Download citation
Download citation
link to html
The structures of two atropisomers of the title compound, [Cr(C16H18B2Cl2N2)(CO)3], are reported. For both compounds, the Cr(CO)3 moiety is bound to the C6 aromatic ring of the mol­ecule; the existence of atropisomers resulting from the non-equivalence of both faces of the C6 aromatic ring is a consequence of the 3-chloro-2-methylphenyl ring being nearly perpendicular to the mean plane of the 2,4-dibora-1,3-di­aza­naphthalene ring. The orientation of the Cr(CO)3 tripod relative to the C6 aromatic ring is such that it is nearly eclipsed in one isomer (2.4° rotation from being eclipsed with C—N, C—Cl and C—H) and slightly twisted (16.2°) from an eclipsed conformation in the other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101006187/fg1625sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006187/fg1625Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006187/fg1625IIsup3.hkl
Contains datablock II

CCDC references: 169924; 169925

Comment top

A large number of polycyclic-arenetricarbonylchromium complexes have been reported to date (Bruce 1982; Solladié-Cavallo 1989; Blake et al.. 1995). These compounds have been greatly studied in part because the Cr(CO)3 unit alters the reactivity of substituted arenes in ways that depend on the stereochemistry of the complexes. Complexes of a natural sesquiterpene series occur with high regio- and stereoselectivity (El Firdoussi et al., 1997; Abouhamza et al.. 1999). The present work follows related research by our group on organometallic compounds of aromatic terpene hydrocarbons (Ait Ali et al., 2000). The title compounds are members of this series of complexes and the crystal structures of both isomers, (I) and (II), were determined to obtain the ligand arrangement around the metal center and to ascertain the stereochemistry. \sch

Views of the two molecules are shown in Figs. 1 and 2. A first comparison of these structures with the parent ligand, i.e. 7-chloro-3-(3'chloro-2'methylphenyl)-2,4,8-trimethyl-1,2,3,4-tetrahydro- 2,4-dibora-1,3-diazanaphthalene whose structure was previously reported (Allaoud et al., 1994) is of interest. Thus, the two expected atropisomers were indeed observed: compound (I) where the Cr(CO)3 moiety together with the chlorine and methyl substituents on the phenyl ring are on the same side of the diboradiazanaphthalene mean plane (cis compound) and compound (II) where they are on the opposite side of the same plane (trans compound). The angles measured between the planes of the diboradiazanaphthalene and phenyl ring planes are 77.22 (5)° for compound (I) and 84.33 (6)° for compound (II); the corresponding value in the parent uncomplexed compound is 84.2°.

The presence of the Cr(CO)3 group mainly induces a systematic lengthening of the C—C bonds of the attached C6 aromatic ring compared with the parent ligand: mean values of +0.026 Å and +0.024 Å are observed for compounds (I) and (I), respectively. For comparison dimensions of the adjacent heteroatomic ring C8,C9,N1,B2,N2,B1 only differs by +0.007 Å for (I) and +0.011 Å for (II) from those of the parent molecule. For both isomers, the Cr—C(ring) bond lengths fall in the range 2.178 (2) to 2.308 (2) Å. For compound 1, the C1—Cr—Cg—C9, C2—Cr—Cg—C7 and C3—Cr—Cg—C5 torsion angles are 16.0, 17.0 and 15.6°, respectively (Cg is the aromatic C6 ring centroid), while for compound (II), the corresponding values (1.5, 1.8 and 3.9°) are indicative of a nearly eclipsed conformation as already observed with disubstituted benzene containing electron-donating substituents (Mutterties et al., 1982).

Few structural data are found where B—N heterocyclic arenes are bound to Cr(CO)3 with the exception of the parent borazine ring. Thus in the hexaethylborazine-Cr(CO)3, the B3N3 borazine ring is puckered in a chair form such that all three Cr—N distances are shorter than the three Cr—B bonds (Huttner & Kreig, 1972). Every time a 6π-electron boron nitrogen heterocycle is fused to a benzene ring, the Cr(CO)3 moiety prefers attachment to the benzene part of the molecule.

Experimental top

All reactions were carried out under dry argon using Schlenk techniques. The reaction of Cr(CO)6 (2.18 mmol) with the relevant ligand (1.51 mmol) produced a mixture of both isomers in 29% yield (Allaoud et al., 1994) which was chromatographed on a silica column with a diethyl ether-hexane mixture (25/75) to yield a first fraction of pure compound (I) (m.p. 453–455 K) and a second fraction of compound 2 (m.p. 449–451 K). Each isomer was characterized by its 1H and 13C NMR spectrum; the attribution of the correct configuration was in complete agreement with those deduced from solvent effects in our previous study. Crystals were grown from a diethyl ether-hexane mixture (1:1).

Refinement top

All H atoms were placed at idealized positions and were allowed to ride on the neighboring atoms with isotropic displacement parameters [C—H = 0.93–0.96 Å, N—H = 0.86 Å and Uiso = 1.3Ueq(C or N)].

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (II) showing 50% probability displacement ellipsoids.
(I) η6-benzo-{2,4-Dimethyl-3-phenyl-[2'-methyl-3'-chloro]-7-chloro- 8-methyl-2,4-dibora-1,3-diazaronaphthalene}chromium Tricarbonyl top
Crystal data top
[Cr(C16H18B2Cl2N2)(CO)3]Z = 2
Mr = 466.87F(000) = 476
Triclinic, P1Dx = 1.509 Mg m3
a = 6.750 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.839 (1) ÅCell parameters from 12140 reflections
c = 14.858 (1) Åθ = 1.0–27.5°
α = 80.537 (2)°µ = 0.84 mm1
β = 88.717 (1)°T = 110 K
γ = 73.409 (2)°Prism, yellow
V = 1027.3 (1) Å30.20 × 0.10 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 08
12140 measured reflectionsk = 1214
4611 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cr(C16H18B2Cl2N2)(CO)3]γ = 73.409 (2)°
Mr = 466.87V = 1027.3 (1) Å3
Triclinic, P1Z = 2
a = 6.750 (1) ÅMo Kα radiation
b = 10.839 (1) ŵ = 0.84 mm1
c = 14.858 (1) ÅT = 110 K
α = 80.537 (2)°0.20 × 0.10 × 0.07 mm
β = 88.717 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1834 reflections with I > 2σ(I)
12140 measured reflectionsRint = 0.100
4611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.82Δρmax = 0.26 e Å3
3590 reflectionsΔρmin = 0.28 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.19443 (5)0.77226 (3)0.80295 (2)0.01325 (12)
Cl10.25571 (8)1.03245 (5)0.90972 (4)0.02377 (15)
Cl20.69033 (10)0.04950 (5)0.61866 (4)0.03138 (16)
O10.1681 (2)0.53207 (14)0.92740 (10)0.0266 (4)
O20.0511 (2)0.71298 (15)0.65823 (9)0.0243 (4)
O30.2007 (3)0.93433 (17)0.87190 (10)0.0314 (4)
N10.6726 (3)0.56855 (16)0.86375 (10)0.0157 (4)
H10.70220.55440.92120.020*
N20.6974 (2)0.48464 (15)0.71954 (10)0.0148 (4)
B10.5712 (3)0.6061 (2)0.67439 (14)0.0147 (5)
B20.7581 (4)0.4640 (2)0.81548 (16)0.0164 (5)
C10.1744 (3)0.62473 (19)0.87814 (13)0.0171 (4)
C20.0410 (3)0.7362 (2)0.71372 (13)0.0186 (4)
C30.0476 (3)0.8697 (2)0.84611 (13)0.0180 (4)
C40.4611 (3)0.78523 (18)0.88672 (13)0.0137 (4)
C50.3478 (3)0.90996 (19)0.84507 (12)0.0157 (4)
C60.3046 (3)0.94381 (18)0.74964 (13)0.0167 (4)
H60.23091.02810.72360.022*
C70.3776 (3)0.84505 (19)0.69576 (13)0.0161 (4)
H70.34480.86460.63360.021*
C80.4983 (3)0.71770 (18)0.73241 (13)0.0142 (4)
C90.5473 (3)0.69042 (19)0.82821 (14)0.0172 (4)
C100.5095 (3)0.74995 (19)0.98767 (13)0.0209 (5)
H10A0.41460.81201.01890.027*
H10B0.64830.75120.99920.027*
H10C0.49660.66421.00930.027*
C110.4991 (3)0.6315 (2)0.57045 (12)0.0212 (5)
H11A0.36140.62390.56660.028*
H11B0.59140.56840.53910.028*
H11C0.50080.71770.54270.028*
C120.9143 (3)0.33451 (19)0.86375 (14)0.0215 (5)
H12A0.92720.33820.92740.028*
H12B1.04690.32420.83630.028*
H12C0.86470.26180.85710.028*
C130.7847 (3)0.38031 (19)0.66941 (13)0.0190 (5)
C140.6992 (3)0.27649 (19)0.67270 (13)0.0172 (4)
C150.7943 (3)0.18019 (19)0.62130 (14)0.0193 (4)
C160.9638 (3)0.18359 (19)0.56824 (12)0.0215 (5)
H161.02120.11770.53430.028*
C171.0468 (4)0.2876 (2)0.56650 (14)0.0253 (5)
H171.16160.29130.53160.033*
C180.9595 (3)0.3844 (2)0.61616 (14)0.0197 (4)
H181.01590.45350.61480.026*
C190.5130 (3)0.2695 (2)0.72888 (14)0.0254 (5)
H19A0.55350.20000.77990.033*
H19B0.41110.25330.69190.033*
H19C0.45560.35070.75060.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.01176 (19)0.01269 (19)0.01488 (19)0.00304 (13)0.00139 (13)0.00167 (13)
Cl10.0246 (3)0.0154 (3)0.0307 (3)0.0003 (2)0.0029 (2)0.0111 (2)
Cl20.0426 (4)0.0196 (3)0.0359 (3)0.0131 (3)0.0026 (3)0.0080 (2)
O10.0304 (10)0.0231 (8)0.0257 (8)0.0133 (7)0.0036 (6)0.0082 (7)
O20.0222 (9)0.0361 (10)0.0192 (8)0.0128 (7)0.0024 (6)0.0089 (7)
O30.0217 (9)0.0430 (10)0.0335 (9)0.0084 (8)0.0070 (7)0.0203 (8)
N10.0192 (10)0.0124 (8)0.0118 (8)0.0034 (7)0.0039 (6)0.0047 (6)
N20.0136 (9)0.0147 (8)0.0191 (9)0.0065 (6)0.0069 (7)0.0075 (7)
B10.0067 (12)0.0247 (13)0.0138 (11)0.0081 (10)0.0010 (9)0.0003 (9)
B20.0124 (12)0.0166 (12)0.0194 (12)0.0028 (9)0.0009 (9)0.0030 (8)
C10.0111 (10)0.0217 (11)0.0186 (10)0.0039 (8)0.0029 (7)0.0049 (9)
C20.0158 (11)0.0183 (12)0.0205 (12)0.0063 (8)0.0036 (9)0.0024 (9)
C30.0177 (12)0.0271 (11)0.0129 (10)0.0123 (9)0.0003 (8)0.0034 (8)
C40.0130 (10)0.0134 (10)0.0156 (10)0.0065 (8)0.0004 (7)0.0003 (8)
C50.0176 (11)0.0153 (10)0.0177 (10)0.0088 (8)0.0010 (8)0.0049 (8)
C60.0123 (10)0.0092 (9)0.0260 (11)0.0023 (8)0.0028 (8)0.0036 (8)
C70.0164 (11)0.0161 (10)0.0153 (10)0.0071 (8)0.0008 (8)0.0031 (8)
C80.0108 (11)0.0157 (10)0.0166 (10)0.0049 (8)0.0013 (7)0.0019 (7)
C90.0140 (11)0.0112 (9)0.0260 (11)0.0043 (8)0.0027 (8)0.0001 (8)
C100.0184 (12)0.0180 (11)0.0257 (11)0.0012 (9)0.0034 (9)0.0082 (8)
C110.0174 (11)0.0269 (12)0.0195 (11)0.0054 (9)0.0030 (8)0.0063 (8)
C120.0185 (12)0.0191 (11)0.0254 (11)0.0021 (9)0.0006 (8)0.0052 (8)
C130.0179 (12)0.0167 (11)0.0191 (11)0.0005 (9)0.0051 (8)0.0019 (8)
C140.0168 (11)0.0188 (10)0.0159 (10)0.0044 (8)0.0002 (7)0.0042 (8)
C150.0203 (12)0.0118 (9)0.0256 (11)0.0042 (9)0.0063 (8)0.0025 (8)
C160.0206 (12)0.0188 (11)0.0211 (11)0.0012 (9)0.0012 (9)0.0035 (8)
C170.0226 (12)0.0262 (13)0.0264 (11)0.0056 (9)0.0025 (9)0.0050 (9)
C180.0129 (11)0.0221 (11)0.0253 (11)0.0082 (9)0.0044 (8)0.0020 (9)
C190.0258 (12)0.0281 (12)0.0259 (11)0.0100 (10)0.0078 (9)0.0122 (9)
Geometric parameters (Å, º) top
Cr—Cg1.732C6—C71.412 (3)
Cr—C11.831 (1)C6—H60.9300
Cr—C21.856 (2)C7—C81.413 (3)
Cr—C31.840 (2)C7—H70.9300
Cr—C42.261 (2)C8—C91.432 (3)
Cr—C52.216 (2)C10—H10A0.9600
Cr—C62.218 (2)C10—H10B0.9600
Cr—C72.178 (2)C10—H10C0.9600
Cr—C82.252 (2)C11—H11A0.9600
Cr—C92.308 (2)C11—H11B0.9600
Cl1—C51.730 (2)C11—H11C0.9600
Cl2—C151.757 (2)C12—H12A0.9600
O1—C11.152 (2)C12—H12B0.9600
O2—C21.145 (2)C12—H12C0.9600
O3—C31.168 (3)C13—C141.398 (3)
N1—C91.375 (3)C13—C181.413 (3)
N1—B21.417 (3)C14—C151.394 (3)
N1—H10.8600C14—C191.506 (3)
N2—B11.416 (3)C15—C161.380 (3)
N2—B21.456 (3)C16—C171.391 (3)
N2—C131.434 (2)C16—H160.9300
B1—C81.559 (3)C17—C181.369 (3)
B1—C111.586 (3)C17—H170.9300
B2—C121.566 (3)C18—H180.9300
C4—C51.397 (3)C19—H19A0.9600
C4—C91.442 (3)C19—H19B0.9600
C4—C101.505 (3)C19—H19C0.9600
C5—C61.420 (3)
Cg—Cr—C1122.9C7—C6—C5117.66 (17)
Cg—Cr—C2127.5C7—C6—Cr69.75 (10)
Cg—Cr—C3125.7C5—C6—Cr71.25 (10)
C1—Cr—C289.55 (8)C7—C6—H6121.2
C1—Cr—C391.09 (9)C5—C6—H6121.2
C2—Cr—C388.97 (9)Cr—C6—H6130.2
C1—Cr—C7143.45 (9)C6—C7—C8122.68 (17)
C3—Cr—C7125.38 (9)C6—C7—Cr72.80 (12)
C2—Cr—C788.83 (7)C8—C7—Cr74.27 (10)
C1—Cr—C5123.25 (7)C6—C7—H7118.7
C3—Cr—C587.74 (8)C8—C7—H7118.7
C2—Cr—C5147.08 (8)Cr—C7—H7126.2
C7—Cr—C566.93 (7)C7—C8—C9117.51 (18)
C1—Cr—C6159.35 (7)C7—C8—B1123.08 (17)
C3—Cr—C694.27 (8)C9—C8—B1119.36 (17)
C2—Cr—C6110.44 (7)C7—C8—Cr68.58 (11)
C7—Cr—C637.45 (7)C9—C8—Cr73.84 (12)
C5—Cr—C637.36 (7)B1—C8—Cr126.26 (13)
C1—Cr—C8106.85 (8)N1—C9—C8117.92 (18)
C3—Cr—C8161.51 (8)N1—C9—C4120.71 (18)
C2—Cr—C895.47 (8)C8—C9—C4121.32 (18)
C7—Cr—C837.15 (7)N1—C9—Cr132.61 (14)
C5—Cr—C878.78 (7)C8—C9—Cr69.59 (12)
C6—Cr—C867.35 (7)C4—C9—Cr69.83 (11)
C1—Cr—C492.29 (7)C4—C10—H10A109.5
C3—Cr—C4108.28 (8)C4—C10—H10B109.5
C2—Cr—C4162.60 (8)H10A—C10—H10B109.5
C7—Cr—C479.43 (7)C4—C10—H10C109.5
C5—Cr—C436.35 (7)H10A—C10—H10C109.5
C6—Cr—C467.10 (7)H10B—C10—H10C109.5
C8—Cr—C467.45 (7)B1—C11—H11A109.5
C1—Cr—C986.49 (8)B1—C11—H11B109.5
C3—Cr—C9144.64 (8)H11A—C11—H11B109.5
C2—Cr—C9126.23 (8)B1—C11—H11C109.5
C7—Cr—C965.59 (7)H11A—C11—H11C109.5
C5—Cr—C964.86 (7)H11B—C11—H11C109.5
C6—Cr—C977.64 (7)B2—C12—H12A109.5
C8—Cr—C936.57 (7)B2—C12—H12B109.5
C4—Cr—C936.79 (8)H12A—C12—H12B109.5
C9—N1—B2126.75 (17)B2—C12—H12C109.5
C9—N1—H1116.6H12A—C12—H12C109.5
B2—N1—H1116.6H12B—C12—H12C109.5
B1—N2—C13120.35 (15)C14—C13—C18120.33 (19)
B1—N2—B2122.00 (16)C14—C13—N2120.98 (18)
C13—N2—B2117.44 (16)C18—C13—N2118.69 (16)
N2—B1—C8116.88 (16)C15—C14—C13116.72 (19)
N2—B1—C11123.38 (19)C15—C14—C19121.76 (18)
C8—B1—C11119.73 (18)C13—C14—C19121.52 (19)
N1—B2—N2116.76 (18)C16—C15—C14123.57 (18)
N1—B2—C12120.80 (18)C16—C15—Cl2116.95 (16)
N2—B2—C12122.42 (18)C14—C15—Cl2119.43 (16)
O1—C1—Cr177.37 (16)C15—C16—C17118.63 (19)
O2—C2—Cr179.0 (2)C15—C16—H16120.7
O3—C3—Cr178.2 (2)C17—C16—H16120.7
C5—C4—C9117.47 (17)C18—C17—C16120.0 (2)
C5—C4—C10122.95 (17)C18—C17—H17120.0
C9—C4—C10119.40 (17)C16—C17—H17120.0
C5—C4—Cr70.07 (10)C17—C18—C13120.71 (19)
C9—C4—Cr73.38 (11)C17—C18—H18119.6
C10—C4—Cr131.27 (13)C13—C18—H18119.6
C4—C5—C6122.97 (18)C14—C19—H19A109.5
C4—C5—Cl1120.23 (14)C14—C19—H19B109.5
C6—C5—Cl1116.79 (15)H19A—C19—H19B109.5
C4—C5—Cr73.58 (10)C14—C19—H19C109.5
C6—C5—Cr71.39 (10)H19A—C19—H19C109.5
Cl1—C5—Cr129.78 (11)H19B—C19—H19C109.5
(II) η6-benzo-{2,4-Dimethyl-3-phenyl-[2'-methyl-3'-chloro]-7-chloro- 8-methyl-2,4-dibora-1,3-diazaronaphthalene}chromium Tricarbonyl top
Crystal data top
[Cr(C16H18B2Cl2N2)(CO)3]F(000) = 1904
Mr = 466.87Dx = 1.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.666 (1) ÅCell parameters from 19870 reflections
b = 7.0290 (3) Åθ = 1.0–27.5°
c = 25.366 (1) ŵ = 0.82 mm1
β = 112.907 (2)°T = 110 K
V = 4215.3 (3) Å3Prism, yellow
Z = 80.20 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.140
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ω–scansh = 033
19870 measured reflectionsk = 09
4824 independent reflectionsl = 3230
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0306P)2 + 8.1507P]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cr(C16H18B2Cl2N2)(CO)3]V = 4215.3 (3) Å3
Mr = 466.87Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.666 (1) ŵ = 0.82 mm1
b = 7.0290 (3) ÅT = 110 K
c = 25.366 (1) Å0.20 × 0.15 × 0.05 mm
β = 112.907 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4105 reflections with I > 2σ(I)
19870 measured reflectionsRint = 0.140
4824 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.05Δρmax = 0.67 e Å3
4824 reflectionsΔρmin = 0.54 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.15971 (1)0.61763 (4)0.54569 (1)0.01566 (9)
Cl10.18305 (2)0.49397 (7)0.42016 (2)0.02542 (12)
Cl20.12059 (3)0.13299 (9)0.82257 (2)0.04168 (16)
O10.05435 (6)0.7359 (2)0.56081 (6)0.0273 (3)
O20.23077 (6)0.8791 (2)0.64016 (6)0.0324 (4)
O30.14402 (6)0.9424 (2)0.46444 (6)0.0274 (3)
N10.07183 (6)0.2525 (2)0.53916 (7)0.0190 (3)
H10.04400.23090.50720.025*
N20.10905 (7)0.2546 (2)0.64409 (7)0.0203 (3)
B10.16408 (9)0.3097 (3)0.64727 (10)0.0221 (4)
B20.06273 (9)0.2176 (3)0.59043 (9)0.0196 (4)
C10.09554 (8)0.6936 (3)0.55508 (8)0.0201 (4)
C20.20347 (8)0.7779 (3)0.60418 (8)0.0228 (4)
C30.15051 (8)0.8173 (3)0.49589 (8)0.0198 (4)
C40.12308 (8)0.3752 (2)0.48286 (8)0.0172 (4)
C50.17631 (8)0.4314 (3)0.48353 (8)0.0198 (4)
C60.22573 (8)0.4365 (3)0.53374 (9)0.0222 (4)
H60.26030.46880.53240.029*
C70.22181 (8)0.3920 (3)0.58578 (9)0.0214 (4)
H70.25410.40000.61930.028*
C80.16988 (8)0.3347 (3)0.58902 (8)0.0192 (4)
C90.12162 (8)0.3179 (3)0.53634 (8)0.0171 (4)
C100.07113 (8)0.3631 (3)0.42835 (8)0.0213 (4)
H10A0.07580.44320.39980.028*
H10B0.03880.40440.43540.028*
H10C0.06570.23390.41500.028*
C110.21547 (9)0.3445 (3)0.70527 (9)0.0323 (5)
H11A0.20330.33230.73640.042*
H11B0.23020.47010.70540.042*
H11C0.24450.25240.70960.042*
C120.00362 (8)0.1457 (3)0.58697 (9)0.0227 (4)
H12A0.01590.24790.59670.029*
H12B0.00890.04250.61330.029*
H12C0.01840.10280.54880.029*
C130.09947 (8)0.2404 (3)0.69667 (8)0.0229 (4)
C140.11202 (8)0.0696 (3)0.72774 (8)0.0229 (4)
C150.10410 (9)0.0701 (3)0.77931 (9)0.0293 (5)
C160.08446 (11)0.2264 (4)0.79902 (10)0.0379 (6)
H160.07990.22110.83360.049*
C170.07171 (12)0.3900 (4)0.76680 (11)0.0427 (6)
H170.05820.49590.77940.056*
C180.07903 (11)0.3972 (3)0.71539 (10)0.0342 (5)
H180.07020.50780.69350.045*
C190.13296 (9)0.0997 (3)0.70590 (9)0.0277 (4)
H19A0.10500.13720.66950.036*
H19B0.13980.20290.73260.036*
H19C0.16750.06740.70170.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.01483 (15)0.01615 (15)0.01782 (16)0.00094 (11)0.00833 (12)0.00003 (11)
Cl10.0307 (3)0.0275 (2)0.0261 (3)0.0019 (2)0.0198 (2)0.0009 (2)
Cl20.0513 (4)0.0483 (4)0.0257 (3)0.0093 (3)0.0153 (3)0.0114 (2)
O10.0197 (7)0.0348 (8)0.0307 (8)0.0015 (6)0.0135 (6)0.0044 (6)
O20.0321 (8)0.0402 (9)0.0258 (8)0.0135 (7)0.0124 (7)0.0116 (7)
O30.0299 (8)0.0223 (7)0.0333 (8)0.0020 (6)0.0160 (7)0.0080 (6)
N10.0167 (7)0.0207 (8)0.0187 (8)0.0033 (6)0.0059 (6)0.0013 (6)
N20.0229 (8)0.0204 (8)0.0187 (8)0.0035 (6)0.0093 (7)0.0015 (6)
B10.0235 (11)0.0188 (10)0.0228 (11)0.0011 (8)0.0077 (9)0.0036 (9)
B20.0210 (10)0.0158 (10)0.0228 (11)0.0002 (8)0.0095 (9)0.0016 (8)
C10.0225 (9)0.0190 (9)0.0180 (9)0.0039 (7)0.0068 (7)0.0015 (7)
C20.0213 (9)0.0276 (10)0.0240 (10)0.0005 (8)0.0136 (8)0.0037 (9)
C30.0179 (9)0.0208 (9)0.0243 (10)0.0018 (7)0.0121 (8)0.0043 (8)
C40.0194 (9)0.0129 (8)0.0209 (9)0.0015 (7)0.0097 (7)0.0008 (7)
C50.0246 (9)0.0160 (9)0.0241 (10)0.0015 (7)0.0153 (8)0.0011 (7)
C60.0184 (9)0.0199 (9)0.0315 (11)0.0022 (7)0.0132 (8)0.0005 (8)
C70.0161 (9)0.0206 (9)0.0258 (10)0.0028 (7)0.0062 (8)0.0037 (8)
C80.0179 (9)0.0164 (9)0.0223 (10)0.0004 (7)0.0068 (7)0.0035 (7)
C90.0179 (9)0.0131 (8)0.0218 (9)0.0001 (7)0.0094 (7)0.0000 (7)
C100.0233 (9)0.0221 (10)0.0190 (10)0.0024 (8)0.0087 (8)0.0005 (8)
C110.0296 (11)0.0396 (13)0.0239 (11)0.0098 (10)0.0061 (9)0.0038 (9)
C120.0219 (9)0.0230 (10)0.0245 (10)0.0012 (8)0.0106 (8)0.0020 (8)
C130.0247 (9)0.0255 (10)0.0194 (10)0.0073 (8)0.0095 (8)0.0027 (8)
C140.0217 (9)0.0273 (10)0.0187 (9)0.0074 (8)0.0069 (8)0.0004 (8)
C150.0324 (11)0.0346 (12)0.0209 (10)0.0124 (9)0.0104 (9)0.0008 (9)
C160.0502 (14)0.0446 (14)0.0272 (12)0.0153 (12)0.0242 (11)0.0103 (10)
C170.0613 (17)0.0345 (13)0.0454 (15)0.0078 (12)0.0351 (13)0.0138 (11)
C180.0475 (14)0.0248 (11)0.0358 (13)0.0042 (10)0.0221 (11)0.0013 (9)
C190.0317 (11)0.0286 (11)0.0226 (10)0.0026 (9)0.0105 (9)0.0051 (8)
Geometric parameters (Å, º) top
Cr—Cg1.738C6—C71.398 (3)
Cr—C11.833 (2)C6—H60.9300
Cr—C21.853 (2)C7—C81.425 (3)
Cr—C31.841 (2)C7—H70.9300
Cr—C42.272 (2)C8—C91.430 (3)
Cr—C52.214 (2)C10—H10A0.9600
Cr—C62.232 (2)C10—H10B0.9600
Cr—C72.197 (2)C10—H10C0.9600
Cr—C82.238 (2)C11—H11A0.9600
Cr—C92.296 (2)C11—H11B0.9600
Cl1—C51.739 (2)C11—H11C0.9600
Cl2—C151.749 (2)C12—H12A0.9600
O1—C11.161 (2)C12—H12B0.9600
O2—C21.154 (2)C12—H12C0.9600
O3—C31.155 (2)C13—C181.382 (3)
N1—C91.386 (2)C13—C141.403 (3)
N1—B21.429 (3)C14—C151.400 (3)
N1—H10.8600C14—C191.498 (3)
N2—B11.436 (3)C15—C161.381 (3)
N2—B21.440 (3)C16—C171.374 (4)
N2—C131.451 (2)C16—H160.9300
B1—C81.552 (3)C17—C181.389 (3)
B1—C111.566 (3)C17—H170.9300
B2—C121.569 (3)C18—H180.9300
C4—C51.416 (3)C19—H19A0.9600
C4—C91.429 (2)C19—H19B0.9600
C4—C101.504 (3)C19—H19C0.9600
C5—C61.405 (3)
Cg—Cr—C1122.6C7—C6—C5118.61 (17)
Cg—Cr—C2127.6C7—C6—Cr70.25 (10)
Cg—Cr—C3127.2C5—C6—Cr70.88 (10)
C1—Cr—C290.81 (8)C7—C6—H6120.7
C1—Cr—C389.16 (8)C5—C6—H6120.7
C2—Cr—C387.81 (8)Cr—C6—H6130.7
C1—Cr—C7132.58 (8)C6—C7—C8122.04 (18)
C3—Cr—C7138.08 (7)C6—C7—Cr72.98 (11)
C2—Cr—C787.94 (8)C8—C7—Cr72.81 (11)
C1—Cr—C5134.13 (8)C6—C7—H7119.0
C3—Cr—C588.33 (8)C8—C7—H7119.0
C2—Cr—C5134.82 (8)Cr—C7—H7127.4
C7—Cr—C566.23 (7)C7—C8—C9117.31 (17)
C1—Cr—C6162.10 (8)C7—C8—B1121.71 (17)
C3—Cr—C6104.07 (8)C9—C8—B1120.74 (16)
C2—Cr—C6101.54 (8)C7—C8—Cr69.72 (10)
C7—Cr—C636.77 (7)C9—C8—Cr73.82 (10)
C5—Cr—C636.85 (7)B1—C8—Cr122.13 (13)
C1—Cr—C897.69 (8)N1—C9—C4120.53 (16)
C3—Cr—C8166.86 (8)N1—C9—C8117.37 (16)
C2—Cr—C8103.21 (8)C4—C9—C8122.02 (16)
C7—Cr—C837.46 (7)N1—C9—Cr131.56 (13)
C5—Cr—C878.84 (7)C4—C9—Cr70.85 (10)
C6—Cr—C867.06 (7)C8—C9—Cr69.43 (10)
C1—Cr—C499.33 (7)C4—C10—H10A109.5
C3—Cr—C4100.54 (8)C4—C10—H10B109.5
C2—Cr—C4166.89 (8)H10A—C10—H10B109.5
C7—Cr—C479.09 (7)C4—C10—H10C109.5
C5—Cr—C436.77 (7)H10A—C10—H10C109.5
C6—Cr—C466.78 (7)H10B—C10—H10C109.5
C8—Cr—C467.37 (7)B1—C11—H11A109.5
C1—Cr—C984.98 (7)B1—C11—H11B109.5
C3—Cr—C9133.87 (8)H11A—C11—H11B109.5
C2—Cr—C9137.86 (8)B1—C11—H11C109.5
C7—Cr—C965.69 (7)H11A—C11—H11C109.5
C5—Cr—C964.93 (6)H11B—C11—H11C109.5
C6—Cr—C977.16 (7)B2—C12—H12A109.5
C8—Cr—C936.75 (7)B2—C12—H12B109.5
C4—Cr—C936.47 (6)H12A—C12—H12B109.5
C9—N1—B2125.77 (16)B2—C12—H12C109.5
C9—N1—H1117.1H12A—C12—H12C109.5
B2—N1—H1117.1H12B—C12—H12C109.5
B1—N2—B2122.26 (16)C18—C13—C14121.62 (18)
B1—N2—C13118.79 (16)C18—C13—N2118.94 (18)
B2—N2—C13118.93 (15)C14—C13—N2119.43 (17)
N2—B1—C8115.71 (18)C15—C14—C13115.98 (19)
N2—B1—C11123.03 (18)C15—C14—C19123.43 (19)
C8—B1—C11121.26 (18)C13—C14—C19120.58 (17)
N1—B2—N2117.52 (17)C16—C15—C14123.1 (2)
N1—B2—C12120.09 (18)C16—C15—Cl2117.08 (16)
N2—B2—C12122.38 (17)C14—C15—Cl2119.79 (18)
O1—C1—Cr177.92 (17)C17—C16—C15119.1 (2)
O2—C2—Cr179.23 (17)C17—C16—H16120.5
O3—C3—Cr179.16 (18)C15—C16—H16120.5
C5—C4—C9116.68 (17)C16—C17—C18120.1 (2)
C5—C4—C10122.20 (17)C16—C17—H17120.0
C9—C4—C10121.00 (16)C18—C17—H17120.0
C5—C4—Cr69.42 (10)C13—C18—C17120.1 (2)
C9—C4—Cr72.68 (10)C13—C18—H18120.0
C10—C4—Cr131.63 (13)C17—C18—H18120.0
C6—C5—C4122.97 (17)C14—C19—H19A109.5
C6—C5—Cl1116.87 (14)C14—C19—H19B109.5
C4—C5—Cl1120.15 (15)H19A—C19—H19B109.5
C6—C5—Cr72.28 (11)C14—C19—H19C109.5
C4—C5—Cr73.81 (10)H19A—C19—H19C109.5
Cl1—C5—Cr128.66 (10)H19B—C19—H19C109.5

Experimental details

(I)(II)
Crystal data
Chemical formula[Cr(C16H18B2Cl2N2)(CO)3][Cr(C16H18B2Cl2N2)(CO)3]
Mr466.87466.87
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)110110
a, b, c (Å)6.750 (1), 10.839 (1), 14.858 (1)25.666 (1), 7.0290 (3), 25.366 (1)
α, β, γ (°)80.537 (2), 88.717 (1), 73.409 (2)90, 112.907 (2), 90
V3)1027.3 (1)4215.3 (3)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.840.82
Crystal size (mm)0.20 × 0.10 × 0.070.20 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12140, 4611, 1834 19870, 4824, 4105
Rint0.1000.140
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 0.82 0.034, 0.087, 1.05
No. of reflections35904824
No. of parameters266266
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.280.67, 0.54

Computer programs: COLLECT (Nonius, 1998), COLLECT, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Cr—Cg1.732Cr—C72.178 (2)
Cr—C11.831 (1)Cr—C82.252 (2)
Cr—C21.856 (2)Cr—C92.308 (2)
Cr—C31.840 (2)O1—C11.152 (2)
Cr—C42.261 (2)O2—C21.145 (2)
Cr—C52.216 (2)O3—C31.168 (3)
Cr—C62.218 (2)
Cg—Cr—C1122.9C1—Cr—C289.55 (8)
Cg—Cr—C2127.5C1—Cr—C391.09 (9)
Cg—Cr—C3125.7C2—Cr—C388.97 (9)
Selected geometric parameters (Å, º) for (II) top
Cr—Cg1.738Cr—C52.214 (2)
Cr—C11.833 (2)Cr—C62.232 (2)
Cr—C21.853 (2)Cr—C72.197 (2)
Cr—C31.841 (2)Cr—C82.238 (2)
Cr—C42.272 (2)Cr—C92.296 (2)
Cg—Cr—C1122.6C1—Cr—C290.81 (8)
Cg—Cr—C2127.6C1—Cr—C389.16 (8)
Cg—Cr—C3127.2C2—Cr—C387.81 (8)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds