organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2-Phenyl-4-styryl-2,3-di­hydro-1H-1,5-benzodiazepine hemihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, 40001 Marrakech, Morocco, and bCristallographie, Résonance, Magnétique et Mod\'lisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre le`s Nancy CEDEX, France
*Correspondence e-mail: loughzail@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 11 July 2017; accepted 19 July 2017; online 25 July 2017)

The unit cell contains eight mol­ecules of the title compound, with half a water mol­ecule per main mol­ecule, C23H20N2·0.5H2O. The seven-membered diazepine ring adopts a twist-boat conformation and makes dihedral angles of 85.08 (7) and 32.79 (7)° with the phenyl and styryl substituents, respectively. In the crystal, the organic mol­ecules are linked by C—H⋯N hydrogen bonds into chains running along the b-axis direction. The water mol­ecule, located on a twofold rotation axis, forms hydrogen bridges, connecting two adjacent chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepines are heterocyclic compounds that are considered to be `privileged structures' since they possess a wide range of biological activities. 1,5-Benzodiazepines have found applications in medicine, being one of the most important classes of the therapeutic agents with widespread biological activities. They are commonly used as anti-inflammatory (Bhat & Kumar, 2016[Bhat, I. & Kumar, A. (2016). Asian J. Pharm. Clin. Res, 9, 63-66.]), anti­oxidant (Patil et al., 2015[Patil, R. B., Sawant, S. D., Reddy, K. V. & Shirsat, M. (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 381-391.]), anti­cancer (Chen et al., 2014[Chen, Y., Le, V., Xu, X., Shao, X., Liu, J. & Li, Z. (2014). Bioorg. Med. Chem. Lett. 24, 3948-3951.]), anti­microbial (El-Gaml et al., 2014[El-Gaml, K. M. (2014). Am. J. Org. Chem. 4, 14-19.]) and anti­viral (Nyanguile et al., 2008[Nyanguile, O., Pauwels, F., Van den Broeck, W., Boutton, C. W., Quirynen, L., Ivens, T., van der Helm, L., Vandercruyssen, G., Mostmans, W., Delouvroy, F., Dehertogh, P., Cummings, M. D., Bonfanti, J.-F., Simmen, K. A. & Raboisson, P. (2008). Antimicrob. Agents Chemother. 52, 4420-4431.]) substances and constitute the backbones of several marketed drugs. 1,5-Benzodiazepines are generally synthesized by the condensation of o-phenyl­enedi­amine with α,β-unsaturated carbonyl compounds (Claramunt et al., 2006[Claramunt, R. M., Sanz, D., Aggarwal, S., Kumar, A., Prakash, O., Singh, S. P. & Elgueroc, J. (2006). ARKIVOC, xiv, 35-45.]), β-haloketones (Ilango et al., 2013[Ilango, S. S., Remya, P. U. & Ponnuswamy, S. (2013). Indian J. Chem. Sect. B, 52, 136-140.]), or with ketones using acidic catalysts (Jeganathan & Pitchumani, 2014[Jeganathan, M. & Pitchumani, K. (2014). ACS Sustainable Chem. Eng. 2, 1169-1176.]) or the microwave irradiation technique, which is critical to enhance the condensation process (Chikhale & Khedekar, 2013[Chikhale, R. V. & Khedekar, P. B. (2013). Curr. Catal. 2, 111-115.]). We report here the synthesis and characterization of a new 1,5-benzodiazepine derivative.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. In the mol­ecule, which adopts an approximate U shape, the seven-membered diazepine ring displays a twist-boat conformation as indicated by the total puckering amplitude QT = 0.9442 (19)°, and spherical polar angle θ2 = 79.23 (11)°; φ2= 118.15 (13)° and φ3 = −104.5 (7)°. The benzodiazepine ring system makes dihedral angles of 85.08 (7) and 32.79 (7)° with the phenyl and styryl substituents, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the organic mol­ecules are linked by C11—H11⋯N1 hydrogen bonds (Table 1[link], Fig. 2[link]) into chains running along the b-axis direction. The water mol­ecule, located on a twofold rotation axis, forms hydrogen bridges [N1⋯O01⋯N1([{1\over 2}] − x, y, −z); Fig. 3[link]], connecting two adjacent chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O01—H01⋯N1 0.92 (3) 2.01 (3) 2.9300 (19) 174 (3)
C11—H11⋯N1i 0.95 2.51 3.426 (3) 161
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
A view of the chains formed by C11—H11⋯N1 hydrogen bonds (Table 1[link]) and linked by N1⋯O01⋯N1 bridges.
[Figure 3]
Figure 3
Overall packing of the title compound, showing the N1—O01—N1 bridges.

Synthesis and crystallization

To a solution of 1,7-di­phenyl­hepta-1,6-diene-3,5-dione (0.1 mol) in ethanol (30 ml) a few drops of tri­ethyl­amine and 1,2-di­amino­benzene (0.1 mol) were added. The mixture was heated under reflux for 12 h. The solvent was evaporated. The title compound was isolated by column chromatography on silica gel using hexa­ne/ethyl acetate as eluent. The solid product was recrystallized in ethyl acetate to give crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H20N2·0.5H2O
Mr 333.42
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 22.1001 (8), 6.7624 (2), 24.5714 (7)
β (°) 104.835 (3)
V3) 3549.8 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.21 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker. (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 31210, 3649, 2831
Rint 0.148
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.07
No. of reflections 3649
No. of parameters 240
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker. (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014(Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-2-Phenyl-4-styryl-2,3-dihydro-1H-1,5-benzodiazepine hemihydrate top
Crystal data top
C23H20N2·0.5H2OF(000) = 1416
Mr = 333.42Dx = 1.248 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 22.1001 (8) ÅCell parameters from 3649 reflections
b = 6.7624 (2) Åθ = 3.7–74.5°
c = 24.5714 (7) ŵ = 0.58 mm1
β = 104.835 (3)°T = 100 K
V = 3549.8 (2) Å3Plate, colourless
Z = 80.21 × 0.16 × 0.04 mm
Data collection top
Bruker X8 APEX
diffractometer
2831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.148
φ and ω scansθmax = 74.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2727
k = 88
31210 measured reflectionsl = 3030
3649 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.8126P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.172(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.25 e Å3
3649 reflectionsΔρmin = 0.30 e Å3
240 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00032 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2). The coordinates of H atoms attached to N atoms were freely refined with Uiso(H) = 1.2Ueq(N) and the H attached to hydroxyl O atoms were fixed geometrically and treated as riding with O—H = 0.84Å and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.2500000.4867 (3)0.0000000.0395 (5)
H0.3281 (13)0.996 (4)0.2434 (12)0.037 (7)*
H010.2594 (15)0.572 (5)0.0303 (12)0.051 (8)*
C160.20259 (9)0.9411 (3)0.04598 (7)0.0244 (4)
H160.1840230.8199840.0306190.029*
N20.31472 (8)0.9651 (2)0.20337 (6)0.0282 (4)
N10.28863 (8)0.7563 (2)0.09599 (6)0.0249 (4)
C180.10669 (9)1.1185 (3)0.00793 (6)0.0240 (4)
C170.16963 (9)1.1077 (3)0.03003 (7)0.0249 (4)
H170.1888131.2289200.0446400.030*
C70.26467 (9)0.9315 (3)0.08503 (6)0.0227 (4)
C60.34457 (9)0.7303 (3)0.13831 (7)0.0231 (4)
C50.38511 (10)0.5796 (3)0.13048 (7)0.0249 (4)
H50.3757530.5093540.0958500.030*
C100.23119 (9)1.2139 (3)0.17243 (6)0.0234 (4)
C210.01405 (11)1.1536 (3)0.07978 (8)0.0341 (5)
H210.0549921.1651170.1039520.041*
C10.35798 (9)0.8318 (3)0.19049 (7)0.0252 (4)
C90.29638 (9)1.1477 (3)0.17111 (7)0.0236 (4)
H90.3267371.2541790.1881150.028*
C80.29998 (9)1.1139 (3)0.11003 (7)0.0235 (4)
H8A0.2823251.2302510.0869140.028*
H8B0.3443621.1006130.1092750.028*
C20.41197 (10)0.7797 (3)0.23157 (7)0.0288 (4)
H20.4216180.8477800.2665630.035*
C110.21281 (10)1.4043 (3)0.15406 (7)0.0283 (4)
H110.2423541.4916900.1448510.034*
C40.43838 (10)0.5304 (3)0.17179 (8)0.0280 (4)
H40.4653740.4286330.1653730.034*
C230.07520 (10)1.2995 (3)0.01512 (7)0.0287 (4)
H230.0949781.4122960.0047700.034*
C120.15186 (11)1.4688 (3)0.14894 (8)0.0324 (4)
H120.1396621.5980470.1353020.039*
C150.18828 (10)1.0901 (3)0.18831 (7)0.0271 (4)
H150.2004340.9608340.2019900.033*
C220.01555 (11)1.3179 (3)0.05075 (8)0.0321 (4)
H220.0049831.4425020.0552800.039*
C30.45205 (10)0.6315 (3)0.22288 (8)0.0293 (4)
H30.4885070.5994170.2515740.035*
C190.07606 (10)0.9550 (3)0.03779 (7)0.0294 (4)
H190.0964210.8301360.0336530.035*
C140.12768 (10)1.1559 (3)0.18410 (8)0.0329 (5)
H140.0987471.0711080.1952620.039*
C130.10878 (10)1.3435 (3)0.16385 (8)0.0344 (5)
H130.0669511.3858920.1602150.041*
C200.01653 (11)0.9730 (3)0.07325 (8)0.0357 (5)
H200.0034860.8606350.0932250.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0638 (16)0.0241 (9)0.0237 (9)0.0000.0016 (9)0.000
C160.0288 (10)0.0296 (9)0.0128 (6)0.0014 (7)0.0019 (6)0.0005 (6)
N20.0342 (9)0.0366 (8)0.0120 (6)0.0074 (7)0.0028 (6)0.0019 (6)
N10.0291 (9)0.0289 (8)0.0146 (6)0.0020 (6)0.0014 (6)0.0009 (5)
C180.0281 (10)0.0324 (9)0.0113 (7)0.0001 (7)0.0045 (6)0.0003 (6)
C170.0315 (10)0.0289 (8)0.0136 (7)0.0005 (7)0.0044 (7)0.0003 (6)
C70.0284 (10)0.0280 (8)0.0116 (7)0.0021 (7)0.0047 (6)0.0002 (6)
C60.0255 (9)0.0258 (8)0.0156 (7)0.0029 (7)0.0005 (6)0.0016 (6)
C50.0298 (10)0.0247 (8)0.0189 (7)0.0023 (7)0.0041 (7)0.0003 (6)
C100.0283 (9)0.0289 (8)0.0113 (6)0.0018 (7)0.0019 (6)0.0037 (6)
C210.0316 (11)0.0427 (11)0.0227 (8)0.0045 (9)0.0026 (7)0.0001 (7)
C10.0294 (10)0.0285 (8)0.0166 (7)0.0008 (7)0.0040 (7)0.0022 (6)
C90.0267 (10)0.0278 (9)0.0144 (7)0.0011 (7)0.0019 (6)0.0009 (6)
C80.0286 (10)0.0269 (8)0.0144 (7)0.0002 (7)0.0043 (6)0.0014 (6)
C20.0314 (10)0.0343 (9)0.0162 (7)0.0021 (8)0.0021 (7)0.0005 (7)
C110.0354 (11)0.0304 (9)0.0183 (7)0.0005 (8)0.0056 (7)0.0001 (6)
C40.0286 (10)0.0288 (9)0.0261 (8)0.0027 (7)0.0062 (7)0.0022 (7)
C230.0365 (11)0.0309 (9)0.0171 (7)0.0006 (8)0.0042 (7)0.0004 (6)
C120.0372 (11)0.0368 (10)0.0202 (8)0.0106 (9)0.0022 (7)0.0026 (7)
C150.0322 (10)0.0307 (9)0.0174 (7)0.0034 (8)0.0047 (7)0.0022 (6)
C220.0362 (11)0.0355 (10)0.0214 (8)0.0064 (8)0.0015 (8)0.0026 (7)
C30.0276 (10)0.0344 (10)0.0222 (8)0.0013 (8)0.0007 (7)0.0021 (7)
C190.0307 (10)0.0329 (9)0.0205 (8)0.0023 (8)0.0007 (7)0.0036 (7)
C140.0313 (11)0.0430 (11)0.0248 (8)0.0082 (8)0.0078 (8)0.0098 (8)
C130.0287 (11)0.0474 (12)0.0247 (8)0.0044 (9)0.0023 (7)0.0137 (8)
C200.0356 (12)0.0396 (11)0.0252 (8)0.0009 (9)0.0044 (8)0.0064 (8)
Geometric parameters (Å, º) top
O01—H010.92 (3)C9—C81.540 (2)
C16—C171.344 (3)C9—H91.0000
C16—C71.460 (3)C8—H8A0.9900
C16—H160.9500C8—H8B0.9900
N2—C11.407 (2)C2—C31.390 (3)
N2—C91.467 (2)C2—H20.9500
N2—H0.98 (3)C11—C121.391 (3)
N1—C71.297 (2)C11—H110.9500
N1—C61.408 (2)C4—C31.393 (3)
C18—C231.397 (3)C4—H40.9500
C18—C191.401 (3)C23—C221.389 (3)
C18—C171.465 (3)C23—H230.9500
C17—H170.9500C12—C131.392 (3)
C7—C81.505 (2)C12—H120.9500
C6—C51.402 (3)C15—C141.390 (3)
C6—C11.417 (2)C15—H150.9500
C5—C41.384 (3)C22—H220.9500
C5—H50.9500C3—H30.9500
C10—C111.390 (3)C19—C201.385 (3)
C10—C151.394 (3)C19—H190.9500
C10—C91.517 (3)C14—C131.387 (3)
C21—C201.385 (3)C14—H140.9500
C21—C221.390 (3)C13—H130.9500
C21—H210.9500C20—H200.9500
C1—C21.396 (3)
C17—C16—C7125.22 (17)C7—C8—H8B109.3
C17—C16—H16117.4C9—C8—H8B109.3
C7—C16—H16117.4H8A—C8—H8B108.0
C1—N2—C9121.80 (14)C3—C2—C1122.08 (17)
C1—N2—H108.4 (16)C3—C2—H2119.0
C9—N2—H109.6 (16)C1—C2—H2119.0
C7—N1—C6120.14 (16)C10—C11—C12121.05 (19)
C23—C18—C19117.82 (18)C10—C11—H11119.5
C23—C18—C17119.03 (17)C12—C11—H11119.5
C19—C18—C17123.15 (17)C5—C4—C3119.37 (18)
C16—C17—C18125.63 (17)C5—C4—H4120.3
C16—C17—H17117.2C3—C4—H4120.3
C18—C17—H17117.2C22—C23—C18121.34 (18)
N1—C7—C16116.24 (16)C22—C23—H23119.3
N1—C7—C8121.51 (17)C18—C23—H23119.3
C16—C7—C8122.23 (16)C11—C12—C13119.81 (19)
C5—C6—N1117.42 (15)C11—C12—H12120.1
C5—C6—C1118.90 (17)C13—C12—H12120.1
N1—C6—C1123.25 (17)C14—C15—C10119.89 (18)
C4—C5—C6121.84 (16)C14—C15—H15120.1
C4—C5—H5119.1C10—C15—H15120.1
C6—C5—H5119.1C23—C22—C21119.86 (19)
C11—C10—C15118.97 (18)C23—C22—H22120.1
C11—C10—C9117.83 (17)C21—C22—H22120.1
C15—C10—C9123.11 (17)C2—C3—C4119.53 (18)
C20—C21—C22119.6 (2)C2—C3—H3120.2
C20—C21—H21120.2C4—C3—H3120.2
C22—C21—H21120.2C20—C19—C18120.93 (19)
C2—C1—N2120.20 (16)C20—C19—H19119.5
C2—C1—C6118.27 (17)C18—C19—H19119.5
N2—C1—C6121.12 (17)C13—C14—C15121.03 (19)
N2—C9—C10111.69 (15)C13—C14—H14119.5
N2—C9—C8109.02 (14)C15—C14—H14119.5
C10—C9—C8110.54 (14)C14—C13—C12119.2 (2)
N2—C9—H9108.5C14—C13—H13120.4
C10—C9—H9108.5C12—C13—H13120.4
C8—C9—H9108.5C19—C20—C21120.46 (19)
C7—C8—C9111.64 (14)C19—C20—H20119.8
C7—C8—H8A109.3C21—C20—H20119.8
C9—C8—H8A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H01···N10.92 (3)2.01 (3)2.9300 (19)174 (3)
C11—H11···N1i0.952.513.426 (3)161
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Professor M. Berraho for his help and discussions in order to finalize this paper.

References

First citationBhat, I. & Kumar, A. (2016). Asian J. Pharm. Clin. Res, 9, 63–66.  Google Scholar
First citationBruker. (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Le, V., Xu, X., Shao, X., Liu, J. & Li, Z. (2014). Bioorg. Med. Chem. Lett. 24, 3948–3951.  CrossRef CAS PubMed Google Scholar
First citationChikhale, R. V. & Khedekar, P. B. (2013). Curr. Catal. 2, 111–115.  CrossRef CAS Google Scholar
First citationClaramunt, R. M., Sanz, D., Aggarwal, S., Kumar, A., Prakash, O., Singh, S. P. & Elgueroc, J. (2006). ARKIVOC, xiv, 35–45.  Google Scholar
First citationEl-Gaml, K. M. (2014). Am. J. Org. Chem. 4, 14–19.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIlango, S. S., Remya, P. U. & Ponnuswamy, S. (2013). Indian J. Chem. Sect. B, 52, 136–140.  Google Scholar
First citationJeganathan, M. & Pitchumani, K. (2014). ACS Sustainable Chem. Eng. 2, 1169–1176.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNyanguile, O., Pauwels, F., Van den Broeck, W., Boutton, C. W., Quirynen, L., Ivens, T., van der Helm, L., Vandercruyssen, G., Mostmans, W., Delouvroy, F., Dehertogh, P., Cummings, M. D., Bonfanti, J.-F., Simmen, K. A. & Raboisson, P. (2008). Antimicrob. Agents Chemother. 52, 4420–4431.  CrossRef PubMed CAS Google Scholar
First citationPatil, R. B., Sawant, S. D., Reddy, K. V. & Shirsat, M. (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 381–391.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds