (2)0.189 (6)0.164 (5)0.017 (3)0.006 (3)0.099 (4)
O10.0688 (12)0.0501 (10)0.0430 (9)0.0037 (10)0.0072 (9)0.0079 (8)
O20.0608 (11)0.0455 (9)0.0424 (9)0.0051 (10)0.0035 (8)0.0069 (8)
O30.0681 (12)0.0521 (10)0.0407 (9)0.0100 (10)0.0057 (9)0.0065 (8)
O40.0629 (11)0.0503 (10)0.0548 (10)0.0080 (10)0.0116 (9)0.0126 (9)
O50.0645 (11)0.0469 (10)0.0521 (10)0.0051 (10)0.0048 (9)0.0065 (8)
O60.0461 (10)0.0659 (12)0.0686 (13)0.0081 (10)0.0013 (9)0.0167 (11)
O70.0524 (11)0.0519 (11)0.0593 (11)0.0050 (9)0.0038 (9)0.0056 (9)
O80.0452 (9)0.0461 (9)0.0544 (10)0.0027 (9)0.0065 (8)0.0086 (8)
O90.0467 (10)0.0543 (11)0.0681 (12)0.0057 (10)0.0115 (9)0.0150 (9)
O100.0446 (9)0.0483 (9)0.0525 (10)0.0025 (9)0.0019 (8)0.0109 (8)
O110.118 (3)0.128 (3)0.0902 (19)0.015 (2)0.054 (2)0.0065 (19)
O120.0602 (14)0.145 (3)0.1005 (19)0.0225 (18)0.0204 (14)0.0256 (19)
Geometric parameters (Å, º) top
C1—O11.390 (3)C17—O101.419 (3)
C1—O51.418 (3)C17—C181.513 (4)
C1—C21.517 (3)C17—H170.98
C1—H10.98C18—O61.444 (3)
C2—O21.432 (3)C18—C191.536 (3)
C2—C31.538 (4)C18—H180.98
C2—H20.98C19—O71.439 (3)
C3—O31.426 (3)C19—C201.504 (4)
C3—C41.529 (4)C19—H190.98
C3—H30.98C20—O81.426 (3)
C4—O41.424 (3)C20—C211.522 (3)
C4—C51.519 (4)C20—H200.98
C4—H40.98C21—O101.429 (3)
C5—O51.424 (3)C21—C221.504 (4)
C5—C61.511 (5)C21—H210.98
C5—H50.98C23—O91.414 (3)
C6—H6A0.96C23—O81.426 (3)
C6—H6B0.96C23—C241.499 (4)
C6—H6C0.96C23—H230.98
C7—O41.428 (3)C22—O91.427 (3)
C7—O31.442 (4)C22—H22A0.97
C7—C81.506 (5)C22—H22B0.97
C7—C91.519 (5)C24—C251.376 (4)
C8—H8A0.96C24—C291.387 (4)
C8—H8B0.96C25—C261.379 (4)
C8—H8C0.96C25—H250.93
C9—H9A0.96C26—C271.361 (5)
C9—H9B0.96C26—H260.93
C9—H9C0.96C27—C281.383 (5)
C10—O11.426 (3)C27—H270.93
C10—C111.503 (4)C28—C291.374 (4)
C10—H10A0.97C28—H280.93
C10—H10B0.97C29—H290.93
C11—C121.371 (4)C30—O121.182 (4)
C11—C161.382 (4)C30—O71.357 (4)
C12—C131.395 (4)C30—C311.475 (5)
C12—H120.93C31—H31A0.96
C13—C141.362 (5)C31—H31B0.96
C13—H130.93C31—H31C0.96
C14—C151.357 (5)C32—O111.172 (5)
C14—H140.93C32—O61.358 (4)
C15—C161.374 (5)C32—C331.510 (6)
C15—H150.93C33—H33A0.96
C16—H160.93C33—H33B0.96
C17—O21.396 (3)C33—H33C0.96
O1—C1—O5108.0 (2)C18—C17—H17110.2
O1—C1—C2109.6 (2)O6—C18—C17107.2 (2)
O5—C1—C2108.0 (2)O6—C18—C19108.9 (2)
O1—C1—H1110.4C17—C18—C19111.9 (2)
O5—C1—H1110.4O6—C18—H18109.6
C2—C1—H1110.4C17—C18—H18109.6
O2—C2—C1107.41 (19)C19—C18—H18109.6
O2—C2—C3111.9 (2)O7—C19—C20109.1 (2)
C1—C2—C3108.8 (2)O7—C19—C18108.05 (19)
O2—C2—H2109.5C20—C19—C18110.0 (2)
C1—C2—H2109.5O7—C19—H19109.9
C3—C2—H2109.5C20—C19—H19109.9
O3—C3—C4102.29 (19)C18—C19—H19109.9
O3—C3—C2111.8 (2)O8—C20—C19110.1 (2)
C4—C3—C2113.6 (2)O8—C20—C21109.11 (19)
O3—C3—H3109.6C19—C20—C21109.2 (2)
C4—C3—H3109.6O8—C20—H20109.5
C2—C3—H3109.6C19—C20—H20109.5
O4—C4—C5111.9 (2)C21—C20—H20109.5
O4—C4—C3101.33 (19)O10—C21—C22110.8 (2)
C5—C4—C3114.5 (2)O10—C21—C20108.84 (19)
O4—C4—H4109.6C22—C21—C20109.1 (2)
C5—C4—H4109.6O10—C21—H21109.4
C3—C4—H4109.6C22—C21—H21109.4
O5—C5—C6107.5 (3)C20—C21—H21109.4
O5—C5—C4111.2 (2)O9—C23—O8110.6 (2)
C6—C5—C4113.6 (2)O9—C23—C24108.3 (2)
O5—C5—H5108.1O8—C23—C24108.9 (2)
C6—C5—H5108.1O9—C23—H23109.7
C4—C5—H5108.1O8—C23—H23109.7
C5—C6—H6A109.5C24—C23—H23109.7
C5—C6—H6B109.5O9—C22—C21107.6 (2)
H6A—C6—H6B109.5O9—C22—H22A110.2
C5—C6—H6C109.5C21—C22—H22A110.2
H6A—C6—H6C109.5O9—C22—H22B110.2
H6B—C6—H6C109.5C21—C22—H22B110.2
O4—C7—O3105.4 (2)H22A—C22—H22B108.5
O4—C7—C8108.3 (3)C25—C24—C29118.9 (3)
O3—C7—C8109.5 (3)C25—C24—C23120.3 (2)
O4—C7—C9111.4 (2)C29—C24—C23120.7 (2)
O3—C7—C9108.2 (3)C24—C25—C26120.9 (3)
C8—C7—C9113.8 (3)C24—C25—H25119.6
C7—C8—H8A109.5C26—C25—H25119.6
C7—C8—H8B109.5C27—C26—C25120.1 (3)
H8A—C8—H8B109.5C27—C26—H26119.9
C7—C8—H8C109.5C25—C26—H26119.9
H8A—C8—H8C109.5C26—C27—C28119.6 (3)
H8B—C8—H8C109.5C26—C27—H27120.2
C7—C9—H9A109.5C28—C27—H27120.2
C7—C9—H9B109.5C29—C28—C27120.6 (3)
H9A—C9—H9B109.5C29—C28—H28119.7
C7—C9—H9C109.5C27—C28—H28119.7
H9A—C9—H9C109.5C28—C29—C24119.8 (3)
H9B—C9—H9C109.5C28—C29—H29120.1
O1—C10—C11110.0 (2)C24—C29—H29120.1
O1—C10—H10A109.7O12—C30—O7122.9 (3)
C11—C10—H10A109.7O12—C30—C31126.3 (3)
O1—C10—H10B109.7O7—C30—C31110.7 (3)
C11—C10—H10B109.7C30—C31—H31A109.5
H10A—C10—H10B108.2C30—C31—H31B109.5
C12—C11—C16118.2 (3)H31A—C31—H31B109.5
C12—C11—C10123.4 (2)C30—C31—H31C109.5
C16—C11—C10118.3 (3)H31A—C31—H31C109.5
C11—C12—C13121.2 (3)H31B—C31—H31C109.5
C11—C12—H12119.4O11—C32—O6123.5 (4)
C13—C12—H12119.4O11—C32—C33127.3 (4)
C14—C13—C12119.2 (3)O6—C32—C33109.1 (4)
C14—C13—H13120.4C32—C33—H33A109.5
C12—C13—H13120.4C32—C33—H33B109.5
C15—C14—C13120.0 (3)H33A—C33—H33B109.5
C15—C14—H14120C32—C33—H33C109.5
C13—C14—H14120H33A—C33—H33C109.5
C14—C15—C16121.0 (3)H33B—C33—H33C109.5
C14—C15—H15119.5C1—O1—C10111.29 (19)
C16—C15—H15119.5C17—O2—C2114.62 (18)
C15—C16—C11120.2 (3)C3—O3—C7108.94 (19)
C15—C16—H16119.9C4—O4—C7106.5 (2)
C11—C16—H16119.9C1—O5—C5111.3 (2)
O2—C17—O10108.6 (2)C32—O6—C18117.6 (3)
O2—C17—C18108.3 (2)C30—O7—C19117.4 (2)
O10—C17—C18109.1 (2)C23—O8—C20110.27 (19)
O2—C17—H17110.2C23—O9—C22111.8 (2)
O10—C17—H17110.2C17—O10—C21109.07 (19)
O1—C1—C2—O259.6 (3)C29—C24—C25—C262.3 (4)
O5—C1—C2—O2177.07 (19)C23—C24—C25—C26179.8 (3)
O1—C1—C2—C3179.1 (2)C24—C25—C26—C271.0 (5)
O5—C1—C2—C361.6 (3)C25—C26—C27—C281.3 (5)
O2—C2—C3—O381.5 (2)C26—C27—C28—C292.5 (5)
C1—C2—C3—O3159.9 (2)C27—C28—C29—C241.2 (5)
O2—C2—C3—C4163.3 (2)C25—C24—C29—C281.2 (4)
C1—C2—C3—C444.8 (3)C23—C24—C29—C28178.7 (3)
O3—C3—C4—O436.2 (2)O5—C1—O1—C1070.4 (3)
C2—C3—C4—O484.5 (2)C2—C1—O1—C10172.1 (2)
O3—C3—C4—C5156.8 (2)C11—C10—O1—C1176.4 (2)
C2—C3—C4—C536.2 (3)O10—C17—O2—C264.5 (3)
O4—C4—C5—O572.1 (3)C18—C17—O2—C2177.1 (2)
C3—C4—C5—O542.4 (3)C1—C2—O2—C17174.7 (2)
O4—C4—C5—C649.2 (3)C3—C2—O2—C1765.9 (3)
C3—C4—C5—C6163.8 (3)C4—C3—O3—C721.3 (3)
O1—C10—C11—C1215.6 (4)C2—C3—O3—C7100.6 (3)
O1—C10—C11—C16166.7 (3)O4—C7—O3—C31.6 (3)
C16—C11—C12—C130.3 (5)C8—C7—O3—C3117.9 (3)
C10—C11—C12—C13177.5 (3)C9—C7—O3—C3117.6 (2)
C11—C12—C13—C140.3 (5)C5—C4—O4—C7160.9 (2)
C12—C13—C14—C150.0 (6)C3—C4—O4—C738.5 (3)
C13—C14—C15—C160.2 (7)O3—C7—O4—C426.1 (3)
C14—C15—C16—C110.2 (7)C8—C7—O4—C4143.2 (3)
C12—C11—C16—C150.0 (5)C9—C7—O4—C490.9 (3)
C10—C11—C16—C15177.8 (4)O1—C1—O5—C5169.4 (2)
O2—C17—C18—O667.1 (3)C2—C1—O5—C572.1 (3)
O10—C17—C18—O6174.77 (19)C6—C5—O5—C1173.9 (2)
O2—C17—C18—C19173.5 (2)C4—C5—O5—C161.2 (3)
O10—C17—C18—C1955.4 (3)O11—C32—O6—C181.3 (5)
O6—C18—C19—O773.6 (2)C33—C32—O6—C18176.5 (3)
C17—C18—C19—O7168.0 (2)C17—C18—O6—C32132.1 (3)
O6—C18—C19—C20167.3 (2)C19—C18—O6—C32106.5 (3)
C17—C18—C19—C2048.9 (3)O12—C30—O7—C195.9 (4)
O7—C19—C20—O870.7 (2)C31—C30—O7—C19171.2 (3)
C18—C19—C20—O8170.88 (19)C20—C19—O7—C30136.4 (2)
O7—C19—C20—C21169.5 (2)C18—C19—O7—C30104.0 (3)
C18—C19—C20—C2151.1 (3)O9—C23—O8—C2061.2 (3)
O8—C20—C21—O10177.83 (19)C24—C23—O8—C20179.91 (19)
C19—C20—C21—O1061.8 (3)C19—C20—O8—C23178.3 (2)
O8—C20—C21—C2256.9 (3)C21—C20—O8—C2358.4 (3)
C19—C20—C21—C22177.3 (2)O8—C23—O9—C2262.8 (3)
O10—C21—C22—O9176.3 (2)C24—C23—O9—C22178.0 (2)
C20—C21—C22—O956.6 (3)C21—C22—O9—C2360.1 (3)
O9—C23—C24—C25104.2 (3)O2—C17—O10—C21176.49 (18)
O8—C23—C24—C25135.5 (3)C18—C17—O10—C2165.6 (3)
O9—C23—C24—C2973.3 (3)C22—C21—O10—C17170.6 (2)
O8—C23—C24—C2947.0 (3)C20—C21—O10—C1769.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O30.982.352.995 (3)123
C22—H22A···O12i0.972.593.095 (4)113
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H22O7C33H40O12
Mr338.36628.65
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)8.735 (2), 9.526 (2), 10.605 (3)8.901 (1), 14.261 (1), 25.583 (1)
α, β, γ (°)90, 91.00 (2), 9090, 90, 90
V3)882.4 (5)3247.4 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.85 × 0.70 × 0.320.65 × 0.50 × 0.32
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.890, 0.9650.905, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
2982, 2820, 2457 5471, 5471, 2832
Rint0.0170
(sin θ/λ)max1)0.7120.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.130, 1.09 0.041, 0.138, 0.89
No. of reflections28205471
No. of parameters221411
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.160.21, 0.19

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1998), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—O11.394 (2)C3—C41.523 (2)
C1—O51.411 (2)C4—C51.526 (2)
C1—C21.527 (2)C5—O51.434 (2)
C2—C31.513 (2)
O1—C1—O5108.78 (13)C2—C3—C4111.76 (12)
O1—C1—C2106.60 (14)O5—C5—C4109.90 (14)
O5—C1—C2111.65 (12)C1—O1—C11114.44 (16)
C3—C2—C1108.22 (14)C1—O5—C5111.84 (12)
O5—C1—C2—C357.13 (16)C3—C4—C5—O555.72 (17)
C2—C3—C4—C553.06 (17)C12—C11—O1—C162.4 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7i0.822.142.878 (2)150
C15—H15···O5ii0.932.573.447 (3)158
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
C1—O11.390 (3)C5—O51.424 (3)
C1—O51.418 (3)C17—O21.396 (3)
C1—C21.517 (3)C17—O101.419 (3)
C2—O21.432 (3)C17—C181.513 (4)
C2—C31.538 (4)C18—C191.536 (3)
C3—C41.529 (4)C19—C201.504 (4)
C4—C51.519 (4)C20—C211.522 (3)
O1—C1—O5108.0 (2)O10—C17—C18109.1 (2)
O1—C1—C2109.6 (2)C17—C18—C19111.9 (2)
O5—C1—C2108.0 (2)C20—C19—C18110.0 (2)
C1—C2—C3108.8 (2)C19—C20—C21109.2 (2)
C4—C3—C2113.6 (2)O10—C21—C22110.8 (2)
C5—C4—C3114.5 (2)C1—O1—C10111.29 (19)
O5—C5—C4111.2 (2)C17—O2—C2114.62 (18)
O2—C17—O10108.6 (2)C1—O5—C5111.3 (2)
O2—C17—C18108.3 (2)C17—O10—C21109.07 (19)
O5—C1—C2—C361.6 (3)O10—C17—O2—C264.5 (3)
C1—C2—C3—C444.8 (3)C3—C2—O2—C1765.9 (3)
C2—C3—C4—C536.2 (3)C2—C1—O5—C572.1 (3)
C3—C4—C5—O542.4 (3)C4—C5—O5—C161.2 (3)
C17—C18—C19—C2048.9 (3)C18—C17—O10—C2165.6 (3)
C18—C19—C20—C2151.1 (3)C20—C21—O10—C1769.5 (3)
C19—C20—C21—O1061.8 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O30.982.352.995 (3)123
C22—H22A···O12i0.972.593.095 (4)113
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds