Download citation
Download citation
link to html
In the title compound, C29H30N6, the naphthyridine ring is almost planar with a dihedral angle of 5.4 (1)° between the pyridyl rings. The dihedral angles between the naphthyridine system and the diethyl­amino­phenyl, phenyl and pyrrolidine rings are 53.1 (1), 19.8 (1) and 20.9 (1)°, respectively. The pyrrolidine ring adopts a half-chair conformation. The mol­ecule is stabilized by weak C—H...N interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199009257/fg1556sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199009257/fg1556Isup2.hkl
Contains datablock I

CCDC reference: 140956

Comment top

Naphthyridine derivatives have extensive pharmacological properties. These derivatives have anti-inflammatory (Di Braccio et al., 1997), antibacterial (against gram-positive organisms) (Hong et al., 1997), antitumour (Chen et al., 1997), cardiotonic (Mohan & Mishra, 1997), and anticonvulsant and insecticidal (Damon & Nadelson, 1981) properties. In addition, 1,6-naphthyridine derivatives are also used as novel potent adenosine 3',5'-cyclic phosphate phosphodiesterase III inhibitors (Singh et al., 1995). 1,6-Naphthyridine systems are known (Reed et al., 1988; Vinick, 1989) but few structural data have been reported (Balogh et al., 1986). The structure analysis of the title compound, (I), was carried out in order to determine the stereochemical and conformational changes induced by the substituents on the 1,6-naphthyridine ring system.

The molecule of (I) (Fig.1) consists of a 1,6-naphthyridine ring system substituted with five different chemical substituents, namely a phenyl ring, a diethylaminophenyl ring, a pyrrolidine ring, a cyano group and an amino group. The C25N4 bond length [1.145 (3) Å] and the C5—C25—N4 bond angle [177.5 (3)°] are comparable with previously reported values of 1.136 (9) Å and 177.2 (8)°, respectively, in a 1,6-naphthyridine derivative (Gomez de Anderez et al., 1992). The bond distances C1—C9 [1.491 (3) Å] and C3—C15 [1.489 (3) Å] are slightly longer than normal Csp2—Csp2 values. This is due to the π-electron repulsion of the bulky substituted phenyl rings at C1 and C3. The C—N and C—C distances in the structure agree well with literature values (Allen et al., 1987). The bond angles C1—C8—C7 [127.1 (2)°] and N5—C6—C5 [125.1 (2)°] are larger than the normal value of 120°. This is due to the steric interactions imposed by its substituents.

The naphthyridine ring system is almost planar and there is a dihedral angle of 5.4 (1)° between the pyridyl rings. The two phenyl rings substituted at C1 and C3 of the naphthyridine ring system are inclined at angles of 53.1 (1) and 19.8 (1)°, respectively. The dihedral angle between the pyrrolidine and naphthyridine rings is 20.9 (1)°. The pyrrolidine ring adopts a half-chair conformation which was confirmed using the ring-puckering parameters (Cremer & Pople, 1975) q2 = 0.342 (4) Å and φ2 = 91.6 (6)°, and the asymmetry parameter ΔC2(N5) = 0.006 (1) (Nardelli, 1983). The amino N3 atom deviates by 0.244 (3) Å from the mean plane of the 1,6-naphthyridine ring. The orientation of the substituents on the 1,6-naphthyridine ring may be described by using the following torsion angles at C1, C3 and C6: C2—C1—C9—C14 = -124.2 (3), C8—C1—C9—C10 = 51.7 (3), C2—C3—C15—C20 = -166.5 (3), N1—C3—C15—C16 - 158.8 (3), N2—C6—N5—C24 13.4 (4) and C5—C6—N5—C21 = -176.4 (2)°.

The structure is stabilized by weak intermolecular C—H···N interactions [C28—H28B 0.97, H28B···N1i 2.58, C28—N1i 3.478 (4) Å and C28—H28B···N1i 154°; symmetry code: (i) -x, 2 - y, 2 - z] in addition to van der Waals forces.

Experimental top

The title compound was synthesized from a solution of 4-N,N-diethylaminobenzylacetophenone (2.4 mmol), malononitrile (4.8 mmol) and a few drops of pyrrolidine (4.8 mmol) in ethanol refluxed for 25 h. The reaction mixture was concentrated under reduced pressure and purified by column chromatography over silica gel (m.p. 493–495 K) (Murugan et al., 2000). Single crystals were grown by slow evaporation of a methanol solution of the compound.

Structure description top

Naphthyridine derivatives have extensive pharmacological properties. These derivatives have anti-inflammatory (Di Braccio et al., 1997), antibacterial (against gram-positive organisms) (Hong et al., 1997), antitumour (Chen et al., 1997), cardiotonic (Mohan & Mishra, 1997), and anticonvulsant and insecticidal (Damon & Nadelson, 1981) properties. In addition, 1,6-naphthyridine derivatives are also used as novel potent adenosine 3',5'-cyclic phosphate phosphodiesterase III inhibitors (Singh et al., 1995). 1,6-Naphthyridine systems are known (Reed et al., 1988; Vinick, 1989) but few structural data have been reported (Balogh et al., 1986). The structure analysis of the title compound, (I), was carried out in order to determine the stereochemical and conformational changes induced by the substituents on the 1,6-naphthyridine ring system.

The molecule of (I) (Fig.1) consists of a 1,6-naphthyridine ring system substituted with five different chemical substituents, namely a phenyl ring, a diethylaminophenyl ring, a pyrrolidine ring, a cyano group and an amino group. The C25N4 bond length [1.145 (3) Å] and the C5—C25—N4 bond angle [177.5 (3)°] are comparable with previously reported values of 1.136 (9) Å and 177.2 (8)°, respectively, in a 1,6-naphthyridine derivative (Gomez de Anderez et al., 1992). The bond distances C1—C9 [1.491 (3) Å] and C3—C15 [1.489 (3) Å] are slightly longer than normal Csp2—Csp2 values. This is due to the π-electron repulsion of the bulky substituted phenyl rings at C1 and C3. The C—N and C—C distances in the structure agree well with literature values (Allen et al., 1987). The bond angles C1—C8—C7 [127.1 (2)°] and N5—C6—C5 [125.1 (2)°] are larger than the normal value of 120°. This is due to the steric interactions imposed by its substituents.

The naphthyridine ring system is almost planar and there is a dihedral angle of 5.4 (1)° between the pyridyl rings. The two phenyl rings substituted at C1 and C3 of the naphthyridine ring system are inclined at angles of 53.1 (1) and 19.8 (1)°, respectively. The dihedral angle between the pyrrolidine and naphthyridine rings is 20.9 (1)°. The pyrrolidine ring adopts a half-chair conformation which was confirmed using the ring-puckering parameters (Cremer & Pople, 1975) q2 = 0.342 (4) Å and φ2 = 91.6 (6)°, and the asymmetry parameter ΔC2(N5) = 0.006 (1) (Nardelli, 1983). The amino N3 atom deviates by 0.244 (3) Å from the mean plane of the 1,6-naphthyridine ring. The orientation of the substituents on the 1,6-naphthyridine ring may be described by using the following torsion angles at C1, C3 and C6: C2—C1—C9—C14 = -124.2 (3), C8—C1—C9—C10 = 51.7 (3), C2—C3—C15—C20 = -166.5 (3), N1—C3—C15—C16 - 158.8 (3), N2—C6—N5—C24 13.4 (4) and C5—C6—N5—C21 = -176.4 (2)°.

The structure is stabilized by weak intermolecular C—H···N interactions [C28—H28B 0.97, H28B···N1i 2.58, C28—N1i 3.478 (4) Å and C28—H28B···N1i 154°; symmetry code: (i) -x, 2 - y, 2 - z] in addition to van der Waals forces.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) top
Crystal data top
C29H30N6Z = 2
Mr = 462.59F(000) = 492
Triclinic, P1Dx = 1.249 Mg m3
a = 11.117 (3) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.1824 (11) ÅCell parameters from 24 reflections
c = 11.3444 (10) Åθ = 3–25°
α = 70.906 (8)°µ = 0.08 mm1
β = 83.953 (12)°T = 290 K
γ = 67.355 (12)°Parallelepiped, yellow
V = 1229.6 (3) Å30.63 × 0.36 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2715 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω/2θ scansh = 1313
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 1213
Tmin = 0.954, Tmax = 0.978l = 013
4564 measured reflections3 standard reflections every 200 reflections
4323 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Calculated w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C29H30N6γ = 67.355 (12)°
Mr = 462.59V = 1229.6 (3) Å3
Triclinic, P1Z = 2
a = 11.117 (3) ÅMo Kα radiation
b = 11.1824 (11) ŵ = 0.08 mm1
c = 11.3444 (10) ÅT = 290 K
α = 70.906 (8)°0.63 × 0.36 × 0.30 mm
β = 83.953 (12)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2715 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.039
Tmin = 0.954, Tmax = 0.9783 standard reflections every 200 reflections
4564 measured reflections intensity decay: <3%
4323 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
4323 reflectionsΔρmin = 0.20 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3660 (2)0.9889 (2)1.16472 (18)0.0385 (5)
N20.4679 (2)0.7877 (2)0.89977 (19)0.0418 (5)
N30.3201 (2)0.9574 (2)0.7576 (2)0.0526 (6)
H3A0.35470.91400.70480.063*
H3B0.25501.03390.73500.063*
N40.6434 (3)0.7358 (3)1.2940 (2)0.0606 (7)
N50.6275 (2)0.6066 (2)1.0252 (2)0.0453 (6)
N60.2059 (2)1.2954 (2)0.5892 (2)0.0569 (7)
C10.1985 (2)1.0930 (3)0.9551 (2)0.0383 (6)
C20.1761 (2)1.1567 (3)1.0458 (2)0.0424 (7)
H20.10341.23651.03810.051*
C30.2606 (2)1.1032 (2)1.1487 (2)0.0371 (6)
C40.3929 (2)0.9254 (2)1.0762 (2)0.0356 (6)
C50.5047 (2)0.8017 (2)1.0985 (2)0.0371 (6)
C60.5331 (2)0.7315 (3)1.0109 (2)0.0373 (6)
C70.3678 (3)0.9058 (3)0.8753 (2)0.0394 (6)
C80.3149 (2)0.9762 (2)0.9667 (2)0.0359 (6)
C90.0954 (2)1.1462 (3)0.8567 (2)0.0396 (6)
C100.0429 (2)1.2822 (3)0.7881 (2)0.0420 (6)
H100.07581.34190.80090.050*
C110.0567 (3)1.3332 (3)0.7009 (2)0.0458 (7)
H110.08941.42590.65700.055*
C120.1094 (2)1.2469 (3)0.6777 (2)0.0425 (7)
C130.0566 (3)1.1091 (3)0.7487 (3)0.0511 (7)
H130.08901.04850.73680.061*
C140.0422 (3)1.0612 (3)0.8356 (3)0.0501 (7)
H140.07420.96900.88150.060*
C150.2355 (3)1.1614 (3)1.2536 (2)0.0409 (6)
C160.1132 (3)1.2505 (3)1.2732 (3)0.0604 (9)
H160.04511.27951.21670.072*
C170.0915 (3)1.2964 (4)1.3755 (3)0.0716 (10)
H170.00861.35481.38790.086*
C180.1905 (3)1.2570 (3)1.4589 (3)0.0632 (9)
H180.17541.28841.52760.076*
C190.3126 (3)1.1704 (3)1.4399 (3)0.0561 (8)
H190.38071.14431.49550.067*
C200.3349 (3)1.1222 (3)1.3395 (2)0.0479 (7)
H200.41771.06251.32870.058*
C210.6571 (3)0.5421 (3)0.9259 (3)0.0546 (8)
H21A0.68310.59780.85050.065*
H21B0.58260.52640.90660.065*
C220.7682 (4)0.4095 (4)0.9821 (3)0.0799 (11)
H22A0.76580.33880.95180.096*
H22B0.85120.42000.96130.096*
C230.7491 (3)0.3752 (3)1.1186 (3)0.0733 (10)
H23A0.83080.31611.16390.088*
H23B0.68690.33041.14360.088*
C240.6971 (3)0.5120 (3)1.1413 (3)0.0554 (8)
H24A0.63870.51191.21120.066*
H24B0.76760.53551.15790.066*
C250.5825 (3)0.7624 (3)1.2070 (3)0.0422 (7)
C260.2730 (3)1.4395 (3)0.5300 (3)0.0609 (8)
H26A0.31211.45310.45180.073*
H26B0.21001.48320.51080.073*
C270.3768 (4)1.5067 (4)0.6079 (4)0.0932 (13)
H27A0.41821.60190.56310.140*
H27B0.33841.49650.68430.140*
H27C0.44031.46480.62640.140*
C280.2618 (4)1.2050 (4)0.5687 (3)0.0778 (11)
H28A0.35231.25720.54200.093*
H28B0.25991.13490.64710.093*
C290.1929 (7)1.1395 (6)0.4750 (4)0.161 (3)
H29A0.23481.08270.46460.242*
H29B0.10401.08470.50230.242*
H29C0.19501.20820.39690.242*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0390 (12)0.0432 (13)0.0358 (12)0.0161 (10)0.0009 (9)0.0139 (10)
N20.0443 (13)0.0443 (13)0.0375 (12)0.0152 (11)0.0019 (10)0.0142 (10)
N30.0579 (15)0.0572 (15)0.0359 (13)0.0087 (12)0.0094 (11)0.0180 (11)
N40.0647 (17)0.0613 (17)0.0488 (15)0.0141 (13)0.0195 (13)0.0133 (13)
N50.0463 (13)0.0428 (13)0.0449 (13)0.0102 (11)0.0018 (11)0.0181 (11)
N60.0555 (15)0.0601 (16)0.0534 (15)0.0248 (13)0.0238 (12)0.0041 (12)
C10.0373 (14)0.0431 (15)0.0352 (14)0.0174 (12)0.0013 (11)0.0096 (12)
C20.0342 (14)0.0458 (16)0.0452 (16)0.0102 (12)0.0025 (12)0.0162 (13)
C30.0358 (14)0.0370 (14)0.0391 (14)0.0138 (12)0.0007 (12)0.0120 (11)
C40.0363 (14)0.0405 (14)0.0332 (14)0.0181 (12)0.0006 (11)0.0106 (12)
C50.0368 (14)0.0383 (14)0.0350 (14)0.0137 (12)0.0066 (11)0.0082 (12)
C60.0355 (14)0.0399 (15)0.0387 (15)0.0164 (12)0.0013 (12)0.0122 (12)
C70.0406 (15)0.0462 (16)0.0350 (15)0.0193 (13)0.0030 (12)0.0123 (12)
C80.0387 (14)0.0372 (14)0.0343 (14)0.0180 (12)0.0017 (11)0.0089 (11)
C90.0328 (14)0.0473 (16)0.0392 (15)0.0135 (12)0.0033 (11)0.0149 (13)
C100.0368 (14)0.0414 (15)0.0484 (16)0.0121 (12)0.0057 (12)0.0157 (13)
C110.0428 (16)0.0416 (15)0.0468 (16)0.0107 (13)0.0073 (13)0.0094 (13)
C120.0374 (15)0.0535 (17)0.0379 (15)0.0191 (13)0.0048 (12)0.0118 (13)
C130.0521 (17)0.0532 (18)0.0516 (17)0.0281 (15)0.0118 (14)0.0067 (14)
C140.0496 (17)0.0478 (17)0.0492 (17)0.0194 (14)0.0122 (14)0.0048 (13)
C150.0428 (15)0.0434 (15)0.0424 (15)0.0201 (13)0.0050 (12)0.0171 (12)
C160.0453 (17)0.076 (2)0.067 (2)0.0139 (16)0.0003 (15)0.0404 (18)
C170.060 (2)0.083 (2)0.081 (2)0.0175 (18)0.0144 (19)0.052 (2)
C180.082 (2)0.069 (2)0.0539 (19)0.0340 (19)0.0114 (18)0.0340 (17)
C190.062 (2)0.068 (2)0.0444 (17)0.0259 (17)0.0018 (15)0.0224 (15)
C200.0450 (16)0.0571 (18)0.0430 (16)0.0192 (14)0.0037 (13)0.0155 (14)
C210.0570 (19)0.0540 (18)0.0553 (18)0.0165 (15)0.0071 (15)0.0274 (15)
C220.074 (2)0.064 (2)0.082 (3)0.0005 (19)0.010 (2)0.033 (2)
C230.061 (2)0.056 (2)0.088 (3)0.0021 (16)0.0176 (19)0.0265 (19)
C240.0465 (17)0.0512 (18)0.062 (2)0.0062 (14)0.0128 (15)0.0190 (15)
C250.0442 (16)0.0394 (15)0.0399 (16)0.0128 (13)0.0001 (13)0.0117 (12)
C260.0542 (19)0.067 (2)0.0554 (19)0.0206 (16)0.0179 (16)0.0079 (16)
C270.060 (2)0.109 (3)0.103 (3)0.009 (2)0.015 (2)0.046 (3)
C280.086 (3)0.084 (2)0.069 (2)0.052 (2)0.039 (2)0.0050 (19)
C290.311 (9)0.171 (5)0.088 (3)0.170 (6)0.022 (4)0.060 (4)
Geometric parameters (Å, º) top
N1—C31.334 (3)C15—C201.392 (4)
N1—C41.357 (3)C15—C161.389 (4)
N2—C71.324 (3)C16—C171.379 (4)
N2—C61.354 (3)C16—H160.9300
N3—C71.344 (3)C17—C181.370 (5)
N3—H3A0.8600C17—H170.9300
N3—H3B0.8600C18—C191.374 (4)
N4—C251.145 (3)C18—H180.9300
N5—C61.356 (3)C19—C201.375 (4)
N5—C241.458 (3)C19—H190.9300
N5—C211.472 (3)C20—H200.9300
N6—C121.370 (3)C21—C221.506 (4)
N6—C261.441 (4)C21—H21A0.9700
N6—C281.458 (4)C21—H21B0.9700
C1—C21.385 (3)C22—C231.481 (5)
C1—C81.421 (3)C22—H22A0.9700
C1—C91.491 (3)C22—H22B0.9700
C2—C31.394 (3)C23—C241.513 (4)
C2—H20.9300C23—H23A0.9700
C3—C151.489 (3)C23—H23B0.9700
C4—C51.427 (3)C24—H24A0.9700
C4—C81.415 (3)C24—H24B0.9700
C5—C61.399 (3)C26—C271.493 (5)
C5—C251.427 (4)C26—H26A0.9700
C7—C81.446 (3)C26—H26B0.9700
C9—C141.387 (4)C27—H27A0.9600
C9—C101.378 (4)C27—H27B0.9600
C10—C111.380 (3)C27—H27C0.9600
C10—H100.9300C28—C291.470 (6)
C11—C121.407 (4)C28—H28A0.9700
C11—H110.9300C28—H28B0.9700
C12—C131.399 (4)C29—H29A0.9600
C13—C141.377 (4)C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—H140.9300
C3—N1—C4118.6 (2)C18—C17—H17119.6
C7—N2—C6120.7 (2)C16—C17—H17119.6
C7—N3—H3A120.0C17—C18—C19119.2 (3)
C7—N3—H3B120.0C17—C18—H18120.4
H3A—N3—H3B120.0C19—C18—H18120.4
C6—N5—C24125.9 (2)C18—C19—C20120.5 (3)
C6—N5—C21122.1 (2)C18—C19—H19119.7
C24—N5—C21111.4 (2)C20—C19—H19119.7
C12—N6—C26121.6 (2)C15—C20—C19121.0 (3)
C12—N6—C28120.8 (2)C15—C20—H20119.5
C26—N6—C28116.6 (2)C19—C20—H20119.5
C2—C1—C8117.5 (2)N5—C21—C22103.0 (2)
C2—C1—C9117.9 (2)N5—C21—H21A111.2
C8—C1—C9124.5 (2)C22—C21—H21A111.2
C1—C2—C3121.1 (2)N5—C21—H21B111.2
C1—C2—H2119.4C22—C21—H21B111.2
C3—C2—H2119.4H21A—C21—H21B109.1
N1—C3—C2122.0 (2)C23—C22—C21105.3 (3)
N1—C3—C15114.7 (2)C23—C22—H22A110.7
C2—C3—C15123.2 (2)C21—C22—H22A110.7
N1—C4—C5116.8 (2)C23—C22—H22B110.7
N1—C4—C8122.9 (2)C21—C22—H22B110.7
C5—C4—C8120.3 (2)H22A—C22—H22B108.8
C6—C5—C4118.3 (2)C22—C23—C24103.9 (3)
C6—C5—C25124.9 (2)C22—C23—H23A111.0
C4—C5—C25116.7 (2)C24—C23—H23A111.0
N2—C6—N5113.8 (2)C22—C23—H23B111.0
N2—C6—C5121.1 (2)C24—C23—H23B111.0
N5—C6—C5125.1 (2)H23A—C23—H23B109.0
N2—C7—N3114.9 (2)N5—C24—C23103.7 (2)
N2—C7—C8122.9 (2)N5—C24—H24A111.0
N3—C7—C8122.1 (2)C23—C24—H24A111.0
C4—C8—C1117.7 (2)N5—C24—H24B111.0
C4—C8—C7115.1 (2)C23—C24—H24B111.0
C1—C8—C7127.1 (2)H24A—C24—H24B109.0
C14—C9—C10116.8 (2)N4—C25—C5177.5 (3)
C14—C9—C1120.9 (2)N6—C26—C27113.5 (3)
C10—C9—C1122.2 (2)N6—C26—H26A108.9
C11—C10—C9122.5 (3)C27—C26—H26A108.9
C11—C10—H10118.8N6—C26—H26B108.9
C9—C10—H10118.8C27—C26—H26B108.9
C10—C11—C12120.9 (2)H26A—C26—H26B107.7
C10—C11—H11119.6C26—C27—H27A109.5
C12—C11—H11119.6C26—C27—H27B109.5
N6—C12—C13122.1 (2)H27A—C27—H27B109.5
N6—C12—C11121.6 (2)C26—C27—H27C109.5
C13—C12—C11116.3 (2)H27A—C27—H27C109.5
C14—C13—C12121.6 (3)H27B—C27—H27C109.5
C14—C13—H13119.2N6—C28—C29113.3 (3)
C12—C13—H13119.2N6—C28—H28A108.9
C13—C14—C9121.9 (3)C29—C28—H28A108.9
C13—C14—H14119.0N6—C28—H28B108.9
C9—C14—H14119.0C29—C28—H28B108.9
C20—C15—C16117.7 (3)H28A—C28—H28B107.7
C20—C15—C3120.0 (2)C28—C29—H29A109.5
C16—C15—C3122.2 (2)C28—C29—H29B109.5
C15—C16—C17120.7 (3)H29A—C29—H29B109.5
C15—C16—H16119.6C28—C29—H29C109.5
C17—C16—H16119.6H29A—C29—H29C109.5
C18—C17—C16120.8 (3)H29B—C29—H29C109.5
C8—C1—C2—C33.9 (4)C14—C9—C10—C110.8 (4)
C9—C1—C2—C3172.4 (2)C1—C9—C10—C11176.9 (2)
C4—N1—C3—C21.7 (4)C9—C10—C11—C120.2 (4)
C4—N1—C3—C15177.0 (2)C26—N6—C12—C13170.6 (3)
C1—C2—C3—N10.1 (4)C28—N6—C12—C132.5 (4)
C1—C2—C3—C15175.1 (2)C26—N6—C12—C1110.3 (4)
C3—N1—C4—C5178.4 (2)C28—N6—C12—C11178.4 (3)
C3—N1—C4—C81.0 (3)C10—C11—C12—N6178.2 (2)
N1—C4—C5—C6178.3 (2)C10—C11—C12—C130.9 (4)
C8—C4—C5—C61.2 (4)N6—C12—C13—C14178.7 (3)
N1—C4—C5—C254.5 (3)C11—C12—C13—C140.5 (4)
C8—C4—C5—C25176.1 (2)C12—C13—C14—C90.6 (4)
C7—N2—C6—N5175.9 (2)C10—C9—C14—C131.3 (4)
C7—N2—C6—C55.8 (4)C1—C9—C14—C13177.4 (3)
C24—N5—C6—N2168.4 (2)N1—C3—C15—C2018.3 (3)
C21—N5—C6—N21.8 (4)C2—C3—C15—C20166.5 (3)
C24—N5—C6—C513.4 (4)N1—C3—C15—C16158.8 (3)
C21—N5—C6—C5176.4 (2)C2—C3—C15—C1616.4 (4)
C4—C5—C6—N28.9 (4)C20—C15—C16—C170.9 (5)
C25—C5—C6—N2168.1 (2)C3—C15—C16—C17176.2 (3)
C4—C5—C6—N5173.0 (2)C15—C16—C17—C181.1 (5)
C25—C5—C6—N510.0 (4)C16—C17—C18—C190.1 (5)
C6—N2—C7—N3173.3 (2)C17—C18—C19—C201.0 (5)
C6—N2—C7—C85.3 (4)C16—C15—C20—C190.1 (4)
N1—C4—C8—C14.9 (3)C3—C15—C20—C19177.4 (2)
C5—C4—C8—C1174.4 (2)C18—C19—C20—C151.1 (5)
N1—C4—C8—C7171.9 (2)C6—N5—C21—C22178.6 (3)
C5—C4—C8—C78.7 (3)C24—N5—C21—C229.9 (3)
C2—C1—C8—C46.1 (3)N5—C21—C22—C2328.6 (4)
C9—C1—C8—C4169.9 (2)C21—C22—C23—C2436.4 (4)
C2—C1—C8—C7170.3 (2)C6—N5—C24—C23159.0 (3)
C9—C1—C8—C713.7 (4)C21—N5—C24—C2312.1 (3)
N2—C7—C8—C412.3 (4)C22—C23—C24—N529.5 (3)
N3—C7—C8—C4166.2 (2)C6—C5—C25—N4152 (6)
N2—C7—C8—C1171.1 (2)C4—C5—C25—N425 (7)
N3—C7—C8—C110.3 (4)C12—N6—C26—C2779.6 (4)
C2—C1—C9—C14124.2 (3)C28—N6—C26—C2789.0 (4)
C8—C1—C9—C1451.8 (4)C12—N6—C28—C2989.8 (4)
C2—C1—C9—C1051.7 (3)C26—N6—C28—C29101.5 (4)
C8—C1—C9—C10132.3 (3)

Experimental details

Crystal data
Chemical formulaC29H30N6
Mr462.59
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)11.117 (3), 11.1824 (11), 11.3444 (10)
α, β, γ (°)70.906 (8), 83.953 (12), 67.355 (12)
V3)1229.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.63 × 0.36 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.954, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4564, 4323, 2715
Rint0.039
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.180, 1.02
No. of reflections4323
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
N1—C31.334 (3)N5—C61.356 (3)
N1—C41.357 (3)N5—C241.458 (3)
N2—C71.324 (3)N5—C211.472 (3)
N2—C61.354 (3)N6—C121.370 (3)
N3—C71.344 (3)N6—C261.441 (4)
N4—C251.145 (3)
C6—N5—C24125.9 (2)N1—C4—C8122.9 (2)
C6—N5—C21122.1 (2)C6—C5—C25124.9 (2)
C24—N5—C21111.4 (2)C4—C5—C25116.7 (2)
C26—N6—C28116.6 (2)N2—C6—N5113.8 (2)
C2—C1—C8117.5 (2)N5—C6—C5125.1 (2)
C2—C1—C9117.9 (2)C1—C8—C7127.1 (2)
C8—C1—C9124.5 (2)C14—C9—C10116.8 (2)
N1—C3—C15114.7 (2)N5—C24—C23103.7 (2)
C2—C3—C15123.2 (2)N4—C25—C5177.5 (3)
N1—C4—C5116.8 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds