metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[2-(di­ethyl­aza­n­ium­yl)eth­yl]-3-methyl­imidazolium tetra­chlorido­cuprate(II)

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 26 March 2015; accepted 4 April 2015; online 18 April 2015)

The title compound, (C10H21N3)[CuCl4], is composed of one 1-[2-(di­ethyl­aza­nium­yl)eth­yl]-3-methyl­imidazolium dication and a tetra­chlorido­cuprate(II) dianion. The anion adopts a distorted tetra­hedral geometry. Bifurcated interionic N—H⋯Cl hydrogen bonds and several C—H⋯Cl contacts are observed, leading to a layer-like arrangement of the components parallel to (100).

1. Related literature

For structures of related tetra­chlorido­cuprates(II), see: Russell & Wallwork (1969[Russell, J. H. & Wallwork, S. C. (1969). Acta Cryst. B25, 1691-1695.]); Główka & Gilli (1989[Główka, M. L. & Gilli, G. (1989). Acta Cryst. C45, 408-410.]); Choi et al. (2002[Choi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583-m585.]); Sun & Qu (2005[Sun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360-m1362.]); Elangovan et al. (2007a[Elangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, m201-m203.],b[Elangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, m224-m226.]); Strasser et al. (2007[Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2007). Acta Cryst. E63, m2915-m2916.]). For details of the synthesis, see: Laus et al. (2012[Laus, G., Wurst, K. & Schottenberger, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 413-415.]); Håkansson & Jagner (1990[Håkansson, M. & Jagner, S. (1990). Inorg. Chem. 29, 5241-5244.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • (C10H21N3)[CuCl4]

  • Mr = 388.64

  • Monoclinic, P 21 /c

  • a = 17.0041 (8) Å

  • b = 7.1161 (6) Å

  • c = 14.4143 (7) Å

  • β = 112.956 (6)°

  • V = 1606.04 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 173 K

  • 0.20 × 0.16 × 0.12 mm

2.2. Data collection

  • Oxford Diffraction Gemini-R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.875, Tmax = 1

  • 10390 measured reflections

  • 2991 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.056

  • S = 0.98

  • 2991 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—Cl4 2.2267 (7)
Cu1—Cl3 2.2447 (6)
Cu1—Cl2 2.2456 (8)
Cu1—Cl1 2.2644 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Cl1 0.93 2.29 3.134 (2) 150
N3—H3N⋯Cl3 0.93 2.79 3.399 (2) 124
C2—H2⋯Cl4i 0.95 2.66 3.480 (3) 145
C3—H3⋯Cl2ii 0.95 2.75 3.423 (3) 128
C3—H3⋯Cl3ii 0.95 2.77 3.537 (3) 138
C4—H4⋯Cl2iii 0.95 2.84 3.608 (3) 139
C9—H9A⋯Cl1iii 0.99 2.78 3.617 (3) 143
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1-[2-(Diethylazaniumyl)ethyl]-3-methylimidazolium ions in deprotonated form can act as bidentate ligands (Laus et al., 2012). In this work, it is shown that they are also capable of coordinating in protonated form. The structure of the ion pair of 3-(2-(diethylammonio)ethyl-1- methylimidazolium tetrachlorocuprate (II) is shown in Figure 1. The anion adopts a distorted tetrahedral geometry. The Cl—Cu—Cl angles range from 97° to 134°. The heterocyclic rings of the cation are oriented parallel to the (3 7 2) and (3 7 2) planes with an interplanar angle of 32.5°. The side chain is twisted out of the heterocyclic ring plane. In the crystal structure, the cations and anions are linked by N—H···Cl and C—H···Cl hydrogen bonds (Figure 2).

Related literature top

For structures of related tetrachloridocuprates(II), see: Russell & Wallwork (1969); Główka & Gilli (1989); Choi et al. (2002); Sun & Qu (2005); Elangovan et al. (2007a); Elangovan et al. (2007b); Strasser et al. (2007). For details of the synthesis, see: Laus et al. (2012); Håkansson & Jagner (1990).

Experimental top

The title compound, (C10H21N3)CuCl4, was obtained from the reaction of bis-(1-(2-(diethylamino)ethyl)-3-methylimidazolin-2-ylidene) di-silver(I) bis(bis(triflimide)) (Laus et al., 2012) and carbonyl chlorocopper(I) (Håkansson & Jagner, 1990) in methanol under ambient conditions. This unconventional synthesis involves redox, protonation and complexation steps. Yellow-green single crystals were obtained from MeOH in modest yield. Melting point 118–120 °C.

Refinement top

All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(parent atom).

Structure description top

1-[2-(Diethylazaniumyl)ethyl]-3-methylimidazolium ions in deprotonated form can act as bidentate ligands (Laus et al., 2012). In this work, it is shown that they are also capable of coordinating in protonated form. The structure of the ion pair of 3-(2-(diethylammonio)ethyl-1- methylimidazolium tetrachlorocuprate (II) is shown in Figure 1. The anion adopts a distorted tetrahedral geometry. The Cl—Cu—Cl angles range from 97° to 134°. The heterocyclic rings of the cation are oriented parallel to the (3 7 2) and (3 7 2) planes with an interplanar angle of 32.5°. The side chain is twisted out of the heterocyclic ring plane. In the crystal structure, the cations and anions are linked by N—H···Cl and C—H···Cl hydrogen bonds (Figure 2).

For structures of related tetrachloridocuprates(II), see: Russell & Wallwork (1969); Główka & Gilli (1989); Choi et al. (2002); Sun & Qu (2005); Elangovan et al. (2007a); Elangovan et al. (2007b); Strasser et al. (2007). For details of the synthesis, see: Laus et al. (2012); Håkansson & Jagner (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ion pair of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Interionic contacts in the crystal structure of the title compound. Symmetry codes: (i) x, -1 + y, z; (ii) –x, -1/2 + y, 3/2–z; (iii) x, 1/2–y, 1/2 + z.
1-[2-(Diethylazaniumyl)ethyl]-3-methylimidazolium tetrachloridocuprate(II) top
Crystal data top
(C10H21N3)[CuCl4]F(000) = 796
Mr = 388.64Dx = 1.607 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.0041 (8) ÅCell parameters from 4805 reflections
b = 7.1161 (6) Åθ = 3.1–28.5°
c = 14.4143 (7) ŵ = 2.01 mm1
β = 112.956 (6)°T = 173 K
V = 1606.04 (17) Å3Fragment, yellow
Z = 40.20 × 0.16 × 0.12 mm
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
2991 independent reflections
Graphite monochromator2361 reflections with I > 2σ(I)
Detector resolution: 10.3822 pixels mm-1Rint = 0.045
ω (1° width) scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2020
Tmin = 0.875, Tmax = 1k = 68
10390 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C10H21N3)[CuCl4]V = 1606.04 (17) Å3
Mr = 388.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0041 (8) ŵ = 2.01 mm1
b = 7.1161 (6) ÅT = 173 K
c = 14.4143 (7) Å0.20 × 0.16 × 0.12 mm
β = 112.956 (6)°
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
2991 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2361 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 1Rint = 0.045
10390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 0.98Δρmax = 0.34 e Å3
2991 reflectionsΔρmin = 0.34 e Å3
166 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24089 (2)0.54432 (5)0.77447 (2)0.01040 (9)
Cl10.33356 (4)0.30011 (9)0.81388 (5)0.01280 (16)
Cl20.12793 (4)0.62361 (10)0.63485 (5)0.01575 (16)
Cl30.17620 (4)0.47770 (9)0.87973 (4)0.01224 (15)
Cl40.33226 (4)0.76469 (10)0.76985 (6)0.02164 (18)
N30.34210 (13)0.2088 (3)1.03033 (15)0.0089 (5)
H3N0.31910.24610.96320.011*
N20.16575 (13)0.0096 (3)0.88310 (15)0.0089 (5)
N10.08640 (14)0.0672 (3)0.73070 (15)0.0118 (5)
C90.35838 (17)0.3852 (4)1.09319 (19)0.0130 (6)
H9A0.38120.35031.16540.016*
H9B0.30360.45191.07770.016*
C20.16480 (17)0.0163 (4)0.79170 (19)0.0125 (6)
H20.21210.00120.77290.015*
C80.46893 (17)0.0322 (4)1.15266 (19)0.0164 (6)
H8A0.48920.14041.19780.025*
H8B0.51780.04521.15640.025*
H8C0.43010.04291.17310.025*
C60.27576 (16)0.0917 (4)1.04753 (19)0.0105 (6)
H6A0.22830.17481.04510.013*
H6B0.30120.03731.11610.013*
C50.23917 (16)0.0678 (4)0.97205 (19)0.0124 (6)
H5A0.28420.11560.95080.015*
H5B0.22190.17211.00550.015*
C70.42237 (16)0.1000 (4)1.04603 (19)0.0132 (6)
H7A0.46130.18091.02730.016*
H7B0.40740.00981.00030.016*
C100.42071 (19)0.5163 (4)1.0745 (2)0.0193 (7)
H10A0.47790.46041.10170.029*
H10B0.42180.63691.10790.029*
H10C0.40280.53671.00190.029*
C10.05856 (19)0.1108 (4)0.62341 (19)0.0215 (7)
H1A0.06680.24510.61510.032*
H1B0.0020.07930.58870.032*
H1C0.09220.03730.59460.032*
C30.03637 (17)0.0745 (4)0.78593 (19)0.0138 (6)
H30.02240.10720.76120.017*
C40.08539 (16)0.0273 (4)0.8808 (2)0.0134 (6)
H40.06820.02060.93590.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01055 (17)0.00944 (18)0.01216 (18)0.00016 (15)0.00545 (14)0.00046 (14)
Cl10.0154 (4)0.0136 (4)0.0110 (3)0.0043 (3)0.0068 (3)0.0018 (3)
Cl20.0162 (4)0.0190 (4)0.0114 (3)0.0037 (3)0.0048 (3)0.0018 (3)
Cl30.0113 (3)0.0140 (4)0.0119 (3)0.0003 (3)0.0051 (3)0.0012 (3)
Cl40.0185 (4)0.0115 (4)0.0420 (5)0.0021 (3)0.0196 (4)0.0007 (3)
N30.0081 (12)0.0116 (12)0.0062 (11)0.0000 (10)0.0020 (10)0.0009 (9)
N20.0094 (12)0.0063 (13)0.0093 (11)0.0013 (9)0.0017 (10)0.0026 (9)
N10.0130 (12)0.0092 (13)0.0098 (12)0.0028 (10)0.0007 (10)0.0026 (9)
C90.0158 (15)0.0119 (15)0.0110 (14)0.0007 (12)0.0049 (12)0.0017 (11)
C20.0153 (15)0.0090 (15)0.0138 (15)0.0033 (12)0.0063 (13)0.0046 (11)
C80.0107 (14)0.0169 (16)0.0182 (15)0.0005 (13)0.0020 (12)0.0005 (13)
C60.0070 (14)0.0142 (16)0.0101 (14)0.0004 (11)0.0029 (12)0.0007 (11)
C50.0095 (14)0.0109 (16)0.0163 (15)0.0002 (12)0.0045 (12)0.0023 (12)
C70.0092 (14)0.0142 (16)0.0184 (15)0.0006 (12)0.0079 (12)0.0011 (12)
C100.0273 (17)0.0147 (17)0.0151 (15)0.0083 (13)0.0075 (13)0.0039 (12)
C10.0277 (18)0.0217 (18)0.0119 (15)0.0021 (14)0.0044 (14)0.0009 (13)
C30.0098 (14)0.0136 (17)0.0179 (15)0.0019 (12)0.0055 (13)0.0039 (12)
C40.0106 (14)0.0146 (15)0.0165 (15)0.0034 (12)0.0070 (13)0.0037 (12)
Geometric parameters (Å, º) top
Cu1—Cl42.2267 (7)C8—H8A0.98
Cu1—Cl32.2447 (6)C8—H8B0.98
Cu1—Cl22.2456 (8)C8—H8C0.98
Cu1—Cl12.2644 (7)C6—C51.527 (4)
N3—C61.499 (3)C6—H6A0.99
N3—C71.507 (3)C6—H6B0.99
N3—C91.509 (3)C5—H5A0.99
N3—H3N0.93C5—H5B0.99
N2—C21.324 (3)C7—H7A0.99
N2—C41.379 (3)C7—H7B0.99
N2—C51.458 (3)C10—H10A0.98
N1—C21.329 (3)C10—H10B0.98
N1—C31.374 (3)C10—H10C0.98
N1—C11.463 (3)C1—H1A0.98
C9—C101.513 (4)C1—H1B0.98
C9—H9A0.99C1—H1C0.98
C9—H9B0.99C3—C41.337 (4)
C2—H20.95C3—H30.95
C8—C71.508 (4)C4—H40.95
Cl4—Cu1—Cl3134.47 (3)C5—C6—H6A108.6
Cl4—Cu1—Cl299.16 (3)N3—C6—H6B108.6
Cl3—Cu1—Cl2100.69 (3)C5—C6—H6B108.6
Cl4—Cu1—Cl197.04 (3)H6A—C6—H6B107.5
Cl3—Cu1—Cl198.33 (3)N2—C5—C6112.7 (2)
Cl2—Cu1—Cl1133.31 (3)N2—C5—H5A109
C6—N3—C7112.7 (2)C6—C5—H5A109
C6—N3—C9109.68 (18)N2—C5—H5B109
C7—N3—C9113.2 (2)C6—C5—H5B109
C6—N3—H3N107H5A—C5—H5B107.8
C7—N3—H3N107N3—C7—C8113.7 (2)
C9—N3—H3N107N3—C7—H7A108.8
C2—N2—C4108.8 (2)C8—C7—H7A108.8
C2—N2—C5126.0 (2)N3—C7—H7B108.8
C4—N2—C5125.19 (19)C8—C7—H7B108.8
C2—N1—C3108.4 (2)H7A—C7—H7B107.7
C2—N1—C1125.8 (2)C9—C10—H10A109.5
C3—N1—C1125.9 (2)C9—C10—H10B109.5
N3—C9—C10112.5 (2)H10A—C10—H10B109.5
N3—C9—H9A109.1C9—C10—H10C109.5
C10—C9—H9A109.1H10A—C10—H10C109.5
N3—C9—H9B109.1H10B—C10—H10C109.5
C10—C9—H9B109.1N1—C1—H1A109.5
H9A—C9—H9B107.8N1—C1—H1B109.5
N2—C2—N1108.4 (2)H1A—C1—H1B109.5
N2—C2—H2125.8N1—C1—H1C109.5
N1—C2—H2125.8H1A—C1—H1C109.5
C7—C8—H8A109.5H1B—C1—H1C109.5
C7—C8—H8B109.5C4—C3—N1107.6 (2)
H8A—C8—H8B109.5C4—C3—H3126.2
C7—C8—H8C109.5N1—C3—H3126.2
H8A—C8—H8C109.5C3—C4—N2106.8 (2)
H8B—C8—H8C109.5C3—C4—H4126.6
N3—C6—C5114.8 (2)N2—C4—H4126.6
N3—C6—H6A108.6
C6—N3—C9—C10176.3 (2)C4—N2—C5—C672.8 (3)
C7—N3—C9—C1056.9 (3)N3—C6—C5—N288.4 (3)
C4—N2—C2—N10.5 (3)C6—N3—C7—C863.9 (3)
C5—N2—C2—N1179.5 (2)C9—N3—C7—C861.3 (3)
C3—N1—C2—N20.4 (3)C2—N1—C3—C40.1 (3)
C1—N1—C2—N2179.5 (2)C1—N1—C3—C4179.2 (2)
C7—N3—C6—C565.8 (3)N1—C3—C4—N20.2 (3)
C9—N3—C6—C5167.1 (2)C2—N2—C4—C30.4 (3)
C2—N2—C5—C6107.2 (3)C5—N2—C4—C3179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl10.932.293.134 (2)150
N3—H3N···Cl30.932.793.399 (2)124
C2—H2···Cl4i0.952.663.480 (3)145
C3—H3···Cl2ii0.952.753.423 (3)128
C3—H3···Cl3ii0.952.773.537 (3)138
C4—H4···Cl2iii0.952.843.608 (3)139
C9—H9A···Cl1iii0.992.783.617 (3)143
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—Cl42.2267 (7)Cu1—Cl22.2456 (8)
Cu1—Cl32.2447 (6)Cu1—Cl12.2644 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Cl10.932.293.134 (2)150
N3—H3N···Cl30.932.793.399 (2)124
C2—H2···Cl4i0.952.663.480 (3)145
C3—H3···Cl2ii0.952.753.423 (3)128
C3—H3···Cl3ii0.952.773.537 (3)138
C4—H4···Cl2iii0.952.843.608 (3)139
C9—H9A···Cl1iii0.992.783.617 (3)143
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to A. Schwärzler for technical assistance.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChoi, S.-N., Lee, Y.-M., Lee, H.-W., Kang, S. K. & Kim, Y.-I. (2002). Acta Cryst. E58, m583–m585.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, m201–m203.  CSD CrossRef IUCr Journals Google Scholar
First citationElangovan, A., Thamaraichelvan, A., Ramu, A., Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, m224–m226.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGłówka, M. L. & Gilli, G. (1989). Acta Cryst. C45, 408–410.  CSD CrossRef IUCr Journals Google Scholar
First citationHåkansson, M. & Jagner, S. (1990). Inorg. Chem. 29, 5241–5244.  Google Scholar
First citationLaus, G., Wurst, K. & Schottenberger, H. (2012). Z. Kristallogr. New Cryst. Struct. 227, 413–415.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRussell, J. H. & Wallwork, S. C. (1969). Acta Cryst. B25, 1691–1695.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrasser, C. E., Cronje, S. & Raubenheimer, H. G. (2007). Acta Cryst. E63, m2915–m2916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, X.-M. & Qu, Y. (2005). Acta Cryst. E61, m1360–m1362.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds